
Generalized Crowding for Genetic Algorithms

Severino F. Galan Ole J. Mengshoel
Dept. of Artificial Intelligence Carnegie Mellon University

National Distance University of Spain NASA-Ames Research Center
C/ Juan del Rosal 16 Mail Stop 263-3, P.O. Box 1
28040 Madrid, Spain Moffett Field, CA 94035

ABSTRACT

Crowding is a technique used in genetic algorithms to pre-
serve diversity in the population and to prevent premature
convergence to local optima. It consists of pairing each off-
spring with a similar individual in the current population
(pairing phase) and deciding which of the two will remain
in the population (replacement phase). The present work
focuses on the replacement phase of crowding, which usu-
ally has been carried out by one of the following three ap-
proaches: Deterministic, Probabilistic, and Simulated An-
nealing. These approaches present some limitations regard-
ing the way replacement is conducted. On the one hand,
the first two apply the same selective pressure regardless
of the problem being solved or the stage of the genetic al-
gorithm. On the other hand, the third does not apply a
uniform selective pressure over all the individuals in the pop-
ulation, which makes the control of selective pressure over
the generations somewhat diffi cult. This work presents a
Generalized Crowding approach that allows selective pres-
sure to be controlled in a simple way in the replacement
phase of crowding, thus overcoming limitations of the other
approaches. Furthermore, the understanding of existing ap-
proaches is greatly improved, since both Deterministic and
Probabilistic Crowding turn out to be special cases of Gen-
eralized Crowding. In addition, the temperature parame-
ter used in Simulated Annealing is replaced by a parame-
ter called scaling factor that controls the selective pressure
applied. Theoretical analysis using Markov chains and em-
pirical evaluation using Bayesian networks demonstrate the
potential of this novel Generalized Crowding approach.

Keywords

Genetic algorithms, niching, deterministic crowding, proba-
bilistic crowding, Markov chain analysis, Bayesian networks,
experiments

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

GECCO’10, July 7–11, 2010, Portland, Oregon, USA.

Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Markov processes; Proba-
bilistic algorithms (including Monte Carlo); I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search–
Heuristic methods

General Terms

Algorithms

1. INTRODUCTION
Genetic algorithms (GAs) [6, 4] use stochastic search meth-

ods based on natural evolution in order to solve optimiza-
tion problems in fields like design, learning, or planning,
among others. Two processes form the basis of GAs: vari-
ation (recombination and mutation) and selection. While
the former facilitates diversity and novelty, the latter favors
quality. The goal of a GA is to find either an optimal (or
near-optimal) solution or to identify a set of high-fitness so-
lutions. Premature convergence to local optima is one of the
most frequent diffi culties that arise when applying GAs to
complex problems. It is associated with the loss of diversity
in the population; however, too much population diversity
can lead to a dramatic deterioration of GA effi ciency. There-
fore, an important issue in GA research and practice is the
trade-off between exploitation of the best individuals and
exploration of alternative regions of the search space.
Crowding was introduced by De Jong [2] as a technique for

preserving population diversity and preventing premature
convergence. Crowding is applied in the survival selection
step of GAs in order to decide which individuals among those
in the current population and their offspring will pass to
the next generation. Crowding consists of two main phases:
pairing and replacement. In the pairing phase, offspring
individuals are paired with individuals in the current popu-
lation according to a similarity metric. In the replacement
phase, a decision is made for each pair of individuals as to
which of them will remain in the population. A review of
crowding approaches for GAs can be found in [13].
Depending on how the replacement phase is carried out,

there are three main types of crowding: Deterministic [8,
9], Probabilistic [12, 11], and based on Simulated Annealing
[10]. Deterministic Crowding selects the fittest individual
in each pair in the replacement phase. Probabilistic Crowd-
ing selects the surviving individual for each pair based on a
probabilistic formula that takes fitness into account. Finally,
crowding inspired by Simulated Annealing uses well-known

rules like Metropolis or Boltzmann, which include a temper-
ature parameter, in the replacement phase.
The design of the replacement rule has great impact on the

performance of crowding. Deterministic Crowding develops
an exploitative replacement strategy. This may be a disad-
vantage, since exploitative methods in GAs frequently lead
to premature convergence. Probabilistic Crowding promotes
the exploration of alternative (less fit) solutions. The degree
of exploration is defined through a probabilistic formula that
is not changed throughout the GA execution. However, a
trade-off between exploration and exploitation can only be
achieved if selective pressure can be adapted to the prob-
lem being solved and to the GA stage. Crowding based on
Simulated Annealing replacement rules allows the degree of
exploration to be changed through the temperature parame-
ter. In spite of that, given a temperature and a population,
a uniform selective pressure is not applied over all the in-
dividuals in the population as shown in Section 2.2. This
makes the control of selective pressure over the generations
more diffi cult than it perhaps needs to be. Giving a solution
to the three limitations enumerated above has been one of
the motivations for the research described in this paper.
This work focuses on the replacement phase of crowding

and presents a Generalized Crowding approach that allows
selective pressure to be controlled in a simple way. General-
ized Crowding is inspired by Probabilistic Crowding, but dif-
fers from it in that the degree of exploration can be changed
by means of a parameter named the scaling factor. Both
Deterministic and Probabilistic Crowding turn out to be
special cases of Generalized Crowding, obtained by assign-
ing the scaling factor values 0 and 1 respectively. A specific
scaling factor value provides the population with a way of
applying a uniform selective pressure over all its individuals.
Like temperature, the scaling factor can be lowered through-
out the generations by following a determined schedule.
The rest of this paper is organized as follows. First, we

present preliminaries including previous research on crowd-
ing in GAs. The following section introduces our Gen-
eralized Crowding approach, which is founded on the use
of a parametric scaling factor. Next, we analyze our novel
approach by means of (discrete time, discrete state space)
Markov chains. We then present experimental results for
the use of Generalized Crowding to estimate the most prob-
able explanation in Bayesian networks (BNs), while the last
section concludes and outlines areas for future research.

2. THE CROWDING APPROACH
We first introduce a few definitions: PC is crossover prob-

ability; PM is mutation probability; M is population size;
and S is family size [13]. Without loss of generality, we as-
sume maximization of a fitness function f : {0, 1}n −→ < in
this section.
The original crowding scheme developed by De Jong in the

seventies [2] consists of randomly selecting for each offspring
γ individuals from the current population. The offspring will
replace the most similar selected individual. Parameter γ is
known as crowding factor, and usually γ = 2 is used.
De Jong’s scheme was changed slightly in the nineties by

Mahfoud [8, 9]. Since an offspring is likely to be similar to
its parents, the following scheme can be used to effi ciently
preserve diversity in the population:

1. The individuals in the current population are randomly
paired. (Since parent selection is not usually applied
under crowding, every individual in the population be-
comes a parent.)

2. With probability PC , the parents in each pair (p1, p2)
are recombined. The two resulting children (c1, c2) are
mutated with probability PM .

3. Each child competes with one of its two parents to be
included in the population of the next generation. Let
d(i1, i2) denote the distance between two individuals,
i1 and i2:

If d(p1, c1) + d(p2, c2) < d(p1, c2) + d(p2, c1)
p1 ← winner of competition between p1 and c1
p2 ← winner of competition between p2 and c2

else
p1 ← winner of competition between p1 and c2
p2 ← winner of competition between p2 and c1

Under this scheme, each offspring tends to compete for
survival with its most similar parent. Other variants exist
that pick up more than two parents and children before the
similarity metric is applied [13, Section 4.2]. This idea has
been the basis of a number of widely-used modern crowding
approaches [8, 9, 12, 11, 10]. One key difference between
these approaches is the rule used to decide the winner for
each competition, as we discuss next.

2.1 Competition and Replacement
In crowding, the way a competition takes place between

parent p and child c is defined through a so-called replace-
ment rule. We now discuss four of the most widely used
replacement rules: deterministic replacement, probabilistic
replacement, Boltzmann replacement, and Metropolis re-
placement. The two latter are based on the application of
Simulated Annealing ideas [7] to crowding.
In Deterministic Crowding [8, 9], the winner of a compe-

tition between parent p and child c is the one with higher
fitness. Let Pc denote the probability that child c replaces
parent p in the population. This probability can be ex-
pressed in the following way for deterministic replacement:

Pc =

 1 if f(c) > f(p)
0.5 if f(c) = f(p)
0 if f(c) < f(p)

.

Unlike Deterministic Crowding, Probabilistic Crowding
[12, 11] uses a non-deterministic rule to establish the winner
of a competition between parent p and child c. The proba-
bility that c replaces p in the population is the following:

Pc =
f(c)

f(c) + f(p)
. (1)

Boltzmann Crowding [10] is based on the well-known Sim-
ulated Annealing method, implemented with the Boltzmann
acceptance rule [1, 5]. Under this replacement method, Pc
adopts the expression:

Pc =
1

1 + exp
(
f(p)−f(c)

T

) , (2)

where T is the temperature at the current generation. Tem-
perature is usually reduced over the generations by means of
a cooling schedule. Two typical cooling schedules consist of

repeating throughout generations one of the following oper-
ations: multiplying the current temperature by a constant
lower than unity, or subtracting a constant amount from
the current temperature. Some authors have also used fixed
temperature.
Like Boltzmann Crowding, Metropolis Crowding [10] ap-

plies Simulated Annealing in the replacement phase. How-
ever, the Metropolis acceptance rule [14] is used instead of
the Boltzmann rule. The probability that child c replaces
parent p in the population is calculated as follows:

Pc =

{
1 if f(c) ≥ f(p)

exp
(
− f(p)−f(c)

T

)
if f(c) < f(p)

, (3)

where T is the temperature at the current generation. The
same cooling schedule as in Boltzmann Crowding can be
applied; alternatively, a fixed temperature can be used.

2.2 Discussion
The probability Pc that child c replaces parent p in the

population is calculated in different ways depending on the
specific replacement rule being used. While in the rules
based on Simulated Annealing, Boltzmann replacement and
Metropolis replacement, Pc is a function of f(p) − f(c) as
shown in Equations 2 and 3, in probabilistic replacement
Pc is a function of f(p)/f(c) as can be seen by dividing
numerator and denominator in Equation 1 by f(c).
Given parent p with fitness f(p) and child c with fitness

f(c), quite different selective pressures are obtained in gen-
eral from Pc = g1(f(p) − f(c)) and Pc = g2(f(p)/f(c)),
where g1 and g2 are real functions. For example, let S1
and S2 be the following sets of parent-child pairs: S1 ≡
{(f(p1) = 2, f(c1) = 1), (f(p2) = 12, f(c2) = 11), (f(p3) =
102, f(c3) = 101)} and S2 ≡ {(f(p1) = 2, f(c1) = 1),
(f(p2) = 20, f(c2) = 10), (f(p3) = 200, f(c3) = 100)}.
While applying Pc = g1(f(p)− f(c)) would produce con-

stant Pc values for the elements in S1 (f(p) − f(c) = 1 for
each pair in S1), applying Pc = g2(f(p)/f(c)) would pro-
duce non-constant Pc values for S1. The opposite would
take place for S2. This work focuses on using a function
of f(p)/f(c) in the replacement phase, due to the fact that
selective pressure is more frequently applied in GAs by fol-
lowing this option rather than the option using a function
of f(p) − f(c). For example, fitness proportional selection
[6] is a widely used selection method in GAs that is math-
ematically equivalent to Probabilistic Crowding: Given two
individuals p and c, the latter is selected with probability

f(c)
f(c)+f(p)

under fitness proportional selection, which is equiv-
alent to the formula applied in probabilistic replacement.
It is interesting to analyze the values that Simulated An-

nealing would generate for Pc in the case of the pairs in
S2:

Pc1 = exp
(
− 2−1

1

)
= 0.36788

Pc2 = exp
(
− 20−10

1

)
= 4.54× 10−5

Pc3 = exp
(
− 200−100

1

)
= 3.7201× 10−44

where T = 1 and Metropolis replacement has been applied.
As shown in Table 1, while under probabilistic replacement
Pci would be equal to 1/3 for i ∈ {1, 2, 3}, under Metropolis
replacement a non-uniform set of Pc values is obtained. For
instance, Pc1 = 0.36788 is similar to applying probabilistic

Set f(pi) f(ci)
f(pi)−
f(ci)

f(pi)
f(ci)

Pc,PR Pc,MR

2 1 2 0.333
S1 12 11 1 1.09 0.478 0.368

102 101 1.01 0.498
2 1 1 0.368

S2 20 10 10 2 0.333
4.54×
10−5

200 100 100
3.72×
10−44

Table 1: Pc values for the pairs in S1 and S2 under prob-
abilistic replacement (Pc,PR) and Metropolis replacement
(Pc,MR). Pc,PR is invariant for S2, whereas Pc,MR is invari-
ant for S1.

replacement, whereas Pc3 = 3.7201 × 10−44 is almost the
same as applying deterministic replacement.
In order to create a replacement rule with the advantages

of both probabilistic replacement (where Pc is a function of
f(p)/f(c) for all the individuals in the current population)
and Simulated Annealing replacement (where Pc can be con-
trolled over generations through a parameter, temperature
in this case), the next section introduces a new crowding
method, which we name Generalized Crowding.

3. GENERALIZED CROWDING
Building on the schemes discussed in the previous sec-

tion, Generalized Crowding consists of a pairing phase and
a replacement phase. The novelty is that the replacement
phase relies on the use of a scaling factor φ, which allows us
to carry out a broad range of replacement rules just by ad-
justing φ, compared to having to deal with potentially very
different replacement algorithms.
In Generalized Crowding, the winner of a competition be-

tween parent p and child c is established using:

Pc =

f(c)

f(c)+φ×f(p) if f(c) > f(p)

0.5 if f(c) = f(p)
φ×f(c)

φ×f(c)+f(p) if f(c) < f(p)

, (4)

where Pc is the probability that child c replaces parent p in
the population, f is the fitness function to be maximized,
and φ ∈ <+∪{0} denotes a parameter named scaling factor.
The key idea in Generalized Crowding is that fitness scal-

ing of the least fit individual, among p and c, is done be-
fore Probabilistic Crowding is applied. As shown in (4), if
f(p) < f(c) then f(p) is transformed into φ × f(p); other-
wise, if f(c) < f(p) then f(c) is transformed into φ× f(c).
Specifically, when φ = 0 in Equation 4, Generalized Crowd-

ing becomes equivalent to Deterministic Crowding. When
0 < φ < 1, it is possible that the least fit among p and c wins
in the replacement phase. When φ = 1, Generalized Crowd-
ing turns into Probabilistic Crowding. Finally, when φ > 1
the probability that the least fit of p and c wins is greater
than in Probabilistic Crowding, which may be beneficial for
deceptive or highly multimodal problems.
To avoid having to deal with three separate cases in (4),

one can use the logistic function `(x) = 1/(1+e−x) to obtain:

Pc =
φ`(f(p)−f(c)) × f(c)

φ`(f(p)−f(c)) × f(c) + φ`(f(c)−f(p)) × f(p)
. (5)

This scaling of (4) or (5) is different from the scaling in
Simulated Annealing for two main reasons:

1. In Generalized Crowding either f(p) or f(c) is changed,
while in Simulated Annealing the magnitude changed
is f(p) - f(c). In other words, following the discussion
in Section 2.2, Generalized Crowding applies selective
pressure as a function of f(p)/f(c).

2. The scaling operation is kept simple in Generalized
Crowding, that is, just a multiplication with no divi-
sions or exponentials. This allows Generalized Crowd-
ing to include Deterministic Crowding and Probabilis-
tic Crowding as special cases.

The scaling factor φ allows a wide range of selective pres-
sures to be applied: The greater φ is, the more probable it
is that locally non-optimal parts of the search space are ex-
plored. Similar to Simulated Annealing, φ can be subjected
to a lowering schedule that favors exploration at the first
GA generations and progressively increments the degree of
exploitation of the best solutions.

4. MARKOV CHAIN ANALYSIS
In this section, we use discrete time, discrete state space

Markov chains to analyze our Generalized Crowding ap-
proach. We first present the general case for N niches, and
then we solve the case for two niches by using the general
equations for N niches.

4.1 Multiple Niches
We now perform an analysis in which each niche that a

parent can be in has a corresponding Markov chain state.
There are additional Markov chain states, one for each com-
bination of all possible niche locations for pairs of a child
and a parent. Formally, we introduce the following defini-
tions: p is a parent in the current generation; p′ is a parent
in the next generation; c is a child in the current generation;
N is the number of niches; and1

Pr([p = i, c = j] | [p = i]) = Ai,j , i, j ∈ {0, . . . , N − 1}
Pr([p′ = j] | [p = i, c = j]) = Bi,j , i, j ∈ {0, . . . , N − 1},

where Ai,j denotes the probability that, given parent p at
niche i, it is paired with child c at niche j, and Bi,j de-
notes the probability that, given parent p at niche i paired
with child c at niche j, the resulting parent p′ for the next
generation is at niche j after replacement.
We need to calculate the following, prior to solving the

balance equations for i, j ∈ {0, . . . , N − 1}:

Pr([p′ = j] | [p = i]) =

N−1∑
k=0

Pr([p′ = j] | [p = i, c = k])×

Pr([p = i, c = k] | [p = i]).

We have here two cases: (i) If i 6= j then Pr([p′ = j] | [p =
i]) = Ai,jBi,j ; (ii) if i = j then Pr([p′ = j] | [p = i]) =

1−
∑N−1
k=0 Ai,jBi,j .

1Note that while Pr(A,B | B) = Pr(A | B) for events A and
B, we have Pr([p = i, c = j] | [p = i]) 6= Pr([c = j] | [p = i]).
In other words, [p = i, c = j] is a distinct event and cannot
be simplified to [c = j] even if we condition on [p = i].

Figure 1: Augmented Markov chain (AMC).

We now obtain the following balance equations:

N−1∑
k=0,k 6=i

Pr([p′ = k] | [p = i]) Pr([p = i]) =

N−1∑
k=0,k 6=i

Pr([p′ = i] | [p = k]) Pr([p = k]),

and in addition we have
∑N−1
k=0 Pr([p = k]) = 1. By solving

this system of N equations from the formulas just obtained
in (i) and (ii) for Pr([p′ = j] | [p = i]), we can obtain
Pr([p = k]) for k ∈ {0, . . . , N − 1}. However, the resulting
expressions are quite complex for the general case. So, in
this work, we analyze the case of two niches in more detail.

4.2 Two Niches
To analyze the case of two niches, we introduce two Markov

chains. A more detailed augmented Markov chain, which we
discuss first, is used as an aid to define the transition proba-
bilities in a two-state generational Markov chain, where each
state corresponds to a niche.

4.2.1 Augmented Markov Chain

The graph for the augmented Markov chain (AMC) is
shown in Figure 1. The transition matrix is shown in Table
2; it explicitly shows the transition probabilities A, A′, B,
B′ and others. States [p = 0] and [p = 1] represent the con-
tents of a population location at a certain time; it contains
an individual (parent) that is either in niche 0 (so p = 0)
or niche 1 (so p = 1). Consider a location that contains an
individual in niche 1, so p = 1. At the competition step (af-
ter crossover, mutation, and pairing), there are two options
for p: either the competing child is in niche 0 (so c = 0) or
in niche 1 (so c = 1). Consequently, we have two states,
namely [p = 1, c = 0] and [p = 1, c = 1], and there are edges
from [p = 1] to each of these. After the competition we are
left with an individual in niche 0 or 1, which becomes a par-
ent in the next generation, consequently there are two edges
from [p = 1, c = 0]– into [p = 0] and [p = 1] respectively–
and two similar edges from [p = 1, c = 1]. A similar logic
applies to states [p = 0, c = 0] and [p = 0, c = 1].
First, we consider how transition probabilities depend on

crossover, mutation, and pairing in the crowding algorithm
(A and A′). We introduce the following definitions: V (0) is
volume of niche 0; V (1) is volume of niche 1; A(0) is surface
area of niche 0; and A(1) is surface area of niche 1.

Figure 2: Generational Markov chain (GMC).

For A and A′ we have:

A =
cA × PC × PM ×A(1)

S × V (1)

A′ =
cA′ × PC × PM ×A(0)

S × V (0) ,

where cA and cA′ are constants. For simplicity, we assume
that cA = cA′ in the rest of this paper.
Second, we consider probabilities that depend on replace-

ment (B and B′). We introduce these definitions: f(0)
is the fitness for niche 0 and f(1) is the fitness for niche 1.
Using (5) we now have:

B =
f(0)

f(0) + φ`(f(0)−f(1))−`(f(1)−f(0)) × f(1)

B′ =
f(1)

f(1) + φ`(f(1)−f(0))−`(f(0)−f(1)) × f(0)

4.2.2 Generational Markov Chain

The graph for the generational Markov chain (GMC) is
shown in Figure 2. Its two states correspond, respectively,
to the two states with the same labels in the AMC. The re-
maining four AMC states are abstracted into the four GMC
transition probabilities, as we will see shortly. In prepara-
tion for stating the GMC transition matrix, we introduce
the following definitions for the AMC states: 0 ≡ [p = 0];
1 ≡ [p = 1]; 00 ≡ [p = 0, c = 0]; 01 ≡ [p = 0, c = 1];
10 ≡ [p = 1, c = 0]; and 11 ≡ [p = 1, c = 1].
The four GMC transition probabilities can now easily be

derived from the AMC transition probabilities:

Pr(0 | 0) = Pr(0 | 00)Pr(00 | 0)+
Pr(0 | 01)Pr(01 | 0) = 1−B′A′,

and in a similar way we obtain Pr(0 | 1) = BA, Pr(1 | 0) =
B′A′, and Pr(1 | 1) = 1−BA. Assuming balance, it is now
easy to obtain Pr(0)Pr(1 | 0) = Pr(1)Pr(0 | 1) and Pr(0) +
Pr(1) = 1, which gives the following stationary distributions:

Pr(0) = 1/
(
1 +

(
A′B′/AB

))
Pr(1) = 1/

(
1 +

(
AB/A′B′

))
.

By introducing the definitions for A, A′, B, and B′, we
obtain the following expressions for the stationary distribu-
tions:

Pr(0) =
1

1 + A(0)V (1)f(1)
A(1)V (0)f(0)

φ`(f(0)−f(1))−`(f(1)−f(0))

Pr(1) =
1

1 + A(1)V (0)f(0)
A(0)V (1)f(1)

φ`(f(1)−f(0))−`(f(0)−f(1))

The following conclusions can be established from these
two formulas:

1. When φ = 0, the niche with highest fitness gets all the
population. This is Deterministic Crowding.

f(1)/f(0) = 1.001
f(1)/f(0) = 5
f(1)/f(0) = 10
f(1)/f(0) = 20
f(1)/f(0) = 40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

φ

P(0)

f(1)/f(0)=40

f(1)/f(0)=1.001
f(1)/f(0)=5

f(1)/f(0)=10
f(1)/f(0)=20

f(1)/f(0) = 1.001
f(1)/f(0) = 5
f(1)/f(0) = 10
f(1)/f(0) = 20
f(1)/f(0) = 40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

φ

P(0)

f(1)/f(0)=40

f(1)/f(0)=1.001
f(1)/f(0)=5

f(1)/f(0)=10
f(1)/f(0)=20

Figure 3: The stationary probability Pr(0) (along y-axis) as
a function of φ (along x-axis) for different fitness function
ratios f(1)/f(0).

2. When φ = 1, the probability for niche i is f(i)/(f(i) +
f(j)), with i, j ∈ {0, 1}. This is Probabilistic Crowd-
ing.

3. When φ = f(j)/f(i), where f(i) < f(j), the popula-
tion distributes equally between both niches.

4. When φ > f(j)/f(i), where f(i) < f(j), the niche
with less fitness gets more population than the other
niche. As φ increases, even more population will go to
the less fit niche with respect to the other niche in the
stationary distribution.

Case 4 can be beneficial in the case of multimodal prob-
lems, where, for example, Case 1 may lead to premature
convergence. For example, in the experiments of Section 5
with the Bayesian network denoted Alarm0.2, φ = 10 was
the value giving best results when M = 20.

4.2.3 Population

Given that we have the above results for one population
location, how can they be extended to a population size M?
We use M Markov chains instead of just one Markov chain.
In the case of one Markov chain and two niches {0, 1}, a
stationary distribution Pr(i) for i ∈ {0, 1} is essentially a
Bernoulli trial for niche i. So for M population locations
(Markov chains), we have a Binomial. Consequently, the
mean is M Pr(i), and the variance is M Pr(i)(1 − Pr(i)).
The mean is the expected number of individuals we expect
to see in the niche. Compared to previous population sizing
results [13], we now have more general expressions involving
φ for the stationary distributions.

4.2.4 An Example

Figure 3, where we consider two niches 0 and 1, shows φ
along the x-axis and the stationary probability for niche 0,
Pr(0), along the y-axis. We assume that f(0) < f(1) and
have drawn graphs for different f(1)/f(0) values. In this
case of f(0) < f(1) we have:

Pr(0) =
1

1 + f(1)
φf(0)

which we have obtained by (i) putting V (0) = V (1) and
A(0) = A(1) and (ii) not using the logistic function, due
to the fact that Pr(0) cannot be expressed as a function

p = 0 p = 1 p = 0, c = 0 p = 0, c = 1 p = 1, c = 0 p = 1, c = 1
p = 0 0 0 1−A′ A′ 0 0
p = 1 0 0 0 0 A 1−A
p = 0, c = 0 1 0 0 0 0 0
p = 0, c = 1 1−B′ B′ 0 0 0 0
p = 1, c = 0 B 1−B 0 0 0 0
p = 1, c = 1 0 1 0 0 0 0

Table 2: Transition matrix for the AMC shown in Figure 1.

of f(1)/f(0) if the logistic function is used. The following
observations can be made from these graphs:

• The greater φ is, the larger a proportion of the popu-
lation goes to the lesser fit niche 0.

• For low φ values (0 ≤ φ ≤ 1), the more fit niche 1 gets
a higher percentage of the population.

• If φ is kept constant, the higher f(1)/f(0) is, the more
population goes to the more fit niche 1.

• Although f(0) < f(1), if φ = f(1)/f(0), then Pr(0) =
Pr(1) = 0.5 and the population is equally distributed
between niches 0 and 1. For example, the φ-values
where the curves reach Pr(0) = 0.5 vary as follows:
curve f(1)/f(0) = 5 crosses Pr(0) = 0.5 at φ = 5 and
curve f(1)/f(0) = 40 crosses Pr(0) = 0.5 at φ = 40.

• For high enough φ values, even if f(0) < f(1), niche 0
receives most of the population.

Consider the question: Why do values of φ > 1 work so
well in some cases? We hypothesize that in highly multi-
modal problems the degree of deceptiveness is high in gen-
eral and consequently, locally, an individual with higher fit-
ness may be farther away from the global optimum than
another less fit individual is.

5. EXPERIMENTS
In these experiments, we are investigating how General-

ized Crowding’s performance depends on the scaling factor
φ. For experimental purposes, we consider the estimation of
most probable explanations (MPEs) in BNs, a computation-
ally hard problem of interest in many applications including
image recognition, diagnosis, and error correction decoding.

5.1 Variants of Alarm Bayesian Network
In these experiments, we used variants of the well-known

Alarm BN to investigate the performance of Generalized
Crowding. The Alarm BN has 37 nodes and 752 CPT val-
ues (none are zero).2 We randomly introduced zeros into the
CPTs of the BN in order to vary the search space charac-
teristics. Specifically, zeros were introduced with probability
ρ ∈ {0.0, 0.1, 0.2, . . .} [3] as reflected in the notation Alarmρ.
An Alarmρ BN is not the same as the Alarm BN. They have
the same graph structure, node cardinalities, and number of
CPT values, but CPT values are generated in a randomized
way for Alarmρ [3]. For Alarmρ, the number of zero CPT
values is approximately ρ× 100%. In experiments with these
2See http://compbio.cs.huji.ac.il/Repository/Datasets/ala-
rm/alarm.htm for details on Alarm.

Alarmρ BNs we varied φ for Generalized Crowding, and in-
vestigated φ = 0 (Deterministic Crowding), φ = 0.5, φ = 1
(Probabilistic Crowding), φ = 10, and φ = 100. In these
latter two cases, more often than not the worse fit among a
parent and child wins, and surprisingly we found that φ = 10
out-performed φ = 0 and φ = 1 in some experiments. In
addition, we varied the population size M .
Parameterized uniformed crossover has been used with

PC = 1. For a BN with N nodes, we used PM = 1/N , and
mutation amounted to changing a node’s state uniformly at
random. Experimental results are averaged over 350 runs.
The results of the experiments are summarized in Figure

4. We derive the following conclusions from the experiments.
For Alarm0.0, the higher the scaling factor φ is, the worse
performance is for all population sizes3 M ∈ {20, 40, 80,
160}. For Alarm0.1, and with M ∈ {40, 80, 160}, the same
as for Alarm0.0 applies. However, there is an important
change for M = 20 (see Figure 4(c)): the higher φ is, the
better performance is at generation 2,000 (with the excep-
tion of φ = 100). What we said for Alarm0.1 applies again
for Alarm0.2, but with more intensity and the twist that
M = 40 is now more similar to Alarm0.1’s M = 20 (see
Figure 4(c)) rather than its M = 160 (see Figure 4(d)).
These experimental results suggest that, as the number of

zeros in the CPTs grows and consequently the complexity of
the search space increases, it is useful to increase φ in order
to increase the degree of GA exploration.
The tendency described in the previous paragraph does

not apply to Alarm0.25 and Alarm0.3. This was initially a
little surprising to us, but we now hypothesize that plateaus
with fitness f = 0 begin to gain in importance in the search
process. Since those plateaus are explored in the same man-
ner by Generalized Crowding, regardless of the φ value (the
child has 0.5 probability of being chosen), the performance
of the GA for different φ values is more and more similar.
There are ways to explore these plateaus more effi ciently, an
issue beyond the scope of this paper.
Key points in these experiments are the following:

• The fact that Generalized Crowding allows selective
pressure to be varied through the φ parameter is im-
portant, as the optimal value of φ depends on whether
Alarm0.0, Alarm0.1, or Alarm0.2 is processed and which
value for M is used.

• Deterministic Crowding (φ = 0) and Probabilistic Crowd-
ing (φ = 1) are generally strong performers. Surpris-
ingly, in some cases Generalized Crowding with φ > 1
produces better results. For example, this is shown by

3We show in detail only a subset of the experimental results,
due to space restrictions, but summarize a broader range of
experiments in the text.

(a) Alarm0.0, M=20

2.0E08
3.0E08
4.0E08
5.0E08
6.0E08
7.0E08
8.0E08
9.0E08
1.0E07

1 501 1001 1501
Generation

M
PE

 P
ro

ba
bi

lit
y

sf=0
sf=0.5
sf=1
sf=10
sf=100

sf=100

sf=10
sf=1

sf=0

sf=0.5

(a) Alarm0.0, M=20

2.0E08
3.0E08
4.0E08
5.0E08
6.0E08
7.0E08
8.0E08
9.0E08
1.0E07

1 501 1001 1501
Generation

M
PE

 P
ro

ba
bi

lit
y

sf=0
sf=0.5
sf=1
sf=10
sf=100

sf=100

sf=10
sf=1

sf=0

sf=0.5

(b) Alarm0.0, M=160

8.0E08

9.0E08

1.0E07

1.1E07

1.2E07

1.3E07

1.4E07

1 501 1001 1501
Generation

M
PE

 P
ro

ba
bi

lit
y

sf=0
sf=0.5
sf=1
sf=10
sf=100

sf=100
sf=10

sf=0
sf=0.5sf=1

(b) Alarm0.0, M=160

8.0E08

9.0E08

1.0E07

1.1E07

1.2E07

1.3E07

1.4E07

1 501 1001 1501
Generation

M
PE

 P
ro

ba
bi

lit
y

sf=0
sf=0.5
sf=1
sf=10
sf=100

sf=100
sf=10

sf=0
sf=0.5sf=1

(c) Alarm0.1, M=20

0.0E+00
1.0E07
2.0E07
3.0E07
4.0E07
5.0E07
6.0E07
7.0E07

1 501 1001 1501

Generation

M
PE

 P
ro

ba
bi

lit
y

sf=0
sf=0.5
sf=1
sf=10
sf=100

sf=100
sf=10

sf=1

sf=0

sf=0.5

(c) Alarm0.1, M=20

0.0E+00
1.0E07
2.0E07
3.0E07
4.0E07
5.0E07
6.0E07
7.0E07

1 501 1001 1501

Generation

M
PE

 P
ro

ba
bi

lit
y

sf=0
sf=0.5
sf=1
sf=10
sf=100

sf=100
sf=10

sf=1

sf=0

sf=0.5

(d) Alarm0.1, M=160

3.0E07

5.0E07

7.0E07

9.0E07

1.1E06

1.3E06

1 501 1001 1501

Generation

M
PE

 P
ro

ba
bi

lit
y

sf=0
sf=0.5
sf=1
sf=10
sf=100

sf=100
sf=10

sf=1
sf=0

sf=0.5

(d) Alarm0.1, M=160

3.0E07

5.0E07

7.0E07

9.0E07

1.1E06

1.3E06

1 501 1001 1501

Generation

M
PE

 P
ro

ba
bi

lit
y

sf=0
sf=0.5
sf=1
sf=10
sf=100

sf=100
sf=10

sf=1
sf=0

sf=0.5

(e) Alarm0.2, M=20

0.0E+00

5.0E07

1.0E06

1.5E06

2.0E06

2.5E06

3.0E06

1 501 1001 1501
Generation

M
PE

 P
ro

ba
bi

lit
y sf=0

sf=0.5
sf=1
sf=10
sf=100

sf=100

sf=10

sf=1

sf=0 sf=0.5

(e) Alarm0.2, M=20

0.0E+00

5.0E07

1.0E06

1.5E06

2.0E06

2.5E06

3.0E06

1 501 1001 1501
Generation

M
PE

 P
ro

ba
bi

lit
y sf=0

sf=0.5
sf=1
sf=10
sf=100

sf=100

sf=10

sf=1

sf=0 sf=0.5

(f) Alarm0.2, M=160

1.0E06

2.0E06

3.0E06

4.0E06

5.0E06

6.0E06

7.0E06

1 501 1001 1501
Generation

M
PE

 P
ro

ba
bi

lit
y

sf=0
sf=0.5
sf=1
sf=10
sf=100

sf=100sf=10

sf=1

sf=0

sf=0.5

(f) Alarm0.2, M=160

1.0E06

2.0E06

3.0E06

4.0E06

5.0E06

6.0E06

7.0E06

1 501 1001 1501
Generation

M
PE

 P
ro

ba
bi

lit
y

sf=0
sf=0.5
sf=1
sf=10
sf=100

sf=100sf=10

sf=1

sf=0

sf=0.5

Figure 4: The effect of varying the scaling factor (sf or φ) when estimating the most probable explanation (MPE) for different
variants of the Alarm BN (Alarm0.0, Alarm0.1, and Alarm0.2) for two different population sizes M = 20 and M = 160.

Alarm0.2 as the population size is reduced– see Figure
4(e) and to a lesser extent Figure 4(c).

While we kept φ constant during search here, it could
be dynamically adjusted. There are different ways to do
this, subject to future research, but one could (i) perform
linear decrements throughout generations or (ii) decrement
proportionally to population entropy.

5.2 Various Bayesian Networks
In this section, we discuss the results of experiments using

a few different BNs, namely Barley, HeparII, and Water.
The Barley BN has 48 nodes with 130180 CPT values (none
of them equal to 0).4 The HeparII BN contains 70 nodes
with 2139 CPT values (none of them equal to 0).5 The
Water BN has 32 nodes with 13484 CPT values (3972 of
them equal to 0).6 Experimental results are averaged over
350 runs, except for Barley where 50 runs were used.
4See http://compbio.cs.huji.ac.il/Repository/Datasets/barl-
ey/barley.htm for details on Barley.
5See http://www.pitt.edu/~druzdzel/abstracts/springer00-
.html for details on HeparII.
6See http://compbio.cs.huji.ac.il/Repository/Datasets/wat-
er/water.htm for details on Water.

Experiments with these three BNs are summarized in Fig-
ure 5, from which we make a few observations. (i) For the
HeparII and Barley BNs, it is clear that a lower φ leads to
better performance. These two BNs have no zeros in their
CPTs. (ii) For the Water BN (29.45% of zeros in its CPTs),
φ = 1 (Probabilistic Crowding) is superior to the rest. Both
(i) and (ii) are in accordance with the results obtained for
Alarmρ: When there are no zeros in the CPTs, Determin-
istic Crowding is the best option; however, when zeros are
present in the CPTs, φ > 0 leads to the best performance.
The optimal φ-value depends on the BN at hand.

6. CONCLUSION AND FUTURE WORK
In this work, a general method for crowding in GAs has

been defined, analyzed, and evaluated. The method is based
on making the replacement phase in crowding more flexible,
specifically by introducing a scaling factor φ, which enables
the selective pressure to be easily controlled. This flexibility
allows the new method, Generalized Crowding, to be suc-
cessfully applied to a wide range of problems. Furthermore,
Generalized Crowding has as special cases other widely-used
crowding methods such as Deterministic Crowding (φ = 0)
and Probabilistic Crowding (φ = 1).

(a) Barley, M=40

0.0E+00
1.0E19
2.0E19
3.0E19
4.0E19
5.0E19
6.0E19
7.0E19
8.0E19

1 501 1001 1501
Generation

M
PE

 P
ro

ba
bi

lit
y sf=0

sf=0.5
sf=1
sf=10
sf=100

sf=100

sf=10
sf=1

sf=0

sf=0.5

(a) Barley, M=40

0.0E+00
1.0E19
2.0E19
3.0E19
4.0E19
5.0E19
6.0E19
7.0E19
8.0E19

1 501 1001 1501
Generation

M
PE

 P
ro

ba
bi

lit
y sf=0

sf=0.5
sf=1
sf=10
sf=100

sf=100

sf=10
sf=1

sf=0

sf=0.5

(b) HeparII, M=40

0.0E+00
2.0E10
4.0E10
6.0E10
8.0E10
1.0E09
1.2E09
1.4E09
1.6E09

1 501 1001 1501
Generation

M
PE

 P
ro

ba
bi

lit
y

sf=0
sf=0.5
sf=1
sf=10
sf=100

sf=100sf=10

sf=1

sf=0

sf=0.5

(b) HeparII, M=40

0.0E+00
2.0E10
4.0E10
6.0E10
8.0E10
1.0E09
1.2E09
1.4E09
1.6E09

1 501 1001 1501
Generation

M
PE

 P
ro

ba
bi

lit
y

sf=0
sf=0.5
sf=1
sf=10
sf=100

sf=100sf=10

sf=1

sf=0

sf=0.5

(c) Water, M=40

0.0E+00
2.0E08
4.0E08
6.0E08
8.0E08
1.0E07
1.2E07
1.4E07
1.6E07

1 501 1001 1501
Generation

M
PE

 P
ro

ba
bi

lit
y sf=0

sf=0.5
sf=1
sf=10
sf=100 sf=100

sf=10

sf=1

sf=0

sf=0.5

(c) Water, M=40

0.0E+00
2.0E08
4.0E08
6.0E08
8.0E08
1.0E07
1.2E07
1.4E07
1.6E07

1 501 1001 1501
Generation

M
PE

 P
ro

ba
bi

lit
y sf=0

sf=0.5
sf=1
sf=10
sf=100 sf=100

sf=10

sf=1

sf=0

sf=0.5

Figure 5: MPE estimation results for varying scaling factor
(sf or φ) for three different Bayesian networks, population
size M = 40.

The proper control of the scaling factor φ, depending on
the problem being processed by Generalized Crowding, con-
stitutes an important future research direction. This paper
has analytically and empirically shown the importance of
φ, including how its optimal value depends on the diffi culty
of the specific problem and population size. Since prob-
lem diffi culty is usually not known in advance, adaptive or
self-adaptive techniques could be used to control the value
of φ in an on-line fashion. A second direction for future
work is to build on the experiments reported here, where we
have focused on MPE estimation. It would be interesting to
consider the estimation of multiple highly probable expla-
nations, in particular in situations where such explanations
are spread throughout the search space.

7. ACKNOWLEDGEMENTS
This material is based, in part, upon work by Ole J. Meng-

shoel supported by NSF grants CCF-0937044 and ECCS-
0931978. The anonymous reviewers are acknowledged for
their comments, which helped improve the paper.

8. REFERENCES
[1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A

learning algorithm for Boltzmann machines. Cognitive
Science, 9:147—169, 1985.

[2] K. A. de Jong. An Analysis of the Behavior of a Class
of Genetic Adaptive Systems. PhD thesis, Department
of Computer and Communication Sciences, University
of Michigan, Ann Arbor, MI, 1975.

[3] S. F. Galán and O. J. Mengshoel. Constraint handling
using tournament selection: Abductive inference in
partly deterministic Bayesian networks. Evolutionary
Computation, 17(1):55—88, 2009.

[4] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley,
Reading, MA, 1989.

[5] D. E. Goldberg. A note on Boltzmann tournament
selection for genetic algorithms and
population-oriented simulated annealing. Complex
Systems, 4:445—460, 1990.

[6] J. H. Holland. Adaptation in Natural and Artificial
Systems. The University of Michigan Press, Ann
Arbor, MI, 1975. Second Edition, The MIT Press,
Boston, MA, 1992.

[7] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220(4598):671—680, 1983.

[8] S. W. Mahfoud. Crowding and preselection revisited.
In R. Männer and B. Manderick, editors, Proceedings
of the 2nd International Conference on Parallel
Problem Solving from Nature (PPSN II), pages 27—36,
Brussels, Belgium, 1992. Elsevier, Amsterdam, The
Netherlands.

[9] S. W. Mahfoud. Niching Methods for Genetic
Algorithms. PhD thesis, Department of General
Engineering, University of Illinois at
Urbana-Champaign, Urbana, IL, 1995.

[10] S. W. Mahfoud and D. E. Goldberg. Parallel
recombinative simulated annealing: A genetic
algorithm. Parallel Computing, 21:1—28, 1995.

[11] O. J. Mengshoel. Effi cient Bayesian Network
Inference: Genetic Algorithms, Stochastic Local
Search, and Abstraction. PhD thesis, Department of
Computer Science, University of Illinois at
Urbana-Champaign, Urbana, IL, 1999.

[12] O. J. Mengshoel and D. E. Goldberg. Probabilistic
crowding: Deterministic crowding with probabilistic
replacement. In W. Banzhaf, J. M. Daida, A. E.
Eiben, M. H. Garzon, V. Honavar, M. J. Jakiela, and
R. E. Smith, editors, Proceedings of the Genetic and
Evolutionary Computation Conference
(GECCO-1999), pages 409—416, Orlando, FL, 1999.
Morgan Kaufmann, San Francisco, CA.

[13] O. J. Mengshoel and D. E. Goldberg. The crowding
approach to niching in genetic algorithms.
Evolutionary Computation, 16(3):315—354, 2008.

[14] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller. Equation of state
calculations by fast computing machines. Journal of
Chemical Physics, 21(6):1087—1092, 1953.

