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Acoustic Event Detection (AED) aims to identify both timestamps and types of events in an audio stream.
This becomes very challenging when going beyond restricted highlight events and well controlled record-
ings. We propose extracting discriminative features for AED using a boosting approach, which outper-
form classical speech perceptual features, such as Mel-frequency Cepstral Coefficients and log
frequency filterbank parameters. We propose leveraging statistical models better fitting the task. First,
a tandem connectionist-HMM approach combines the sequence modeling capabilities of the HMM with
the high-accuracy context-dependent discriminative capabilities of an artificial neural network trained
using the minimum cross entropy criterion. Second, an SVM–GMM-supervector approach uses noise-
adaptive kernels better approximating the KL divergence between feature distributions in different audio
segments. Experiments on the CLEAR 2007 AED Evaluation set-up demonstrate that the presented fea-
tures and models lead to over 45% relative performance improvement, and also outperform the best sys-
tem in the CLEAR AED Evaluation, on detection of twelve general acoustic events in a real seminar
environment.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Much research in audio content analysis has typically addressed
the problem of segregating a few audio sources (Brown and Cooke,
1994; Ellis, 1996) or segmenting an audio stream into a small num-
ber of acoustically compact categories (Pinquier, 2002; Zhang and
Kuo, 2001). Acoustic Event Detection (AED) aims to detect specified
acoustic events such as gunshots (Clavel et al., 2005), explosions
(Naphade, 2001; Cui et al., 2003a), speech/music transitions (Pin-
quier, 2002), cough events (Smith et al., 2006), or audience cheer-
ing at a sports event (Baillie and Jose, 2003). The existence and
timestamps of many non-speech sounds, i.e. (non-speech) acoustic
events, reveal human and social activities. Such information is very
helpful in applications such as surveillance, multimedia informa-
tion retrieval and intelligent conference rooms.

While most of the work in acoustic event detection focuses on
a few highlight acoustic events, the 2007 AED Evaluation spon-
sored by the project ‘‘Classification of Events, Activities and Rela-
tionships (CLEAR)” (Temko et al., 2006; Temko, 2007) was
performed on a continuous audio database recorded in real sem-
inars (Temko and Nadeu, 2005). Systems attempted to identify
both the temporal boundaries and labels of twelve acoustic
events (door slam, paper wrapping/rustling, foot steps, knocking,
chair moving, phone ringing, spoon/cup jingle, key jingle, key-
board typing, applause, cough, and laughter). Instead of being
ll rights reserved.
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exclusively highlight events, many of the acoustic events in the
CLEAR Evaluations were either subtle (low SNR, e.g. steps, paper
wrapping/rustling, and keyboard typing), or/and overlapping with
speech, making the task particularly challenging. The real envi-
ronment factor added to the variation of the events as well as
the difficulty of segmenting the audio stream. Although different
system architectures and feature sets have been explored (Temko
et al., 2006; Temko, 2007), even the top rated AED system
(around 30% accuracy) left much space for improvement (Zhou
et al., 2007). By contrast, classification of performed isolated
events in silent rooms saw very good performance achieved by
some of the same research teams (Temko et al., 2006). The eval-
uation highlighted the challenges in the detection of a large set of
ordinary acoustic events in a real world environment.

To tackle AED in such a realistic setting, we believe further
improvement is possible with features and statistical models bet-
ter fitting the task, drawing lessons from the CLEAR 2007 AED Eval-
uation. A small part of this work was previously reported (Zhou
et al., 2007; Zhuang et al., 2008).

Analysis of the spectral structure of acoustic events and design
of a suitable feature set are important for AED. Various audio per-
ceptual features have been proposed for different analysis tasks
(Brown and Cooke, 1994; Scheirer, 1999; Cui et al., 2003b). In the
recent CLEAR Evaluations for AED, the most popular features are
speech perception features (Temko et al., 2006; Atrey et al.,
2006), such as Mel-Frequency Cepstral Coefficients (MFCC) and
log frequency filter bank parameters, which have been proven to
represent speech spectral structure well. However, these features
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are not necessarily suitable for AED for the following reasons. First,
limited work has been done in studying the spectral structure of
acoustic events. The speech features designed according to the
spectral structure of speech might be far from optimal for AED.
Second, the Signal-to-Noise Ratio (SNR) is low for AED especially
when the overlapping speech can be seen as noise.

In this study we propose a new front-end feature analysis and
selection approach for AED. Considering the varying discriminative
capabilities of each feature component for the AED task, we pro-
pose a boosting approach to construct a discriminative feature
set from a large feature pool.

AED in real seminars differs from classification of isolated
events in a silent environment, calling for different statistical mod-
els. While SVMs were shown to be optimal for the latter (Schòlkopf
and Smola, 2002), the former saw most leading CLEAR participants
using dynamic Bayesian networks (Temko et al., 2006; Temko,
2007), in particular, hidden markov models (HMMs). HMMs owe
their success to the Viterbi algorithm (Forney, 1972), which allows
them to compute simultaneously optimal segmentation and classi-
fication of the audio stream: noise in individual frames is alleviated
by the HMM’s learned hysteresis, i.e., its typical learned preference
for self-transitions rather than non-self-transitions in the hidden
finite state machine.

To take advantage of this proven approach, we leverage a
framework in which HMMs are used to achieve audio segmenta-
tion and event classification simultaneously. To alleviate HMM’s
problem that each hidden state models only local observations,
we propose to use the tandem connectionist-HMM approach (Her-
mansky et al., 2000), where an artificial neural network (ANN) out-
puts posterior probabilities of event types based on very-long-
duration, temporally overlapping observation vectors, leading to
better contextual modeling and event discrimination. To further
refine the event detection result, we propose using vectors of the
per-segment adapted means of a Gaussian mixture model
(GMM), so-called GMM supervectors (Campbell et al., 2006), to ab-
stract the noisy features in the training audio segments and the
hypothesized segments obtained by the tandem model. An SVM
with kernels built on these GMM supervectors, namely the SVM–
GMM-supervector classifier, is used to replace the labels proposed
by the first-pass tandem model, when such replacement is desir-
able according to held-out development data.

We perform acoustic event detection experiments on the same
setup as the AED Evaluation in CLEAR 2007. It is demonstrated that
the discriminative feature set constructed by the boosted feature
selection approach, the tandem connectionist-HMM approach
and the SVM–GMM-supervector approach for refining the result
jointly contribute to performance improvement from 28.2% to
41.2% absolute. This also outperforms our submission in the CLEAR
2007 AED Evaluation, which was the best ranked in the challenging
AED task.
2. Discriminative features for AED

2.1. Spectral correlates of acoustic events

Over the past decades, a lot of research has been done on speech
perceptual features (Hermansky, 1999; Reynolds and Rose, 1995).
Currently, the speech features are designed mainly based on prop-
erties of speech production and perception. Based on knowledge of
the human auditory system, the envelope of the spectrogram (for-
mant structure) instead of the fine structure of the spectrogram
(harmonic structure) is believed to hold most information for
speech. Both log frequency filter bank parameters and Mel Fre-
quency Cepstral Coefficients (MFCC) (Hermansky, 1999) use trian-
gular band pass filters to smooth out the fine structure of the
spectrogram. Moreover, to simulate the non-uniform frequency
resolution observed in human auditory perception, these speech
feature sets use bandwidths based on the perceptual critical band,
e.g., they have higher resolution in the low frequency part of the
spectrum. These features have been successfully used to character-
ize speech signal as well as other signal perceived by human audi-
tion, e.g., music (Logan, 2000).

The spectral structure of acoustic events is different from that of
speech, as shown in Fig. 1, therefore speech feature sets designed
according to the spectral structure of speech might be far from
optimal for AED. For example, they might neglect frequency ranges
that contain little speech discriminative information, but which
may contain much discriminative information for acoustic events.

To analyze the spectral structure of acoustic events for AED, we
carry out Kullback–Leibler Divergence (KLD) based feature dis-
criminative capability analysis. This helps us to understand the rel-
evance of different feature components (in a speech feature set) for
the AED task, compared to speech recognition. The distance be-
tween the distributions associated with an acoustic event label
and the other audio labels reveals the discriminative capability of
the feature for that acoustic event.

KL Divergence (KLD), denoted by DðpjjqÞ, is a measure (a ‘‘dis-
tance” in a heuristic sense) between two distributions, p and q,
and is defined as the cross entropy between p and q minus the self
entropy of p.

DðpjjqÞ ¼
Z

pðxÞ log
pðxÞ
qðxÞ : ð1Þ

We use KLD to measure the discriminative capability of each
feature component for each acoustic event. Let dij ¼ DðpijjjqiÞ de-
note the divergence between the distribution of the ith feature
component for the jth acoustic event and the global distribution
of the ith feature component for all the audio.

The global discrimative capability of the ith feature component
is defined by

di ¼
X

j

Pjdij; ð2Þ

where Pj is the prior probability for the jth acoustic event.
To calculate the KLD without prior knowledge of each feature

component’s distribution, we use nonparametric density estima-
tion, in particular, Parzen window density estimation (Duda
et al., 2001) with Gaussian kernels to estimate the distribution of
each feature component for each event.

The global discriminative capabilities for different log frequency
filter bank parameters are estimated for AED and digit classifica-
tion. The AED data used is the training data used in the detection
experiments, as detailed in Section 7. The task of speech digit clas-
sification uses digit speech data in TIDIGITS dataset (Tidigits,
1993). In these preliminary experiments, we observe that the tasks
of spoken digit recognition and acoustic event detection assign dif-
ferent relative levels of importance to each of the feature
components.

2.2. Boosted feature selection

As discussed in the above subsection, the sum of the KLD be-
tween every event-specific distribution and the global distribution
characterizes the discriminative capability of the concerned fea-
ture component. The goal of feature selection, however, is to find
the most discriminative feature set instead of finding a set of indi-
vidually most discriminative feature components.

A few algorithms exist for feature selection. In particular, a
floating search approach was proposed in (Pudil et al., 1994), and
an extended and more complicated version was later reported in
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Fig. 1. Spectrograms of the acoustic events ‘‘Key Jingle”, ‘‘Step” and human speech.
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(Somol et al., 1999). Jain and Zongker (1997) gave a brief survey of
some popular feature selection algorithms. In this work, we use a
boosted feature selection approach, inspired by the AdaBoost algo-
rithm (Freund and Schapire, 1999).

The basic AdaBoost algorithm (Freund and Schapire, 1999) is
widely used to deal with 2-class classification problems. It itera-
tively selects and linearly combines several effective classifiers
among a lot of weak classifiers.

In this work, the weak classifier selection mechanism of Ada-
Boost is used to select the feature components. Each audio session
in the development set is segmented to acoustic event instances as
well as background, according to human transcribed labels. These
labeled frames serve as the labeled examples. For each frame, we
calculate the ratio of the frame likelihood given the correct acous-
tic event label vs. the global distribution, where the distributions
are estimated using Parzen windows. A boosting approach is then
applied to select features: each feature is considered to be a classi-
fier, which labels a frame correctly if its likelihood ratio is greater
than one. Note that as in AdaBoost, the chosen ‘‘learning rate” a
minimizes the normalization term Zt , which is equivalent to min-
imizing the training error.

The steps of the boosted feature selection approach are as
follows:

1. Prepare the labeled frames x1; x2; . . . ; xm, and the corresponding
labels y1; y2; . . . ; ym.

2. Initialize weights D1ðiÞ ¼ 1
m ; i 2 f1; . . . ;mg where m is the total

number of labeled examples.
3. For t ¼ 1; . . . ; T , where T is the total number of features:

(a) Find the feature Ft that minimizes the error �t with
respect to the weights Dt . The error for this iteration is
defined as
�t ¼
Xm

i¼1

DtðiÞ½LLRFt ðxiÞ 6 1�;

where ½�� is the unit indicator function, and LLRFt ðxiÞ is the
ratio of the likelihoods of feature Ft in frame xi given the
correct event label yi, vs. the global distribution.
(b) Choose at 2 R, set at ¼ 1
2 ln 1��t

�t

(c) Update weights Dt:
Dtþ1ðiÞ ¼ DtðiÞ
expf�at � signðLLRFt ðxiÞ � 1Þg

Zt
;

where Zt is a normalization constant, such that

Xm

i¼1

Dtþ1ðiÞ ¼ 1:
4. Output the first N selected features Ft , where t 2 f1; . . . ;Ng.
3. HMM-based AED system

Audio event detection requires both segmentation of the audio
stream, and classification of the segments. Following our experi-
ence in the AED task of CLEAR 2007, we perform simultaneous seg-
mentation and classification using a Bayesian inference procedure
similar to state-of-the-art methods for continuous speech recogni-
tion (Ratsch et al., 2001; Freund and Schapire, 1999).

We formulate the goal of acoustic event detection as follows: to
find the event sequence that maximizes the posterior probability
of the event sequence W ¼ ðw1;w2; . . . ;wMÞ, given the observations
O ¼ ðo1; o2; . . . ; oTÞ:

cW ¼ arg max
W

PðWjOÞ ¼ arg max
W

PðOjWÞPðWÞ: ð3Þ

The acoustic model PðOjWÞ is one HMM for each acoustic event,
with three emitting states connected using left-to-right and self-
loop transitions. For background silence and speech, we use a
HMM with additional transitions between the first and third emit-
ting states, to account for the increased internal complexity. The
structure of the HMMs can model some of the non-stationarity of
acoustic events. The observation distributions of the states are
incrementally-trained Gaussian mixtures. The HMM for an acous-
tic event is trained to represent all training data segments carrying
the same event label.

In order to capture short-term soft constraints on the sequence
of event labels, the probability of an event label sequence
ðw1; . . . ;wmÞ is represented by a bigram language model:

Pðw1w2; . . . ;wmÞ ¼ Pðw1Þ
Ym
i¼2

Pðwijwi�1Þ: ð4Þ
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A bigram ‘‘language model” in AED favors recognized acoustic
event sequences with sequence statistics similar to those in the
training data. Although the language model here does not have
the same linguistic implications as in speech recognition, it does
improve performance. One of the possible reasons is that it sup-
presses long sequences of identical event labels in decoding. This
is desirable as it forces the HMMs to better fit the internal temporal
structure of the audio segments corresponding to the acoustic
events.
4. Tandem connectionist-HMM approach

The tandem connectionist-HMM approach is composed of two
major components, as shown in Fig. 2: an artificial neural network
(ANN) that observes feature vectors in a context window and out-
puts posteriors of different acoustic event types, and an HMM com-
ponent that uses a transformed and normalized version of the
output of the ANN, optionally together with the original features,
as input features. This approach has been shown to improve
HMM-based automatic speech recognition (Hermansky et al.,
2000). We use the same framework to boost performance of acous-
tic event detection by drawing evidence from a wider time context
window and emphasizing difference between confusable feature
vectors across acoustic events by discriminative training.

Two lessons from its application in speech recognition is partic-
ularly relevent for using the approach in AED. First, the ANN im-
proves recognition performance in high noise conditions (Ellis
and Gomez, 2001; Ellis et al., 2001). The AED task also character-
izes low SNR, in particular with background that has high varia-
tion. Second, the ANN benefits speech recognition when context
independent models are used (Ellis et al., 2001). To limit the com-
plexity of the ANN, it is used to distinguish only between different
context-independent models. As pointed out by Ellis et al. (2001), if
the generative (HMM) part of the tandem system leverages con-
text-dependent models, the ANN may end up counterproductive
by increasing overlap and confusion between different context-
dependent models that correspond to the same context-indepen-
dent model. In this work, we use the HMMs to model different
acoustic events that are indeed context-independent.

Consecutive frames within the context window are concate-
nated to form the input X to the ANN, each dimension correspond-
ing to one input node. The number of output nodes equals the
Fig. 2. Classification using a tan
number of acoustic event types. The ANN is discriminatively
trained, by back-propagating a minimum cross entropy criterion,
to targets that set the output node corresponding to the ground
truth event as one and all other output nodes as zero. During test-
ing, for each context window, the ANN presents estimated poster-
ior probabilities across all acoustic events. All context windows
centered at every consecutive feature frame are evaluated in the
same way, resulting in a sequence of posterior probability vectors.

With these posterior probabilities, we could perform classifica-
tion using two different approaches. The first approach just di-
rectly uses the ANN output: either to assign to each frame its
Maximum A Posteriori event label, or to generate probabilities
that will be smoothed by a Viterbi decoder. However, experi-
ments in automatic speech recognition suggests that better re-
sults may be obtained by transforming the posteriors into a
pseudo-observation, which is then used as the input to a Gauss-
ian mixture HMM.

In order for ANN posterior probability vectors to be better mod-
eled by the Gaussian mixture likelihood model of an HMM, three
transformation are applied as suggested by previous work in tan-
dem speech recognition (Hermansky et al., 2000). First, we take
the log of each posterior probability to reduce the skewedness of
the distributions. Second, principal component analysis (PCA) is
applied on the log probabilities to decorrelate the HMM input, so
that we may use diagonal covariance matrices in the Gaussian mix-
ture models. Third, mean and variance normalization is applied on
each of the decorrelated dimensions, within each audio session.
5. SVM–GMM-Supervectors

Researchers in automatic speaker identification have recently
developed a set of algorithms that boost classification performance
by feeding the parameters of a generative model (usually by adapt-
ing, to each class, the Gaussian component mean parameters of a
universal background GMM) as the input of a discriminative clas-
sifier (usually an SVM) (Campbell et al., 2006). The SVM–GMM-
supervector approach is not practical as a first-pass segmenter
for AED, because it requires some type of hypothesized segment
boundaries. Given the boundaries chosen by an connectionist-
HMM first-pass system, the SVM–GMM is able to efficiently com-
pute confidence scores for each of the proposed segment labels.
The SVM–GMM finely differentiates different candidate classes
dem model (ANN + HMM).
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by normalizing each class by adaptation of a common multi-mode
Gaussian mixture distribution in a discriminative framework.

We refer to the audio observation between two adjacent bound-
aries as an audio segment. The SVM–GMM-supervector approach
approximates the joint distribution of all feature vectors in each
audio segment with a GMM, from which a GMM supervector is con-
structed as a summary of the segment. The pairwise Euclidean dis-
tances between these supervectors characterize the difference
between the audio segments. Kernels derived from these distances
are used in an SVM for classification. Some of the presentations be-
low follow Campbell et al. (2006), where readers might find more
relevant details.

5.1. Universal background model and segment-specific GMM

We estimate a GMM for the distribution of all feature vectors in
each audio segment. Instead of separately estimating a GMM for
each audio segment, we estimate a GMM for each audio segment
by adapting, to each audio segment, the parameters of a universal
background model (UBM): a GMM that has been previously trained
to represent all types of audio. Adaptive training creates a regular-
ized estimate of the true, underlying likelihood function governing
each audio segment. Regularization (adaptative training based on a
UBM) reduces the effects of outliers, e.g., noisy frames in an audio
segment. Adaptive training also provides a natural measure of the
difference between any given audio segment and the UBM, since
each Gaussian kernel in the segment-specific likelihood has been
adapted from a particular kernel of the UBM. Conversely, the use
of a GMM allows arbitrarily precise representation of the acoustic
feature likelihood, with large enough number of Gaussian compo-
nents. Finally, the GMM clusters similar frames, by assigning them
to the same kernel in the GMM.

We first estimate a UBM using feature vectors extracted from all
training audio segments, regardless of their event labels. Then the
distribution model of the feature vector for a certain audio seg-
ment is adapted from the UBM in order to maximize the a posteri-
ori probability of the adapted model (Gauvain and Lee, 1994).

Here we denote z 2 Rd as a feature vector, where d is the dimen-
sion of the feature vector. The GMM distribution of variable z is

pðz; HÞ ¼
XK

k¼1

wkNðz; lk;RkÞ; ð5Þ

where H ¼ fw1;l1;R1; . . .g;wk;lk and Rk are the weight, mean, and
covariance matrix of the kth Gaussian kernel, respectively, and K
(set as 128 in this work) is the total number of Gaussian kernels.

The density is a weighted linear combination of K unimodal
Gaussian densities, namely,

Nðz; lk;RkÞ ¼
1

ð2pÞ
d
2jRkj

1
2

e�
1
2ðz�lkÞ

T R�1
k ðz�lkÞ: ð6Þ

We obtain maximum likelihood parameters for the UBM using
Expectation–Maximization (EM). For computational efficiency,
the covariance matrices are restricted to be diagonal, which proves
to be effective and computationally economical.

The UBM, learnt from all training audio, specifies a feature do-
main, of which each segment-specific GMM span a subset. The
subset constraint can be enforced by interpreting the UBM
parameter set, H, as a set of conjugate-prior PDFs governing the
distribution of segment-specific GMM parameters, h, i.e., the seg-
ment-specific GMM has the a priori PDF pðh; HÞ (Lee et al., 1991).
The a posteriori probability of the segment-specific GMM param-
eters is obtained by multiplying pðh; HÞ by the data likelihood,
pðZjhÞ, where Z ¼ fz1; . . . ; zHg are the frames observed belonging
to the segment of interest, and by then dividing by a normalizing
constant; the normalizing constant is irrelevant to computation of
the model parameters, and may be omitted. Thus, for example,
MAP adaptation selects the segment-specific mean parameters
l̂k to maximize

ln pðĥ; ZÞ ¼
XK

k¼1

lnNðl̂k; lk;Rk=rÞ þ
XH

i¼1

ln
XK

k¼1

wkNðzi; l̂k;RkÞ; ð7Þ

where ĥ ¼ fl̂1; . . . ; l̂Kg is the set of segment-specific GMM param-
eters, H ¼ fw1;l1;R1; . . .g are the parameters of the global GMM,
and r is a regularization constant.

The joint distribution function pðĥ; ZÞ has the same form as the
likelihood function pðZjĥÞ, and may therefore be optimized in the
same way as a likelihood function, i.e., using EM with the hidden
variable PrðkjziÞ as the posterior probability of the Gaussian com-
ponent k for given feature vector zi (Lee et al., 1991). In the E-step,
we compute the posterior probability as

PrðkjziÞ ¼
wkNðzi;lk;RkÞPK
j¼1wjNðzi; lj;RjÞ

; ð8Þ

nk ¼
XH

i¼1

PrðkjziÞ ð9Þ

and then the M-step updates the mean vectors, namely,

EkðZÞ ¼
1
nk

XH

i¼1

PrðkjziÞzi; ð10Þ

l̂k ¼ akEkðzÞ þ ð1� akÞlk; ð11Þ

where ak ¼ nk=ðnk þ rÞ. MAP adaptation using conjugate priors is
useful because it interpolates, smoothly, between the hyper-param-
eters lk and the maximum likelihood parameters EkðZÞ. In this
work, r is adjusted, empirically, depending on the total number of
feature vectors for each audio segment.

5.2. Approximating Kullback–Leibler divergence

Two segment-specific GMMs adapted from the same UBM are
denoted as ga and gb. A natural similarity measure between these
two GMMs is the Kullback–Leibler divergence,

DðgajjgbÞ ¼
Z

z
gaðzÞ log

gaðzÞ
gbðzÞ

dz:

The Kullback–Leibler divergence does not satisfy the conditions for
a metric function. Instead, we can use its upper bound obtained by
the log-sum inequality,

DðgajjgbÞ 6
XK

k¼1

wk D Nðz; la
k;RkÞjjN z;lb

k;Rk
� �� �

;

where la
k and lb

k denote the adapted means of the kth component
from the segment GMMs ga and gb, respectively. Since the covari-
ance matrices are shared across all adapted GMMs and the UBM,
the right hand side is equal to

dða; bÞ2 ¼ 1
2

XK

k¼1

wk la
k � lb

k

� �T
R�1

k la
k � lb

k

� �
:

We can consider dða; bÞ as the Euclidean distance between the nor-
malized GMM supervectors in a high-dimensional feature space
(Zhou et al., 2008),

dða; bÞ ¼ k/ðZaÞ � /ðZbÞk2; ð12Þ

where

/ðaÞ ¼
ffiffiffiffiffiffi
w1

2

r
R
�1

2
1 la

1; � � � ;
ffiffiffiffiffiffiffi
wK

2

r
R
�1

2
K la

K

� �
: ð13Þ
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5.3. Kernel for SVM

GMM supervectors are used in an SVM for acoustic event clas-
sification. This multi-class classification task is implemented as
binary classification problems via the one-vs-one method using
LibSVM (Chang and Lin, 2001). The distance defined in (12) can
be evaluated using kernel functions, as

dða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kða; aÞ � 2Kða; bÞ þ Kðb; bÞ

q
: ð14Þ

It is straightforward that kernel function Kða; bÞ ¼ /ðaÞ � /ðbÞ satis-
fies (14), where /ðaÞ and /ðbÞ are defined as in (13).
6. Hybrid architecture of AED system

Both the HMM-based approach and the tandem HMM-connec-
tionist approach engage the maximum a posteriori probability
(MAP) decoding for AED, the recognizer outputs a sequence of
hypothesized acoustic events corresponding to the highest
sequence a posterior probability, as discussed in Section 3. How-
ever, the best acoustic event sequence obtained by the MAP decod-
ing is not optimal according to the performance measure for AED,
AED-ACC, i.e. the acoustic event F-score (harmonic mean of preci-
sion and recall). For example, Mangu et al. (2000) proposed solving
a similar problem using localized confidence rescoring: the MAP
decoder defines a reduced search space, within which a new
hypothesis is chosen explicitly to minimize the target performance
measure. Confidence scoring also allows us to apply methods such
as SVM–GMM-supervector classification, which are difficult to ap-
ply in a MAP decoding paradigm because of computational com-
plexity and model structure limitations.

In this work, our final system uses a two stage hybrid architec-
ture (Fig. 3). In (Mangu et al., 2000) a rescoring paradigm aligns all
of the edges in an event lattice to the times marked in the MAP
hypothesis. In the AED task, the number of labels is small enough
to obviate lattice rescoring, therefore we can take a route that is
straightforward, yet effective and computationally inexpensive.
The MAP decoding outputs a one-best result with boundaries of
events and background, as well as hypothesized event types. The
SVM–GMM-supervector approach is used as the confidence rescor-
ing module. It models feature frames within all hypothesized audio
segments, and proposes event types that might be different from
the hypothesis obtained through MAP decoding.

Both hypothesized event types, referred to as the MAP labels
and the SVM labels, respectively, include the events of concern
and a ‘‘background” label. Therefore, event label substitutions, each
Fig. 3. Hybrid architecture of AED system.
defined by a MAP label and an SVM label, may include substitu-
tions between any pair of events, from an acoustic event to back-
ground or from background to an acoustic event. On the held out
development data, the performance change is measured when only
one particular type of label substitution is allowed or not. Those la-
bel substitution types that lead to the most performance boost on
the held out data are chosen as the valid event label substitutions, to
be applied in testing.

We find in practice that the above valid event label substitu-
tions are too specific and sometimes do not carry over well be-
tween different data. Therefore, in the experiments we only
define valid event label substitutions according to the MAP labels.
In fact, the most favorable approach turns out to allow the SVM–
GMM-supervector classifier to assign labels to the audio segments
labeled as background by the MAP decoding, recovering events
that were missed in the first pass.

We speculate that the hybrid architecture might work for two
reasons.

First, the SVM–GMM-supervector approach functions comple-
mentary to the MAP decoding as they operate in different hypoth-
esis spaces. In particular, the MAP decoding engages properties
such as state transition, varying length and N-gram event sequence
statistics in the decision of boundaries and hypothesized event la-
bels. The MAP decoding might suppress proposing short events or
events similar to the background given the high variation in the
background. By contrast, the SVM–GMM-supervector approach
only considers feature distribution within an audio segment lo-
cally. The purely local approach of the rescoring module has been
shown to outperform HMMs in tasks with loose sequence con-
straints (Huang et al., 2009).

Second, the objective of MAP decoding differs from that of AED.
For maximum a posteriori hypothesis, each frame in the observa-
tion is considered. The detection metric AED-ACC, only considers
the relative time relationship among the hypothesized event
boundaries. Furthermore, neither MAP decoding nor the SVM–
GMM-supervector classifier treat background and acoustic events
differently, while the AED-ACC measures only the F-score in detec-
tion of non-background events. SVM–GMM rescoring aims at the
target performance metric by constraining it to allow only label
substitutions (changes from the MAP labels) that are believed to
improve the AED performance metric.
7. Experiments

7.1. Dataset and metric

Acoustic event detection experiments use the official data for
CLEAR 2007 AED Evaluation (Temko, 2007): about three hours
for system development and two hours for system evaluation. All
data are realistic seminar style, having both speech and acoustic
events with possible overlap. The evaluation data has 1454 in-
stances of target events. The target events included in the AED per-
formance metric are door slam (ds), paper wrapping/rustling (pw),
footsteps (st), phone ringing (pr), spoon/cup jingle (cl), keyboard
typing (kt), applause (ap), coughing (co), laughter (la), key jingle
(kj), chair moving (cm), and knocking (kn). The histogram of these
events in the evaluation data is as in Fig. 4. Many of the events are
subtle and have low SNR compared to background noise or speech.
The non-target labels in the dataset include an unknown event la-
bel and a speech label. In this work, both unlabeled frames and
frames labeled as speech are treated as the background class.

As mentioned in Section 6, the performances are measured
using AED-ACC (Temko, 2007), defined as the F-score (the har-
monic mean between precision and recall) comparing system
output acoustic event (AE) labels and reference AE labels. In



Fig. 4. Histogram of the twelve events in the evaluation data.
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particular, an event detected by the system is correct when there
exist at least one matching reference event whose temporal cen-
ter falls within the time boundaries of the detected event or the
temporal center of the detected event is within the boundaries
of at least one matching reference event. A reference event is con-
sidered correctly detected if its temporal center is within at least
one matching system output or if there exist at least one match-
ing system output whose temporal center falls within the bound-
aries of the reference event. AED-ACC aims to score detection and
classification of all acoustic event instances, oriented for applica-
tions such as real-time services for smart rooms and audio-based
surveillance.
7.2. Experiment set-up

Three sets of experiments are carried out to demonstrate the
performance of the derived features, the tandem connectionist-
HMM approach and the SVM–GMM-supervector approach for
refining event label hypotheses.

The first experiment compares the performance of the HMM-
based AED systems using either the derived AED feature or the
Fig. 5. Performance using d
baseline set MFCC or log frequency filter bank parameters. Both
baseline feature sets are widely-used in speech recognition as well
as other audio applications. The first baseline feature set consists of
26 MFCCs calculated in the 0–11,000 Hz band along with their first
order regression (delta) coefficients and second order regression
(acceleration) coefficients. The second baseline feature set consists
of 26 log frequency filter bank parameters, their delta and acceler-
ation coefficients on the same frequency range. The AED feature set
is derived using the boosting approach discussed in Section 2, from
the union of the two baseline feature sets. Each feature set used in
this experiment has 78 feature components, and each system has
the same number of trainable parameters.

The second experiment evaluates the tandem connectionist-
HMM approach. The contextual window size (number of input
nodes divided by 78) is picked to be five. The number of hidden
nodes is chosen as 1200 empirically for best performance on a
development dataset. The number of output nodes is set to 14,
i.e., the number of acoustic events plus one for frames labeled as
unknown sounds and one for background frames. The transformed
output of the best-performing ANN is concatenated with the de-
rived AED feature set as the input to the HMM component.

The third experiment presents performance of the SVM–GMM-
supervector approach discussed in Section 5, used in the hybrid
architecture discussed in Section 6. The number of Gaussian mix-
tures is set to be 128. Two sets of results are reported, obtained
by applying the approach on top of either the HMM-based ap-
proach or the tandem connectionist-HMM approach.

When training the systems, we hold out one third of the three
hours development data to tune some system parameters. Once
the parameters are determined, the models are retrained with all
the development data.
7.3. Experiment results

Fig. 5 presents the performance of the AED feature set derived
using the boosting approach, and the baseline MFCC or log fre-
quency filter bank parameters. The detection accuracy, measured
by AED-ACC score, is presented in Fig. 5a. It is shown that the
ifferent features sets.



Table 1
Effectiveness of each components in our framework (AED-ACC (%)). Note: (1) ‘T’ denotes the Tandem approach; (2) ’S’ denotes the SVM–GMM-Supervector approach.

Frequency ap cl cm co ds kj kn kt la pr pw st Average
13 28 226 36 76 32 153 105 174 25 88 498 121

MFCC 78.3 26.9 29.5 24.2 56.3 39.9 7.7 0.0 39.0 35.2 14.1 28.7 28.2
FB 34.5 21.8 25.4 24.9 38.9 27.2 11.7 0.0 49.1 13.8 11.7 28.1 27.8
Boosted 44.4 25.5 31.3 31.2 57.3 33.2 13.5 1.9 51.3 36.7 17.6 36.8 34.0
Boosted + T 52.6 21.9 37.2 51.3 63.0 29.6 11.5 0.0 54.2 42.7 25.8 34.6 35.3
Boosted + S 44.4 25.0 33.7 31.2 56.6 33.2 20.9 35.5 51.3 36.7 19.2 41.3 37.5
Boosted + T + S 52.6 21.5 37.4 47.9 63.0 29.6 13.6 44.8 58.6 42.7 26.7 44.4 41.2
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AED feature set outperforms both MFCC and log frequency filter
bank features without dimension increase.

It is not straightforward to carry out a statistical test on the
detection metric. To verify that the derived AED feature set does
perform significantly different from the baseline speech feature
sets, we present a classification experiment (Fig. 5b). The HMMs
in the AED systems are used to classify audio segments into differ-
ent events as well as background. These audio segments include
those acoustic events extracted according to the ground truth of
the testing data, as well as background segments, which are areas
that do not have any event label. The classification results using
different feature sets are subject to a McNemar’s test. The perfor-
mances of both MFCC and log frequency filter bank parameters dif-
fer significantly from the derived AED feature set at the 95%
confidence level.

In Table 1, we demonstrate the effectiveness of the tandem
HMM-connectionist approach and the SVM–GMM-supervector ap-
proach used in the hybrid architecture. We can observe that the
average AED-ACC across all twelve events improves from 34% to
35.3% by engaging the tandem approach (denoted as
‘‘Boosted + T”). The SVM–GMM-supervector (denoted as
‘‘Boosted + S”) boosts performance from 34% to 37.5% by relabeling
event segments proposed by the HMM-based AED system, as de-
scribed in Section 6. Using this hybrid architecture of both tandem
and SVM–GMM-supervector approaches yields the best AED-ACC
of 41.2% (denoted as ‘‘Boosted + T+S”). The frequencies of the
events are also included for reference.

The best performance with the AED feature set, the tandem
HMM-connectionist approach and the SVM–GMM-supervector ap-
proach is over 45% relative improvement from the baseline feature
and model (MFCC + HMM 28.2% or filter bank + HMM 27.8%), and
outperforms the best previously reported performance on CLEAR
AED task.

Performance on individual acoustic events is also presented for
the different settings. It is shown that the number of individual
acoustic events scoring the highest is the largest for the best set-
ting of ‘‘Boosted + T+S”. The single most dramatic performance
boost on an individual event is that of ‘‘keyboard typing” (kt),
achieved by engaging the SVM–GMM-supervector approach. The
MAP decoding approaches, i.e., HMM or tandem approaches, could
not well distinguish ‘‘keyboard typing” from background. In fact,
many events that are easily confused with the background in the
first pass, e.g., ‘‘keyboard typing” and ‘‘steps”, are recovered for rea-
sons discussed in Section 6. This highlights that the SVM–GMM-
supervector in the hybrid architecture has capability complemen-
tary to the MAP decoding approaches.
8. Conclusion

In this paper, we present both discriminative features and sys-
tem architectures designed for better acoustic event detection. We
propose a boosting approach to derive the most discriminative fea-
ture set for AED from a feature pool of MFCC and log frequency fil-
ter bank parameters. Inspired by advances in speech recognition, a
tandem connectionist-HMM approach for AED is proposed to com-
bine the sequence modeling capabilities of the HMM with the
high-accuracy context-dependent discriminative capabilities of
an artificial neural network trained using the minimum cross en-
tropy criterion. Finally, an SVM–GMM-supervector approach is de-
signed using noise-adaptive kernels better approximating the KL
divergence between feature distributions in different audio seg-
ments. Experiments on the CLEAR AED Evaluation set-up demon-
strate that the presented features and models all contribute
toward improved performance, compared with previous best-per-
forming approaches (Zhou et al., 2007), on detection of twelve gen-
eral acoustic events in a real seminar environment.
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