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Measuring distances between pairs of points on a 3D surface is a fundamen-
tal problem in computer graphics and geometric processing. For most appli-
cations, the important properties of a distance are that it is a metric, smooth,
locally isotropic, globally “shape-aware,” isometry invariant, insensitive to
noise and small topology changes, parameter-free, and practical to compute
on a discrete mesh. However, the basic methods currently popular in com-
puter graphics (e.g., geodesic and diffusion distances) do not have these
basic properties. In this paper, we propose a new distance measure based on
the biharmonic differential operator that has all the desired properties. This
new surface distance is related to the diffusion and commute-time distances,
but applies different (inverse squared) weighting to the eigenvalues of the
Laplace-Beltrami operator, which provides a nice trade-off between nearly
geodesic distances for small distances and global shape-awareness for large
distances. The paper provides theoretical and empirical analysis for a large
number of meshes.

Categories and Subject Descriptors:

Additional Key Words and Phrases: Shape analysis, mesh processing, mesh
distance

1. INTRODUCTION

Measuring the distances between pairs of points on a 3D surface
is a classical problem in computer graphics, geometric processing,
and shape analysis. It is a critical step in most shape analysis ap-
plications, including segmentation, embedding, parameterizations,
deformation, and matching of 3D surface meshes.

For these applications, the important properties of a distance from a
point x to another point y are that it is: 1) metric: non-negative, sat-
isfies the identity of indiscernibles, symmetric, and satisfies the tri-
angle inequality; 2) gradual: smooth with respect to perturbations
of x and y, with no singularities except derivative discontinuity at
x; 3) locally isotropic: approximately geodesic when y is near x;
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Fig. 1: Biharmonic distance from a source point (darkest blue). Red points
are furthest from the source. White lines are equally spaced in distance.

4) globally “shape-aware:” reflects the overall shape of the surface
when y is far from x; 5) isometry invariant: does not change with
isometric transformations of the surface, 6) insensitive to noise and
topology: does not change significantly with the addition of noise
or changes to topology; 7) practical to compute: compute times
between all pairs of points in common meshes take at most a few
minutes; and 8) parameter-free: independent of any parameter that
must be set differently for specific meshes or applications.

Although these properties seem fundamental, there is no current
distance measure that satisfies all of them. Geodesic distance [Pa-
padimitriou 1985; Surazhsky et al. 2005] is a metric and locally
isotropic, but it is not smooth, insensitive to topology, or globally
shape-aware. Alternatively, diffusion distance [Coifman and Lafon
2006] is either not locally isotropic or not globally shape-aware,
depending on a parameter, and it is not necessarily a metric (when
computed using only the first few eigenvalues and eigenvectors).
Finally, the graph-theoretical commute-time distance [Fouss et al.
2006] cannot be defined on a continuous domain (diverges), and
possesses a strong singularity at the source point.

In this paper, we introduce a novel distance operator that has all
of the desired properties (Figure 1). The key idea is to balance be-
tween local and global properties of the distance by an eigenvalue
normalization that is intimately related to the biharmonic differen-
tial equation. The proposed biharmonic distance bridges the gap
between diffusion (with small t), commute-time and geodesic dis-
tances, which provide good properties locally, and diffusion dis-
tance (with large t), which provides good properties globally. Since
it is practical to compute (Section 3), has provable theoretical prop-
erties (Section 4) and “shape-aware” distance measurements (Sec-
tion 5), we believe that it is immediately useful for a wide variety
of shape analysis applications.
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2. BACKGROUND AND RELATED WORK

Measuring distance, d(x, y), between two points x and y on a sur-
face is a classical problem, and thus several distance measures have
previously been proposed and are commonly used in shape analysis
applications.

Geodesic distance: Perhaps the most popular distance is geodesic,
which measures the length of the shortest path along the surface
between two points. Although this distance is intuitive and useful
for many applications (e.g., path planning), it has properties that
are undesirable for global shape analysis (e.g., mesh segmentation).
The problems stem mainly from its local nature – i.e., the geodesic
distance between two points on surface depends only upon an in-
finitely small neighborhood around the shortest path. As a result,
distances are shape-oblivious (they are not affected by the rest of
the surface), there are derivative discontinuities at points where
two different shortest paths have the same lengths (at the collision
between advancing fronts), and small perturbations to the surface
(e.g., introducing a hole along the shortest path) can have signifi-
cant affect on distances. Another well-known drawback of geodesic
distances is its sensitivity to ”topological noise”; introducing arbi-
trary small topological shortcuts might cause arbitrary large change
in geodesic distance between pair of points. Moreover, comput-
ing exact geodesic distances between all-pairs of points is quite
slow for large meshes. Exact and approximate solutions [Papadim-
itriou 1985; Surazhsky et al. 2005] take O(N2.5 logN) (on aver-
age, worst case is O(N3 logN)), for all-pairs of N vertices mesh
and are difficult to implement. Thus, people generally approximate
continuous geodesic distance with a discrete graph version using
Dijkstra’s algorithm, which still takes O(N2logN).

Diffusion distance: For global shape analysis, it is common to
model distance between points by a diffusion process within time t
(a parameter). This (square of the) distance can be computed by:

dD(x, y)2 =

∞∑
k=1

e−2tλk (φk(x)− φk(y))2 , (1)

where φk(x), λk are the eigenfunctions and eigenvalues (resp.)
of the positive definite Laplace-Beltrami operator (henceforth, the
Laplacian)

∆φk(x) = λkφk(x),

where 0 = λ0 < λ1 ≤ λ2..., and t > 0 is a time parameter. While
diffusion distance is global and can be computed very quickly for
all pairs of vertices (in O(N1.5)), it depends heavily on the param-
eter t, which intuitively specifies the amount of “diffusion time”
during which paths are explored to discover connectivity between
vertices. On the one hand, if t is chosen too large, then only the
eigenvector(s) with the lowest eigenvalues are considered, and the
result is a distance measure with nice global properties, but poor lo-
cal properties (i.e., it is not locally isotropic, as shown in Figures 2
and 7). On the other hand, if t is too small, then the diffusion pro-
cess runs for only a short time, and the resulting distance is useful
locally, but exhibits unexpected behavior in distant areas such as
near-plateaus and local extrema. Note that we adopt the notation in
[Goes et al. 2008] by normalizing the time scale t ← t/(2λ1) to
achieve scale invariance. Henceforth, by abuse of notation, diffu-
sion times t will actually denote t/2λ1.

Commute-time distance: Another related type of distance on
graphs is the commute-time distance [Fouss et al. 2006; Yen et al.
2007; Qiu and Hancock 2007]. This distance can be can be intu-
itively described as follows: the commute-time distance between

two vertices on the graph is the average time it takes a random
walker to go from one vertex to the other and back. The requirement
of having the random walker return back makes this distance sym-
metric. It can also be described using the eigenvalues and eigenvec-
tors of the Laplacian:

dC(x, y)2 =

∞∑
k=1

1

λk
(φk(x)− φk(y))2 , (2)

Denoting (formally) by gC(x, y), the Green’s function of the
Laplacian the commute-time distance has the following equivalent
definition [Fouss et al. 2006]:

dC(x, y)2 = gC(x, x) + gC(y, y)− 2gC(x, y). (3)

This distance has two main disadvantages: 1) it cannot be defined
on surfaces, since its Green’s function has a singularity at the diag-
onal, and 2) it depends only upon the conformal structure (equiva-
lence class) of the surface which means it is the same for every two
conformally equivalent surfaces.

The first drawback is related to the singularity of the harmonic
Green’s function at the diagonal; for example, the Green’s func-
tion for simply connected planar Euclidean domain (and actually
for every two-dimensional surface) has logarithmic singularity at
the diagonal gC(x, x), and gC(x, y) is well-defined for all x 6= y.
This means that the formula (3) is not defined in the continuous
case. This property can also be understood by noting that the se-
ries

∑∞
k=1 1/λk is diverging since for two dimensional surfaces

λk ∼ k (see page 421 [Berger 2003] for compact surfaces). The
second property can be understood by noting that this distance
can be written in terms of the Green’s function of the Laplacian
gC(x, y) as Eq. (3) and that the Green’s function of the Laplacian
is conformally invariant.

3. APPROACH

Our new distance operator is similar to diffusion distance and
commute-time distance, but it is based on a kernel that is the
Green’s function of the biharmonic differential equation.

The formal definition of the distance operator can be done in few
equivalent ways. We will start with a continuous definition, move
to the definition in the discrete case, and finish with the practical
computation and approximation procedures.

3.1 Continuous construction

In the continuous case, the (square of the) distance can be sim-
ply defined using the eigenvectors and eigenvalues of the Laplace-
Beltrami operator:

dB(x, y)2 =

∞∑
k=1

(φk(x)− φk(y))2

λ2
k

. (4)

This definition is only slightly different from the graph-theoretic
commute-time distance [Yen et al. 2007] where the power of the
λ in the denominator is one, and the diffusion distance where the
denominator is e2tλk . The interesting part is that this seemingly
minor change produces a fundamentally different distance scheme
with different properties than diffusion and commute-time distance.
In a nut-shell, it is all related to how fast the normalized λk (in
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Fig. 2: Distances measured on an Euclidean domain (top-left). We visualize the distance field from a single source point to all other points
as a height function over this Euclidean domain. From left to right: diffusion distance for times t = 1, 1/5, 1/15 (calculated w.r.t the second
largest eigenvalue, see Section 2), geodesic distance, and biharmonic distance (this paper). Note how diffusion distance either possesses many
local maxima (indicated by black arrows) or locally does not reflect the source point, and the geodesic distance possesses non-smooth curve
of points and the isolines are not “shape-aware” far from the source. Biharmonic distance balances the “local” and “global” properties.

our case 1/λ2
k) decays: on one hand, if the decay is too slow (like∑

k 1/λk ∼
∑
k 1/k), it will produce logarithmic singularity at

the diagonal of the Green’s function (harmonic Green’s function,
commute-time distance [Yen et al. 2007]). On the other hand if
the decay is too fast, it basically ignores eigenvectors with high fre-
quencies, and the distance is “too global”. We will demonstrate that
taking the quadratic normalization as done in Eq. (4) has the fol-
lowing justifications: it provides a good balance in the sense that it
decays slow enough to get good local properties around the source
point and fast enough to be shape adherent in “far” areas. This spe-
cific “balancing” it is intimately related to the biharmonic equation.
In particular, Eq. (4) can be written in the following way (opening
the parenthesis):

dB(x, y)2 =

∞∑
k=1

|φk(x)|2

λ2
k

+

∞∑
k=1

|φk(x)|2

λ2
k

− 2

∞∑
k=1

φk(x)φk(y)

λ2
k

= gB(x, x) + gB(y, y)− 2gB(x, y),

using the Green’s function gB(x, y) of the biharmonic operator ∆2:

gB(x, y) =

∞∑
k=1

φk(x)φk(y)

λ2
k

. (5)

The Green’s function gB(x, y) satisfies the relation

∆2
(x)

∫
gB(x, y)f(y)dy = f(x), (6)

for “smooth enough” f [John 1986].

The benefits of this distance formulation in comparison to diffusion
and geodesic distances can be seen in Figure 2, which shows a Eu-
clidean domain (top-left) and the different distances visualized as
height functions over this domain. Note that diffusion distance pos-
sesses good global properties for long times (left) and good local
properties for small times (middle), but not both: when it is good
locally it has unintuitive global behavior with many local extrema;
yet, when its monotone and shape aware on far areas it produces
unintuitive behavior locally. Geodesic distance is not shape aware
for distant areas from the source point (observe the isolines) and
possesses derivatives singularities (the kink at the top). Biharmonic
strikes a balance: note that the isolines follow the shape, and the far-

thest point leverages the overall connectivity rather than the single
shortest distance. Furthermore, it has an intuitive local behavior.

3.2 Discrete construction

The discrete definition of the biharmonic distance is based on con-
structing a discrete Green’s function gd of the Bi-Laplacian using
formula Eq. (5).

Our discretization of the Green’s function is based on the common
“cotangent formula” discretization of the Laplace-Beltrami differ-
ential operator on meshes [Meyer et al. 2002; Grinspun et al. 2006]:

(∆du)i =
1

Ai

∑
j∈Nei(i)

(cotαij + cotβij) (ui − uj), (7)

where (∆du)i, for a mesh function u, denotes its discrete Laplacian
evaluated at vertex i (for i = 1, 2, ...,N , N number of vertices);
Ai is the Voronoi area at ith mesh vertex [Grinspun et al. 2006];
angles αij , βij are the two angles supporting the edge connecting
vertices i and j (see for example [Meyer et al. 2002]). We denote
the matrix of the linear transformation (7) by Ld. We also consider
the area/mass matrix A ∈ RN×N which is the diagonal matrix
withAii = Ai. Note that Ld = A−1Lc, where Lc is the conformal
discrete Laplacian [Pinkall and Polthier 1993], i.e. the matrix of the
linear transformation in 7 but without the inverse area terms.

Given this discretization of the Laplacian, we define the discrete
Green’s function of the Bi-Laplacian, gd ∈ RN×N , by discretizing
the relation in Eq. (6). Indeed, when the continuous integration is
discretized we obtain

L2
dgdAf = f, (8)

where f ∈ RN×1 is an arbitrary vector in the image of L2
d. As

we prove in the Appendix (Theorem 3), this requirement is satis-
fied if we take gd to be the pseudo-inverse of LcA−1Lc. As the
pseudo-inverse of a symmetric matrix, our discrete Green’s func-
tion is symmetric gd = gtd.

Finally, having gd at hand, the biharmonic distance on the mesh is
defined via Eq. (5):

dB(vi, vj)
2 = gd(i, i) + gd(j, j)− 2gd(i, j). (9)
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Surfaces with boundaries

In order to define the biharmonic distance on surfaces with bound-
aries, we need to prescribe boundary conditions for the differential
operator. As we will show, using the same equation, that is eq. (7),
also for boundary vertices, will provide the desired solution. There-
fore, surfaces with boundaries are treated in the same way.

The basic idea is to define the Laplacian with Neumann boundary
conditions. That is, the eigenfunction are the eigenfunctions of the
Laplacian, ∆φk = λφk, where on the boundary we force the out-
ward normal derivative to be zero:

∂φk
∂~n

= 0,

where ~n denotes the outward normal direction on the boundary.
Note that the cotangent Laplacian applied on a boundary vertex ap-
proximates the normal derivative. Figure 3 shows the biharmonic
distance on a mesh with many holes and missing parts, and there-
fore with many boundaries. Note that the distance is largely insen-
sitive to them.

Fig. 3: The biharmonic distance on a raw surface mesh with many bound-
aries. Note that the isolines follow the shape indifferently to the missing
parts and holes (e.g., the marked arrows).

3.3 Practical computation

Given a subset of M vertices on the mesh (possibly M = N ), we
are interested in calculating all-pairs of distances in this subset. We
will present two methods: 1) exact computation, and 2) approxi-
mate computation.

Exact distance computation The basic idea is that all the pairwise
distances in this subset can be calculated quickly (O(1)) after the
relevant M columns of the matrix gd are known. Indeed, calculat-
ing the distance between vertices vi, vj in the subset of M vertices
using Eq. (9) requires merely three values located on the ith and
jth columns. So from this point until the end of this section, we
will concentrate on how to evaluate efficiently the columns of gd.

One way to calculate the pseudo-inverse is by performing full
eigen-decomposition of LcA−1Lc. This is obviously a computa-
tionally expensive task. Let us present a more efficient way to cal-
culate the jth column of matrix gd. First, we need to understand
what is the matrix J in the product LcA−1Lcgd = J . As proved
in the Appendix (Theorem 2), J = I − 1

N
11t where 1 ∈ RN×1

is a column vector of all ones. Also, we note that each column of
gd, denoted by (gd)j , j = 1, ...,N , is the unique solution of the
equation LcA−1Lcy = (J)j such that its entries add up to zero
(Theorem 4 in the appendix). Given these observations it is rather
easy to calculate each given column of gd, (gd)j :

(1) Find a particular solution x to

LcA
−1Lcx = (J)j . (10)

(2) Take

(gd)j = y = x− 1tx
1t1

1.

The particular solution x can be obtained as follows. We replace
some arbitrary row and column of LcA−1Lc by zeros; the diagonal
entry at their intersection is set equal to 1; the corresponding row
of J is replaced by zeros. We then solve the (now invertible) linear
system. As proved in the Appendix (Theorem 4), given any solution
x, the vector y is the sought zero-sum solution of Eq. (10).

Approximate distance computation To approximate the bihar-
monic distance we can follow the standard methodology for
approximating the diffusion distance. That is, approximating
dB(x, y) by taking first K summands in eq. (4). To this end,
we compute the first K eigenvectors of the discrete Laplacian,
∆dφk = λkφk which amounts to solving the generalized eigen-
value problem Lcφk = Aλkφk. The distance dB(x, y) is then ap-
proximated using the truncated sum:

d̃B(x, y)2 =

K∑
k=1

(φk(x)− φk(y))2

λ2
k

. (11)

Although the error bound is (generally) linear in 1/K this approx-
imation still provides considerable speedup in tradeoff of accuracy
over the exact computation (see Section 5). Furthermore, since the
approximate distance uses a fixed set of eigenvectors it is smooth.

4. THEORETICAL PROPERTIES

This section is devoted to describing the theoretical properties of
the biharmonic distance. In particular, we argue that the distance
measure is: 1) a metric, 2) smooth everywhere except at the source
point where it is continuous, and 3) efficient to calculate. The prop-
erties (1) and (2) of the discrete biharmonic distance should be in
turn derived using approximation properties of our discretization
choices.

Metric: First, the biharmonic distance is a metric. The different ax-
ioms of a metric can be checked from Eq. (4): 1) the non-negativity
is clear, 2) the triangle inequality stems from the inequality√∑n

k=1(ak − ck)2 ≤
√∑n

k=1(ak − bk)2 +
√∑n

k=1(bk − ck)2

and taking ak = φk(x)/λk, bk = φk(y)/λk, ck = φk(z)/λk,
where x, y, z are arbitrary points on the surface and going to the
limit n → ∞ to get dB(x, z) ≤ dB(x, y) + dB(y, z), 3) symme-
try is clear by observing that the roles of x and y can be switch
in Eq. (4) without changing the distance, 4) the last property is
fB(x, y) = 0 only if x = y. This can be understood by noting that
if x and y satisfy φk(x) = φk(y) for all k, then basically since φk
is orthonormal basis then any (L2 integrable) function f defined
over the surface can be written as f(x) =

∑∞
k=1〈f, φk〉φk(x),
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therefore

f(x) =

∞∑
k=1

〈f, φk〉φk(x) =

∞∑
k=1

〈f, φk〉φk(y) = f(y),

which means there are no functions distinguishing x and y. This
necessarily means that x = y.

Smoothness and local isometry: The key observation about the
biharmonic distance is that since on two dimensional surfaces the
eigenvalues of the Laplacian λk, k = 1, 2, ..., grow like k, that is
λk ∼ k (see [Berger 2003], and [H. P. McKean and Singer 1967])
the series

∑
k≥1 1/λ2

k is converging. This is the reason why the
biharmonic distance is continuous everywhere and smooth every-
where except at the source point, where it has only a derivative dis-
continuity. Note that it has similar behavior to the regular Euclidean
distance measured from a point: dB(x, y) =

√
(x− y)t(x− y)

which is continuous everywhere and smooth as long as x 6= y.
In that sense the biharmonic distance has a natural (similar to Eu-
clidean) local behavior.

Timing and computational complexity: Obviously, timing is a
crucial aspect of a distance scheme. A good distance scheme with
poor timing is hardly practical. Our exact computational scheme of
the biharmonic distance, as described in Section 3, is constructed to
efficiently solve the all-pairs distance problem in O(MN), where
M is the size of the subset on which we compute the distances.
This complexity can be understood by noting that each of the M
columns of gd is a solution of the sparse and symmetric linear sys-
tem of equations Eq. (10) with one row exchanged, where the ma-
trix on the left-hand side is fixed for all j. This kind of linear system
can be solved very efficiently by first performing Cholesky factor-
ization of the matrix and then performing two back-substitutions
for every given right-hand side vector. As explained in [Botsch et al.
2005] this scheme (both factorizing and back-substituting) is linear
in number of vertices and therefore resulting in an O(N) opera-
tions for each column evaluation of gd.

The computational complexity of approximating the biharmonic
distance consists of first calculating the first K eigenvectors in
O(KN1.5), and then approximating every distance between pairs
of points can be computed in O(K) operations.

5. RESULTS

In order to investigate the practical properties of the biharmonic
distance, we ran a set of experiment using 3D meshes from a va-
riety of object types, including all 400 models of the Watertight
Benchmark Set of SHREC 2007 [Giorgi et al. 2007]. In these ex-
periments, our goals are to understand how the biharmonic distance
behaves on complex surfaces, to test its empirical sensitivity to
mesh perturbations (noise and tessellation), and to make qualita-
tive comparisons to other commonly used distance measures.

5.1 Evaluation

Biharmonic distance examples: Our first set of results provides
visualizations of the biharmonic distance computed from a sin-
gle “source vertex” to all other vertices for a representative set of
meshes (Figures 4(a) and 5(a)). In these visualization, distances are
color-coded and Gouraud shaded, with darker blue regions indicat-
ing smaller distances, darker red regions indicating larger distances,

(a) Biharmonic (this paper) (b) Geodesic (c) Diffusion

Fig. 4: Visualization of biharmonic (left), geodesic (middle), and diffusion
distances (right) for the front and back of a boy. Note that the source vertex
is on the back of the boy, but a local minimum of diffusion distance appears
on the front.

and cyan, grey, and pink regions in between. Isocontours are shown
as white lines at equally spaced intervals of distance.

As can be seen from these images, our biharmonic distance (left
column) is sensitive to both local and global properties of the shape:
isocontours are nearly circular in the vicinity of the source vertex,
and yet they follow the natural cross-sections of the shape at further
distances (e.g., on the arms and legs of the boy). Also, please note
that the biharmonic distance is smooth and has no local minima,
except at the source point.

Comparison to geodesic distance: Figures 4 and 5 show compar-
isons of the biharmonic distance (left column) to the geodesic dis-
tance (middle column) computed with the exact and approximate
algorithm of [Surazhsky et al. 2005]. Clearly, the local properties of
geodesic distance are desirable: the distance is isotropic and gradu-
ally increasing in the neighborhood of the source vertex. However,
the geodesic distance is not globally shape-aware, and thus: 1) dis-
tances are sensitive to the exact placement of the source, causing
diagonal isocontours down the arms of the boy in Figure 4(b); and

ACM Transactions on Graphics, Vol. , No. , Article , Publication date: .



6 •

2) distances are not smooth, causing cusps and ridges in the dis-
tance function, especially on the opposite side of the surface from
the source vertex (e.g., on the stomach of the boy). These undesir-
able global properties of geodesic distance diminish its utility for
shape analysis applications.

Comparison to diffusion distance: Figures 4 and 5 also show
comparisons to the diffusion distance computed with t = 1 using
the method of [Goes et al. 2008] (right column). In these images,
note that the global properties of the diffusion distance qualitatively
match those of the biharmonic distance. For example, isocontours
are perpendicular to central axes of protrusions far from the source
vertex. However, the diffusion distance does not have the nice local
properties of the biharmonic distance. Note how isocontours close
to the source appear to be elongated ellipses, rather than circles
(e.g., on the back of the boy in Figure 4(c)), indicating the undue
influence of the global shape on local distances.

Of course, the parameter t provides a trade-off between the ef-
fects of local and global shape in the diffusion distance compu-
tation (Figure 7). However, it is impossible to get the “best of both
worlds” with any single setting for this parameter. If t is small (e.g.,
0.125), then the diffusion process runs for only a short time, and the
resulting distance is useful locally, but almost constant on for dis-
tant pairs of points (note that there are few isocontours in the palm
in Figure 7a). If t is large (e.g., 0.25-1.0), then the distance captures
global properties of the shape, but fails to capture local properties
(note that the isocontours shown in the zoomed view of the finger
Figure 7(b) are nearly parallel in the vicinity of the source vertex).
In contrast, our biharmonic distance (rightmost image in Figure 7)
captures both local and global properties of the shape without any
parameters.

Sensitivity to noise, tessellation, and deformation: In order to
test the robustness of the biharmonic distance, we ran experiments
for meshes with different noise, tessellation, and deformations for
the same shapes and visually compared the resulting distances.
Representative results are shown in Figure 6. The top two images
(Figure 6a-b) demonstrate insensitivity to noise – note how the col-
oring and isocontours of the biharmonic distance are largely un-
changed by adding Gaussian noise to the mesh (σ = 400% of the
average edge length). The middle row of two images (Figure 6c-d)
shows insensitivity to tessellation – as the mesh is simplified from
14K vertices to 4K, the biharmonic distance remains stable (note
that the visualization bilinearly interpolates the distance across tri-
angles when rendering colors and positioning isocontours, and so
the main differences between the two images are in the interpola-
tion, not the distance function itself). The bottom row shows in-
sensitivity to nearly isometric deformation of the Armadillo (Fig-
ure 6e-f).

Timing: Finally, we ran experiments to test the empirical compute
time (exact and approximate) of the biharmonic distance and com-
pared it to others.

In the first experiment we took meshes with different number of
vertices and timed exact computation of the biharmonic distances
between all pairs of vertices (M = N ) using a 2.2Ghz Opteron 875
processor. Looking at the results in Table I, we see that the diffusion
distance is relatively fast to compute (37.2 seconds for a mesh with
16K vertices). Our biharmonic distance is not as fast (607.6 sec-
onds), but it is much faster than geodesic distance (1098.5 seconds),
which was approximated with Dijkstra’s algorithm for this experi-
ment to achieve reasonable compute times. Both theoretically and
empirically, our method grows with O(MN), Dijkstra’s method (a) Biharmonic (this paper) (b) Geodesic (c) Diffusion

Fig. 5: Comparisons of biharmonic distance (left column) to geodesic (mid-
dle) and diffusion distances (right).
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(a) Diffusion (t = 0.125) (b) Diffusion (t = 0.25) (c) Diffusion (t = 0.5) (d) Diffusion (t = 1.0) (e) Biharmonic (this paper)

Fig. 7: Comparison of diffusion distance with different parameter values for t with the biharmonic distance (rightmost image).

grows with O(MNlogN), exact geodesic computation [Surazh-
sky et al. 2005] grows with O(MN2logN) in the worst-case and
with O(MN1.5logN) on average. Diffusion distance grows with
O(N1.5). Moreover, since the Biharmonic distance is a smooth
function, it can in principle be approximated by sub-sampling of
the mesh, while geodesic distances will exhibit artifacts and bad
approximation order at points where minimizing geodesics meet.

Diffusion
Mesh |V | Biharmonic Dijkstra (t=0.125)

2K 6.3 14.4 1.2
4.3K 40.3 74.8 4.11
8K 131.6 233.3 8.8

12K 472.7 610.7 13.0
16K 607.6 1098.5 37.2

Table I. : Time (in seconds) to compute distances for all vertex pairs.

In the second experiment, we timed the exact computation of
the biharmonic distance between all pairs of M vertices (where
M < N ), a scenario common in shape analysis applications
(e.g., segmentation, shape matching). Table II shows timing for
M = 2, 100, 400 and various N . Note that the case M = 2 cor-
responds to computing the distance between two points. Geodesic
distance approximated with Dijkstra’s algorithm is fastest for small
M . Biharmonic distance has an overhead due to Cholesky factor-
ization (see M = 2), which is quickly amortized as M increases,
and biharmonic becomes the fastest for largeM (see 112K mesh at
M = 400). Diffusion distance computation is dominated by eigen-
decomposition time, and so it practically does not depend on the
size of the subset M .

Lastly, we experimented with the approximation of the bi-
harmonic distance achieved with the first K eigenvectors,
as described in section 3. Figure 8 shows the log error
log
(∣∣∣dB(x, y)− d̃B(x, y)

∣∣∣ /maxx,y dB(x, y)
)

as a function of
the number of eigenvectors used K = 1, 2, ..., 200. We randomly
picked 200K pairs of points of a mesh with 5K vertices, and com-
puted this error; the red curve shows the worst-case (maximum)
errors achieved for every K, and the blue curve shows the average
errors. The computation times for the first K = 200 eigenvectors
(resulting in the right most errors in the graph) took 12 seconds.
The approximated distance between pair of points can be calculated

from the firstK eigenvectors inO(K) (K is usually a constant, say
K = 150− 200). Note that computing the Green’s matrix gd took
66 seconds in this case. The pairwise distance can be computed
from gd in O(1) operations.

5.2 Applications

We investigated two applications of biharmonic distance in geomet-
ric mesh processing: function interpolation on surfaces and shape
matching.

Function interpolation on surfaces: An application that benefits
from intrinsic distances on surfaces is interpolation. Given pre-
scribed values at a set of surface anchor points, the aim of inter-
polation is to construct a function on the whole surface that attains
these values at the corresponding points. The standard Shepard in-
terpolation [Shepard 1968; Gordon and Wixom 1978] procedure
solves this problem via weighted averaging: each prescribed value
contributes with a weight that is inversely proportional to the dis-
tance to the corresponding point.

In our setting, let pi be the anchor points where the scalar values fi
are prescribed. The Shepard interpolant is defined for any point p
on the surface as

f(p) =

∑
i wi(p)fi∑
i wi(p)

,

where wi(p) are the weights given by wi(p) = 1/d(p, pi). Here,
d(·, ·) is any distance measure on the surface. Shepard interpolant
has the zeroth order precision meaning that the constant functions
are reproduced, i.e. if fi are all equal, then f is also constant.

We evaluate the effect of different choices of the distance mea-
sure d(·, ·) on the resulting interpolant. Figure 9 shows the equally
spaced isocontours of the interpolant obtained using biharmonic,
geodesic, and diffusion distances. Darker blue regions correspond
to smaller, and darker red to larger function values. Without any
parameter tuning, biharmonic distance (Figure 9(a)) provides a
well-behaved interpolant both close to anchor points and far away.
Geodesic distance (Figure 9(b)) interpolant displays expected be-
havior close to the anchors, but away from anchors diagonal iso-
contours and ridges appear. Experimenting with various settings for
the diffusion time t parameter reveals that while acceptable results
can be obtained, scrupulous tuning of the parameter is needed. For
example when t = 1/4 (Figure 9(c)), the resulting interpolant is
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Mesh size Biharmonic Dijkstra Diffusion
|V | |F | M=2 M=100 M=400 M=2 M=100 M=400 M=2,100,400
2K 4K 0.05 0.19 1.30 0.01 0.64 2.65 1.22
4K 9K 0.15 0.62 4.31 0.03 1.62 6.40 4.09
8K 16K 0.27 1.07 8.74 0.06 2.73 10.83 1.38

16K 32K 0.64 2.66 15.53 0.12 6.23 25.67 8.80
56K 112K 2.07 9.74 46.20 0.2 10.45 41.38 74.22
111K 222K 11.18 37.13 185.28 1.05 52.8 200.39 202.20

Table II. : Time (in seconds) to compute distances between all pairs in a subset of size M = 2, 100, 400.

(a) Biharmonic (b) Geodesic (c) Diffusion (t = 0.25) (d) Diffusion (t = 1.0) (e) Diffusion (t = 4.0)

Fig. 9: Function values given at anchor points (shown in yellow in (a)) are interpolated using weighted averaging. Biharmonic distance
provides a balanced interpolant (a). Ridges and unintuitive isocontours appear when geodesic distance is used (b). Small scale diffusion
distance results in an almost constant function in the right leg (c). Medium scale diffusion gives an acceptable result, but is insensitive to the
location of the anchor point on the head (d). Large scale diffusion distance leads to spurious local extrema as seen in both of the front legs
(e).

almost constant (no isocontours) on the left front leg. When t = 1
(Figure 9(d)) the interpolant is insensitive to the exact location of
the anchors. Finally, as we increase the value of the parameter, e.g
when t = 4 (Figure 9(e)) the interpolant starts having unintuitive
extrema, see both of the front legs.

Surface matching: In this application we test how biharmonic dis-
tance can improve predicting correspondences between two de-
formable surfaces M,N . In particular, given a coarse set of cor-
responding points, we wish to find more good candidate pairs of
points that correspond. One way to do it is in the spirit of the
Gromov-Hausdorff techniques [Mémoli and Sapiro 2005; Bron-
stein et al. 2006]: given a set of corresponding pairs (xi, yi) ∈
M×N , i = 1, .., k, and a point x ∈M, we wish to find good can-
didates y ∈ N that corresponds with it. To this end, we represent
the point x using the vector of distances to the known correspond-
ing points onM, that is

x̃ =
1

maxi d(x, xi)
(d(x, x1), d(x, x2), ..., d(x, xk)) ,

where d(·, ·) is some distance function, and the normalization is
done to be more robust to scales betweenM,N . Similarly for each
point y ∈ N ,

ỹ =
1

maxi d(y, yi)
(d(y, y1), d(y, y2), ..., d(y, yk)) .

Next, we define a prediction function

c(y, x) = ‖x̃− ỹ‖w =

(
k∑
i=1

wi(x)|d(x, xi)− d(y, yi)|2
)1/2

,

where wi(x) > 0 can be set so to give higher weight to close cor-
respondences xi. In our experiment we took wi(x) = 1. Figure 10
shows an experiment with two SCAPE human models [Anguelov
et al. 2005]. Each row shows a prediction function for the red
sphere (b), based on a set of three pairs of corresponding points
(a). In (c) we show the prediction with the geodesic, diffusion, and
biharmonic distances. Note that geodesic produces bad predictions
in far areas, and diffusion produces unintuitive behavior in non-
centered areas like the head on the top row.

6. CONCLUSIONS AND FUTURE WORK

This work presents a novel surface distance, called the bihar-
monic distance, which is based on the Green’s function of the Bi-
Laplacian. This distance is a metric, smooth, locally isotropic, glob-
ally shape-aware, isometry invariant, insensitive to noise and tessel-
lation, and practical to compute. Moreover, it does not depend on
any parameters.

Since measuring distances on surfaces is one of the most funda-
mental operations on meshes there are many interesting directions
for future research. Perhaps the first is to study the applications
which might benefit from the new distance. Since it is shape-aware,
we expect it to be useful for shape visualization, segmentation, de-
formation, matching, and retrieval, for example. However, experi-
ments (outside the scope of this paper) are required to verify this
conjecture.

Another possible direction is to investigate whether there are other
interesting distance measures in the biharmonic’s family. That is,
taking perhaps the squared biharmonic operator. More generally,

ACM Transactions on Graphics, Vol. , No. , Article , Publication date: .



• 9

(a) (b) (c)

Fig. 10: Finding candidate correspondences based on coarse prescribed set of correspondences. Given a coarse set of correspondences (a),
we compute a prediction function (c) for the corresponding point to the point marked by red sphere at (b). The prediction range from high
confidence (dark blue) to low (dark red), and is shown for three different distance functions: geodesic, diffusion, and biharmonic. The top row
demonstrates local predictions, while the bottom row depicts extreme extrapolation. Note that geodesic distance produces bad predictions
far from the known correspondences (bottom row), and diffusion distance produces unintuitive result for small not-centered areas like the
head (top row). The color map is scaled to exaggerate small (blue) values.

any normalization 1/λαk , α > 1 of the eigenvalues will produce a
new and maybe useful distance measure. Mapping out this and re-
lated families of distance measures and analyzing their utilities with
respect to different applications is a large topic for future work.
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Appendix

This appendix is devoted to the proofs of the statements that lead
to the exact computation procedure described in the text for the
discrete Green’s function gd of the bi-Laplacian. Before embarking,
we remind that the kernel of the conformal LaplacianLc consists of
constant vectors (all entries are equal), and the image ofLc consists
of all vectors whose entries add up to zero.

THEOREM 1. The kernels of the matrices LcA−1Lc and Lc
are equal and consist of constant vectors: Ker(LcA−1Lc) =
Ker(Lc) = {c1 ∈ RN×1}.
Proof: Let x be in the kernel of LcA−1Lc, that is LcA−1Lcx = 0.
Therefore A−1Lcx is in the kernel of Lc. Since the kernel of Lc
consists of only the constant vectors we get A−1Lcx = c1, for
some number c. Multiplying both sides withA we get Lcx = cA1.
The image of matrix Lc consists of vectors with entries that add up

to zero; since A1 = (A1, ..., AN )t is a vector whose entries add
up to a positive number (Ai are the areas) except when c = 0, it
follows that necessarily c = 0, and x must be in the kernel of Lc.�

THEOREM 2. The product LcA−1Lcgd = J , where gd =
(LcA

−1Lc)
+ is the pseudo-inverse of LcA−1Lc, equals to J =

I − 1
N

11t with 1 ∈ RN×1 being a column vector of all ones.

Before proceeding, we remind the definition of the pseudo-
inverse as it applies to our matrix. Write the diagonalization
of the (symmetric) matrix LcA

−1Lc =
∑N
k=1 µkψkψ

t
k, where

ψk ∈ RN , k = 1, 2, ...,N are the orthonormal eigenvectors
and µi are the corresponding eigenvalues of LcA−1Lc. Now let
ψ1 = (1/

√
N, ..., 1/

√
N) be the constant eigenvector spanning

the eigenspace of the zero eigenvalue (same as the kernel of the ma-
trix). As shown in Theorem 1 this eigenspace is one dimensional,
and so ψ1 is the only eigenvector with corresponding eigenvalue
µ1 = 0. As a result, the pseudo-inverse in this case is given by

gd =

N∑
k=2

1

µk
ψkψ

t
k.

Note that this pseudo-inverse is essentially the inverse of LcA−1Lc
over the subspace orthogonal to ψ1.

Proof: Remembering that µ1 = 0 and multiplying LcA−1Lc =∑N
k=2 µkψkψ

t
k with its pseudo-inverse gd =

∑N
`=2

1
µ`
ψ`ψ

t
` we
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a) Original b) 400% Noise

c) 14K Vertices d) 4K Vertices

e) Original f) Deformed

Fig. 6: Insensitivity of the biharmonic distance to noise, tessellation, and
nearly isometric deformation.

Fig. 8: Error in approximation of the biharmonic distance using the first
K = 1, 2, .., 200 eigenvectors is shown in log scale. The red curve demon-
strated the maximum error and the blue curve the average error in approx-
imating 200K pairwise distances randomly picked from a mesh with 5K
vertices.

get

LcA
−1Lcgd =

N∑
k=2,`=2

µk
µ`
ψkψ

t
kψ`ψ

t
` =

N∑
k=2,`=2

µk
µ`
ψkδk,`ψ

t
` =

N∑
k=2

ψkψ
t
k =

N∑
k=1

ψkψ
t
k − ψ1ψ

t
1 = I − 1

N
11t,

where δk,` equals one if k = ` and zero otherwise.�

THEOREM 3. The matrix gd = (LcA
−1Lc)

+ satisfies the rela-
tion Eq. (8) for any f in the image of L2

d.

Note that it is the form of Eq. (8) that forces f to reside in the image
of L2

d.

Proof: After inserting Ld = A−1Lc, and multiplying both sides of
Eq. (8) by A, we obtain

LcA
−1LcgdAf = Af,

and since every vector in the image of Lc has sum of entries equal
to zero, so does Af . Thus, we need to show that gd satisfies

LcA
−1Lcgdf̃ = f̃

for any vector f̃ with entries that sum up to zero. In essence, we
need to invert the singular matrixLcA−1Lc on the orthogonal com-
plement of its kernel, namely constant vectors. This is what the
pseudo-inverse gd achieves. In fact, by the previous theorem, the
left hand-side of this equation is equal to Jf̃ . Now, we need to
show that Jf̃ = f̃ , which easily follows because 1tf̃ = 0 as the
entries of f̃ add up to zero. �

THEOREM 4. The jth column of matrix gd is the unique so-
lution of linear equation LcA−1Lcy = Jj such that 1ty = 0. If
x is any solution of the linear equation LcA−1Lcx = Jj , then

y = x− 1t
x

1t1 1.
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Proof: While the second part is obvious, the first fact follows from
the explicit expression for the pseudo-inverse in terms of the eigen-
decomposition. Indeed, by symmetry the eigenvectors constitute an
orthogonal set. In particular, every eigenvector entering the formula
of the pseudo-inverse is orthogonal to the constant eigenvector, and
so 1tψk = 0. We get

1tgd =

N∑
k=2

1

µk
1tψkψtk = 0,

which means that every column of gd has sum of entries equal to
zero. The fact that each column satisfies the specified linear system
was proven in Theorem 2, and uniqueness of zero-sum solution
follows from Theorem 1. �
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