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Abstract

Sparse principal component analysis (PCA) imposes extra

constraints or penalty terms to the standard PCA to achieve

sparsity. In this paper, we first introduce an efficient

algorithm for finding a single sparse principal component

(PC) with a specified cardinality. Experiments on synthetic

data, randomly generated data and real-world datasets show

that our algorithm is very fast, especially on large and

sparse data sets, while the numerical quality of the solution

is comparable to the state-of-art algorithm. Moreover,

combining our algorithm for computing a single sparse PC

with the Schur complement deflation scheme, we develop

an algorithm which sequentially computes multiple PCs

by greedily maximizing the adjusted variance explained by

them. On the other hand, to address the difficulty of

choosing the proper sparsity and parameter in various sparse

PCA algorithms, we propose a new PCA formulation whose

aim is to minimize the sparsity of the PCs while requiring

that their relative adjusted variance is larger than a given

prespecified fraction. We also show that a slight modification

of the aforementioned multiple component PCA algorithm

can also find sharp solutions of the latter formulation.

1 Introduction

Principal Component Analysis (PCA) is a classical tool
for performing data analysis such as dimensionality re-
duction, data modeling, feature extraction and other
learning tasks. It can be widely used in all kinds of data
analysis areas like image processing, gene microarray
analysis and document analysis. Basically, PCA con-
sists of finding a few orthogonal directions in the data
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space which preserve the most information in the data.
This is done by finding directions that would maximize
the variance of the projections of the data points along
these directions. However, standard PCA generally pro-
duces dense directions (i.e., whose entries are mostly
nonzeros), and hence are too complex to explain the
data set. Instead, a standard approach in the learning
community is to pursue sparse directions which in some
sense approximate the directions produced by standard
PCA. Sparse PCA has a few advantages, namely: i) it
can be effectively stored; and ii) it allows the simpler
interpretation of the inherent structure and important
information associated with the data set. For these rea-
sons, sparse PCA is a subject which has received a lot
of attention from the learning community in the last
decade.

Several formulations and algorithms have been pro-
posed to perform sparse PCA. Zou et al. [12] for-
mulate sparse PCA as a regression-type optimization
problem which is then solved by Lasso-type algorithms.
Shen and Huang [10]combine simple linear regression
and thresholding to solve a regularized SVD prob-
lem, which achieves sparse PCA. D’Aspremont et al.’s
DSPCA algorithm [1] for sparse PCA consists of solv-
ing a semi-definite relaxation of a certain formulation
of sparse PCA whose solution is then post-processed to
yield a sparse principal component (PC). Paper [2] by
d’Aspremont et al. proposes a greedy algorithm to solve
a new semi-definite relaxation and provides a sufficient
condition for optimality. ESPCA algorithm in Moghad-
dam et al. [9] obtains good numerical quality by using
a combinatorial greedy method, although their method
can be slow on large data set. Their method, like ours,
consists of identifying an active index set (i.e., the in-
dices corresponding to the nonzero entries of the PC)
and then using an algorithm such as power-iteration to
obtain the final sparse PC. Journée et al [5] recently
formulate sparse PCA as a nonconcave maximization
problem with a penalty term to achieve sparsity, which
is then reduced to an equivalent problem of maximiz-
ing a convex function over a compact set. The latter
problem is then solved by an algorithm which is essen-
tially a generalization of the power-iteration method.



For methods that find multiple sparse PCs sequentially,
projection matrix deflation is used to find subsequent
directions. Other deflation methods have been stud-
ied in [8]. A different multiple sparse PCA approach is
proposed in [7] based on a formulation enforcing near
orthogonality of the PCs, which is then solved by an
augmented Lagrangian approach. Throughout this pa-
per, we compare our approach with the GPower method
proposed in [5], which is widely viewed as one of the
most efficient methods for performing sparse PCA.

We propose a simple but effective algorithm for
finding a single sparse PC. The algorithm consists of
two stages. In the first stage, it identifies an active
index set with a desired cardinality corresponding to the
nonzero entries of the PC. In the second one, it uses the
power iteration method to find the best direction with
respect to the active index set. The complexity of this
algorithm is proportional to the pre-specified cardinality
of the solution, but we show that it can be accelerated
by adding multiple indices to the active set at every
iteration and optimizing it for sparse matrix. An
important advantage of our method is that it can easily
produce a single sparse PC of a specified cardinality
with just a single run while the GPower method may
require several runs due to the fact it is based on a
formulation which is not directly related to the given
cardinality. Experiments show that our algorithm can
perform considerably better than GPower in some data
instances, and hence provides an alternative tool to
efficiently perform sparse PCA. Using this efficient
algorithm for computing a single PC together with the
Schur complement deflation scheme, we also develop an
algorithm which sequentially computes multiple PCs
by greedly maximizing their adjusted variance, i.e., a
measure of total variance explained by the sparse PCs
proposed in [12]. We also show in rigorous manner why
the Schur complement deflation scheme proposed in [8]
is the most suitable one when the goal is to maximize
the adjusted variance.

Though couples of sparse PCA algorithms emerges
in the past a few years, it is still not clear how much
sparsity we need to impose on the PCs. As another
contribution of this paper, we try to address this
problem by formulating a new sparsity-controlled PCA
problem based on relative adjusted variance. We provide
an algorithm to control sparsity of PCs combining a
variant of our first algorithm and Schur complement
deflation. Last but not the least, we will show the
application of this sparsity-controlled PCA framework
on real-world data sets.

We organize the rest of our paper as follows. We
present the details of our new algorithm to compute
single sparse PC in Section 2, which includes formula-

tion of problem, description of algorithm, complexity
analysis and speed-up strategy. In Section 3, we fo-
cus on computing multiple sparse PCs. The relation
between adjusted variance and Schur complement de-
flation is also discussed in this section. A new sparsity-
controlled PCA problem is proposed and approximately
solved in Section 4. We includes all the experiment and
comparison results in the final section.

2 Sparse PCA for finding a single PC

In this section, we introduce the formulation for the
PCA problem of computing a single sparse PC with a
prespecifed cardinality and present two algorithms for
solving it.

2.1 Formulation Throughout this paper, we con-
sider sparse PCA on a data matrix V ∈ Rn×p whose
n rows represent data points in Rp. We assume that V
is a centered matrix, i.e., a matrix whose average of its
rows is the zero vector (see section 2.3). Given a positive
integer s ≤ p, single-unit sparse PCA on V consists of
finding an s-sparse PC of V , i.e., a direction 0 ̸= x ∈ Rp

with at most s nonzero entries that maximizes the vari-
ance of the projections of these data points along x.
Mathematically, this corresponds to finding a vector x
that solves the optimization problem

(2.1) max{∥V x∥2/∥x∥2 : ∥x∥0 ≤ s},

where ∥x∥0 denotes the number of nonzero entries of x.

2.2 Algorithm We now present the basic ideas be-
hind our method. The method consists of two stages.
In the first stage, an active index set J of cardinality
s is determined. The second stage then computes the
best feasible direction x with respect to (2.1) satisfying
xj = 0 for all j ̸∈ J , i.e., it solves the problem

max{∥V x∥/∥x∥ : xj = 0,∀j /∈ J}.(2.2)

We note that once J is determined, x can be efficiently
computed by using the power-iteration method (see for
example [4, 11]). Hence, from now on, we will focus our
attention on the determination of the index set J .

Based on the following observations, we design the
procedure to determine J . First, we can alternatively
consider only the optimal vectors of size

√
s, i.e., x which

solve

max{∥V x∥2 : ∥x∥0 ≤ s, ∥x∥ ≤
√
s}.(2.3)

Note that under the condition that ∥x∥0 ≤ s, the
inequality ∥x∥∞ ≤ 1 implies that ∥x∥ ≤

√
s. Hence, the

problem

max{∥V x∥2 : ∥x∥0 ≤ s, ∥x∥∞ ≤ 1}(2.4)



is a restricted version of (2.3). Since its objective
function is convex, one of its extreme points must be an
optimal solution. Note also that its set of extreme points
consists of those vectors x with exactly s nonzero entries
which are either 1 or−1. Ideally, we would like to choose
J as the set of nonzero entries of an optimal extreme
point of (2.4). However, since computing (2.4) is hard,
we instead propose an algorithm to find an approximate
solution of (2.4), which is then used to determine J .

Our method to find an approximate solution for
(2.4) proceeds in a greedy manner as follows. Starting
from x(0) = 0, assume that at the k-th step, we have a
vector x(k−1) with exactly k − 1 nonzero entries which
are all either 1 or −1. Also, let Jk−1 denote the index
set corresponding to the nonzero entries of x(k−1). We
then set x(k) := x(k−1) + αkejk , where ei denotes the
i-th unit vector and (jk, αk) solves

(2.5) (jk, αk) = argmax
j ̸∈Jk−1, α=±1

∥V (x(k−1) + αej)∥2.

Clearly, x(k) is a vector with exactly k nonzero entries
which are all either 1 or −1. It differs from x(k−1) only
in the jk-th entries which changes from 0 in x(k−1) to
αk in x(k).

Since, for fixed j /∈ Jk−1 and α = ±1,

∥V (x(k−1) + αej)∥2(2.6)

=∥V x(k−1)∥2 + ∥vj∥2 + 2αvTj V x(k−1),

where vj is the j-th column of V , α that maximizes the
above expression is the sign of vTj V x(k−1). Hence, it
follows that

jk = argmax
j /∈Jk−1

∥vj∥2 + 2|vTj V x(k−1)|,(2.7)

αk = sign(vTjkV x(k−1)).

Hence, we need to compute vTj V x(k−1) for every
j /∈ Jk−1 to find jk. A key point to observe is that there
is no need to compute vTj V x(k−1) from scratch. Instead,
this quantity can be updated based on the following
identity:

vTj V x(k−1) = vTj V (x(k−2) + αk−1ejk−1
)

= vTj V x(k−2) + αk−1v
T
j vjk−1

.(2.8)

There are two cases to discuss at this point. If V TV
is explicitly given, then the quantity vTj vjk−1

is just its
(j, jk−1)-th entry, and hence there is no need to compute
it. If V TV is not explicitly given, it is necessary to
essentially compute its jk−1-column and then extract
the entries of this column corresponding to the indices
j /∈ Jk−1.

Algorithm 1 S1-SPCA

Given a centered data matrix V ∈ Rn×p (or, sample
covariance matrix Σ = V TV ∈ Rp×p) and desired car-
dinality s, this algorithm computes an s-sparse loading
vector x.

1: Initialization: set x(0) = 0, J0 = ∅.
2: Phase I: find the active index set J for nonzero

entries of x.
3: for k = 1, . . . , s do
4: Find jk = argmaxj /∈Jk−1

∥vj∥2 + 2|vTj V x(k−1)|
and set αk = sign(vTjkV x(k−1)).

5: Set x(k) = x(k−1) + αkejk and Jk = Jk−1 ∪ jk.
6: end for
7: Phase II: compute the solution of (2.2) with index

set J = Js using the power-iteration method.

Our first algorithm, referred to as S1-SPCA, is
summarized in Algorithm 2. Its main difference from
our second algorithm (see next section) is that it adds
to J exactly one index (instead of several indices) per
loop.

2.3 Complexity and Speed-up Strategy We now
briefly discuss the computational complexity of the first
phase of Algorithm 1. The complexity of the second
phase where the power-iteration method is applied gen-
erally depends on measures other than the dimension of
the underlying matrix [4]. Moreover, our computational
experiments show that the first phase is generally by far
the more expensive one. When V TV is explicitly given,
it is easy to see that the computational complexity of
the first phase of Algorithm 1 is O(ps). When V TV
is not explicitly given, then this complexity becomes
O(nps) in the dense case, and considerably smaller than
O(snnz + ps) in the sparse case, where nnz denotes the
number of nonzero entries of V .

It is possible to develop a variant of the above al-
gorithm which includes a constant number, say c, of
indices into J in the same loop instead of just one index
as in S1-SPCA, thereby reducing the overall computa-
tional complexity of the first phase to O(nps/c). This
simple idea consists of adding the c best indices j /∈ Jk−1

according to the criteria in (2.7), say jk,1, . . . , jk,c, to the
set Jk−1 to obtain the next index set Jk, and then set

x(k) = x(k−1) + αjk,1
ejk,1

+ · · ·+ αjk,c
ejk,c

,

where αjk,i
is the sign of vTjk,i

V x(k−1) for i = 1, . . . , c.
It is easy to see that such variant performs at most

⌈s/c⌉ loops and that the computational complexity of
each loop is O(pn), thereby implying the computational
complexity O(nps/c) for the first phase. We will refer



to this variant as the Sc-SPCA method, where the c
indicates the number of indices added to J in each
iteration. It is considerably faster than the single index
version S1-SPCA at the expense of a small sacrifice in
the quality of its solution (i.e., its variance). In our
computational experiments, we usually set c = ⌈s/10⌉
so that the Sc-SPCA method performs at most 10
iterations.

One of the advantages of our algorithm is that it is
very efficient especially when the data matrix is sparse.
In many applications such as text mining, the data
matrix W is extremely sparse. However, the centered

data matrix V = (I − eeT

n )W , where e is all one vector,
is usually completely dense. Note that V is only used
in the key update (2.8) in our algorithms, which asks
for the computation of jk−1-th column of the sample
covariance matrix V TV . The proposed algorithms
can actually be implemented without explicitly forming
the centered matrix V , but keeping the raw data W
and computing the columns of V TV based on the
observation that

(2.9) V TV = WTW − nµµT ,

where µ = WT e/n consists of the average of the rows of
W . As a result, we can take advantage of any available
sparsity on the uncentered data W .

3 Sparse PCA with Multiple PCs

For further tasks like dimension reduction and feature
extraction, more than one PC need to be computed. In
this section, we discuss how our algorithm for finding a
single sparse PC, together with the Schur complement
deflation approach [8], can be used to develop an
efficient method for finding multiple sparse PCs.

Throughout this section, we assume that k ≤
min{n, p} is the number of sparse PCs that need to
be computed. Given the centered data matrix V and
desired cardinalities s1, . . . , sk for the k loading vectors
z1, . . . , zk, our method to compute these vectors is based
on the following general scheme for computing multiple
sparse PCs.

1: Set V(1) = V .
2: for i = 1 : k do
3: Step 1: find a si-sparse loading vector zi for V(i)

4: Step 2: deflate zi from V(i) to obtain V(i+1)

5: end for

Our multiple sparse PCAmethod method, which we
refer to as Mc-SPCA, uses the algorithm Sc-SPCA from
the last section to obtain the vector zi in above step 1.

The next subsection discusses the deflation scheme used
by our method to implement the above step 2.

Before describing the deflation method, we first
discuss how to measure the quality of a set of k PCs. If
z1, . . . , zk ∈ Rp are the loading vectors of the exact PCs
for a given centered data matrix V ∈ Rn×p, then the
total variance explained by the corresponding multiple
PCs V z1, . . . , V zk is given by

(3.10) ∥V Z∥2F = tr(ZTV TV Z) = σ2
1 + · · ·+ σ2

k,

where Z = [z1, . . . , zk] and the σ1, . . . , σk are the largest
singular values of V . However, in the case where the
zi’s are loading vectors for approximate PCs of V ,
the quantity (3.10) is no longer suitable to measure
the aggregate variance explained by V z1, . . . , V zk, since
it does not take into account the correlation (i.e.,
lack of orthogonality) between these components. A
proper way of measuring the variance explained by these
components is the adjusted variance introduced by Zou
et al [12], namely:

(3.11) AdjVar(V Z) = tr(R2),

where V Z = QR is the reduced QR factorization of V Z,
i.e. R is a k × k upper-triangular matrix and Q is an
n× k matrix satisfying QTQ = I.

3.1 Schur complement deflation versus ad-
justed variance In this subsection, we discuss a de-
flation technique proposed in [8], which is used as a key
ingredient by our multiple sparse PCA method.

Given V(i) ∈ Rn×p and zi ∈ Rp, the Schur
complement deflation scheme computes V(i+1) according
to

(3.12) V(i+1) ←

(
I −

V(i)ziz
T
i V

T
(i)

∥V(i)zi∥2

)
V(i).

It is closely related to maximizing adjusted variance in
a greedy manner, as the following two results show.

Proposition 3.1. Given V(1) = V ∈ Rn×p and a set

of loading vectors Zi = [z1, . . . , zi] ∈ Rp×i, assuming
that the PCs V z1, . . . , V zi are linearly independent, the
V(i+1) generated by Schur complement deflation (3.12)
satisfies

(3.13) V(i+1) = (I −QiQ
T
i )V,

where QiRi is the reduced QR factorization of V Zi.

Proof. When i = 1, we have V Z1 = V z1 = Q1R1,
where Q1 = V z1/∥V z1∥ and R1 = ∥V z1∥. Therefore,
by Schur complement deflation (3.12) with i = 1, we



have V(2) = (I − Q1Q
T
1 )V . Now assume (3.13) is

true for j − 1, i.e., V(j) = (I − Qj−1Q
T
j−1)V , where

V Zj−1 = Qj−1Rj−1, we prove (3.13) is also true for j.
Since V zj is not in the subspace spanned by

V z1, . . . , V zj−1 so that the vector wj := (I −
Qj−1Q

T
j−1)V zj ̸= 0. Defining qj = wj/∥wj∥ and α =

∥wj∥, we can easily see that the columns of [Qj−1, qj ]

are orthonormal and qj =
V(j)zj

∥V(j)zj∥
.

The reduced QR factorization V Zj is therefore

QjRj = [Qj−1, qj ]

[
Rj−1 QT

j−1V zj
0 α

]
.

According to Schur complement deflation (3.12),

V(j+1) =

(
I −

V(j)zjz
T
j V

T
(j)

∥V(j)zj∥2

)
V(j)

=(I − qjq
T
j )(I −Qj−1Q

T
j−1)V

=(I −QjQ
T
j )V,

which concludes our proof. �

Proposition 3.2. Let Zi = [z1, . . . , zi] ∈ Rp×i be
given and assume that V Zi = QiRi is the reduced QR
factorization of V Zi. Then for any z ∈ Rp,
(3.14)
AdjV ar(V [Zi, z])−AdjV ar(V Zi) = ∥(I −QiQ

T
i )V z∥2.

Proof. If V z lies in the subspace spanned by the
columns of the matrix V Zi, then one can easily see that
both sides of (3.14) are zero.

Assume then that V z is not in the above subspace
and note that the vector w := (I − QiQ

T
i )V z ̸= 0.

Defining q = w/∥w∥ and α = ∥w∥, we can easily see
that the columns of [Qi, q] are orthonormal and

V [Zi, z] = [Qi, q]

[
Ri QT

i V z
0 α

]
is the reduced QR factorization of V [Zi, z]. Hence, we
conclude that the AdjV ar(V [Zi, z]) = tr(R2

i ) + α2,
which is equivalent to (3.14). �

A greedy method for finding k sparse loading vec-
tors with prespecified cardinalities s1, . . . , sk would pro-
ceed as follows. Assuming that i < k sparse load-
ings vectors z1, . . . , zi have already been computed, the
(i+1)-th loading vector zi+1 is chosen so as to maximize
AdjV ar(V [Zi, z]) subject to the condition that ∥z∥ = 1
and ∥z∥0 = si+1, which, according to the Proposition
3.2, is equivalent to the max-variance problem

max{∥(I −QiQ
T
i )V z∥2 : ∥z∥ = 1, ∥z∥0 = si+1}.

Moreover, according to the Proposition 3.1, this is
equivalent to

max{∥V(i+1)z∥2 : ∥z∥ = 1, ∥z∥0 = si+1},
where V(i+1) is obtained by recursively applying the
Schur complement deflation scheme. The latter problem
can be solved using algorithms from Section 2. Notice
that Schur complement deflation includes a Gram-
Schmidt process on the matrix of PCs V Z so that a
byproduct is the QR factorization of V Z and hence the
adjusted variance can be updated sequentially.

4 Sparsity-controlled PCA

According to our best knowledge, there is no general
guideline for choosing the cardinality or penalty param-
eter when performing sparse PCA. For example, there
is no clear answer for hoe to assign prespecified cardi-
nalities among the multiple PCs. However, in practice,
one can expect the PCs to explain a certain proportion
of the variance explained by standard PCs (i.e. with
no constraints such as sparsity), using as few variables
as possible. For the sake of convenience, we define the
relative adjusted variance as

(4.15) rAdjVar(V Z) =
AdjVar(V Z)

σ2
1 + · · ·+ σ2

k

.

Based on this measure, we propose a problem which
minimizes the cardinality of the loading vectors, with
the constraint that the relative adjusted variance (4.15)
is larger than or equal to a certain specified threshold
ρ ∈ (0, 1).

In the single PC case, the problem is formulated as

(4.16) min{∥z∥0 : ∥V z∥2 ≥ ρσ2
1 , ∥z∥ ≤ 1}.

In the multiple PC case, the problem is formulated
as

min

k∑
i=1

∥zi∥0(4.17)

s.t. rAdjV ar(V [z1, . . . , zk]) ≥ ρ

∥zi∥ ≤ 1, i = 1, . . . , k.

To solve problem (4.16) and (4.17), we use a variant
of our algorithm Sc-SPCA, combined with the Schur
complement deflation scheme (3.12). Basically, for each
zi, we start zi from zero vector and add c indices to
the active index set J in every iteration. Instead of
stopping the algorithm based on the cardinality of the
current loading vector zi, we stop it based on the relative
adjusted variance, i.e., when rAdjV ar(V [z1, . . . , zi]) ≥
ρ. Notice that even though the relative adjusted
variance (4.15), it is sequentially updated according
to (3.14). The heuristic algorithm is summarized in
Algorithm 2, which we refer to as SCc-PCA.



Algorithm 2 Sparsity-Controlled PCA (SCc-PCA)

Given objective proportion ρ, centered data matrix
V and desired number k of sparse PCs, this algo-
rithm computes k sparse loading vectors z1, . . . , zk.

1: Compute true variance:
compute the first k singular values of V , σ1, . . . , σk.

2: for i from 1 to k do
3: Set J = ∅.
4: while rAdjV ar(V [z1, . . . , zi]) < ρ do
5: Find top c best indices j1, . . . , jc ̸∈ J maxi-

mizing the increase of the variance, and add
j1, . . . , jc to J .

6: Compute zi = argmax{∥V x∥2 : ∥x∥ ≤
1, xj = 0,∀j /∈ J} by using the power-iteration
method.

7: end while
8: Schur complement deflation:

V ← (I − V ziziV
T

∥V zi∥2 )V .

9: end for

5 Experiment results and comparison

5.1 Synthetic Data We first use synthetic data to
show that our algorithm is able to recover the ’true’
sparse PC. The procedure, proposed by Shen and Huang
[10], consists of generating random data with a co-
variance matrix having dominant sparse eigenvectors.
The first step is to artificially specify the two dominant
sparse eigenvectors of the covariance matrix. Then the
matrix of eigenvectors U are constructed by randomly
generating the remaining vectors and orthogonalization
via a Gram-Schmidt process. Next, we set the covari-
ance matrix as Σ = UDUT , where D is a diagonal ma-
trix with several dominant components. Then, observa-
tions are sampled from a zero mean normal distribution
with covariance matrix Σ.

In our experiments, points are drawn from R500

with 500 × 500 covariance matrix Σ = UDUT . In
the diagonal matrix D, the first ten eigenvalues are set
as 400, 300, 100, 100, 50, 50, 50, 50, 30, 30 and all the rest
eigenvalues are 1’s. The first two eigenvectors u1 and u2

of the covariance matrix are 10% sparse and associated
with two dominant eigenvalues. The nonzero pattern of
the first two eigenvectors u1 and u2 are pre-specified as
follows:

{
u1i =

1√
50

1 ≤ i ≤ 50

u1i = 0 i > 50


u2i = − 1√

50
31 ≤ i ≤ 40

u2i =
1√
50

41 ≤ i ≤ 80

u2i = 0 otherwise.

To test our algorithms S1-SPCA and S5-SPCA,

we use them to compute two unit-norm sparse loading
vectors z1, z2 ∈ R500, which are expected to be close
to u1 and u2. We perform our tests on two problem
sets. The first set of problem corresponds 200 data
matrices V ∈ R50×500 generated according to the
method described above. The other set of problem
consists of 200 data matrices V ∈ R200×500 generated
in the same way. We measure the scalar products
|zT1 z2|, |uT

1 z1| and |uT
2 z2| and average them over the

corresponding 200 data matrices. When both quantities
|uT

1 z1| and |uT
2 z2| are greater than 0.95, we name it

a successful identification of u1 and u2 and the total
number of successful identifications are provided in the
last column of Table 1 and 2.

We use the state-of-art algorithm GPower methods
GPower0 and GPower0,k[5] with L0 penalization as
counterparts since our algorithms use L0 constraints
as well. Another reason is that the experiments in [5]
show that the L0 version of GPower is generally more
efficient than the L1 version. The difference between
GPower0 and GPower0,k is that the former one finds
single sparse PC at a time while the latter one finds
k PCs simultaneously. In our experiments, we feed
the cardinality 50 to S1-SPCA and S5-SPCA. For S5-
SPCA, number of identified index c in one iteration is
5, so that only 10 iterations are performed. For GPower
methods, we use line search to tune the parameter with
an initial guess proportional to the maximal column
norm of the matrix V (see [5]). We stop the trials when
the resulting vector has a cardinality between 45 and
55 or the maximal trial number 40 is reached. For
S1-SPCA, S5-SPCA and GPower0, we employ Schur
complement deflation (3.12) before searching the second
PC. For comparison, we measure the average time for
a single run of each algorithm, even though GPower
methods actually cost several times more due to the
trials and errors process. The results of the two problem
sets are presented respectively in Table 1 and 2.

On the other hand, even though we feed the cardi-
nality 50 to our algorithm S1-SPCA and S5-SPCA in
the above experiments, we can actually detect the in-
herent cardinality of the PCs by plotting the variance-
cardinality (i.e., ∥V z∥2/σ2

1 vs ∥z∥0 ) trade-off curve,
where σ1 is the largest singular value of V . On syn-
thetic data matrices V ∈ R25×500,R50×500 or R100×500

with different number of observations, a single run of S5-
SPCA algorithm is able to find the critical point which
indicates the inherent sparsity associated the first PC.
It is shown in Figure 5.1 that as we increase the car-
dinality of the loading vector z, the increasing rate of
relative adjusted variance ∥V z∥2/σ2

1 changes drastically
when the cardinality gets to 50.



Table 1: Sparse PCA on 50× 500 synthetic data matrix. Four algorithms are performed to compute the first two
sparse loading vectors, which are then compared to the loading vectors of true PCs. Measurements are averaged
over 200 repeated experiments, except that the last column counts number of successful identifications out of 200.

|zT1 z2| |uT
1 z1| |uT

2 z2| # trials single run time(10−2 seconds) # success
S1-SPCA 0.0350 0.8067 0.8029 1 4.8 155
S5-SPCA 0.0383 0.8659 0.8626 1 3.6 164
GPower0 0.0324 0.8142 0.8122 3.9 2.3 147
GPower0,2 0.0375 0.8119 0.7931 7.1 1.9 149

Table 2: Sparse PCA on 200× 500 synthetic data matrix. Four algorithms are performed to compute the first two
sparse loading vectors, which are then compared to the loading vectors of true PCs. Measurements are averaged
over 200 repeated experiments, except that the last column counts number of successful identifications out of 200.

|zT1 z2| |uT
1 z1| |uT

2 z2| # trials single run time(10−2 seconds) # success
S1-SPCA 0.0172 0.9882 0.9892 1 10.4 198
S5-SPCA 0.0180 0.9883 0.9893 1 7.6 198
GPower0 0.0191 0.9812 0.9830 1.9 6.7 194
GPower0,2 0.0157 0.9774 0.8748 9.7 4.4 171
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Figure 1: The variance-cardinality trade-off curves on
synthetic data matrices, where number of observations
n is 25, 50 and 100. Each curve is obtained from a single
run of S5-SPCA algorithm with 5 indices updated in
each iteration.

5.2 Randomly Generated Data In this section,
we evaluate the numerical quality and speed of both
versions of our method S1-SPCA and Sc-SPCA(c >
1), by comparing them to GPower method [5] with
L0 penalty term, namely GPower0, using a set of
randomly generated sparse matrices. For the speed-up
version Sc-SPCA, we set c = ⌈s/10⌉ as the number of
added indices in each iteration, where s is the desired
cardinality. Experiments are performed in MATLAB
with codes of all three methods optimized for sparse
matrix computation. All results are averaged over 10
repeated measurements.

In the first experiment, we have randomly gener-
ated sparse square matrices W with dimension p vary-
ing from 100 to 2000, with their sparsity (i.e., pro-
portion of nonzero entries) set to 20%. For S1-SPCA
and Sc-SPCA, we set the required cardinality s to
be p/5. For GPower0, we set the parameter γ =
0.002maxi ∥vi∥2/n, where vi’s are columns of the cen-
tered data matrix V . Then we measure the average cpu
time for a single run of each algorithm. In Figure 5.2,
the plot of the running time (in seconds) against matrix
size indicates that S1-SPCA and Sc-SPCA are fast on
large sparse matrix.

Using the same set of matrices, we compare the nu-
merical quality of three algorithms using the proportion
of relative explained variance ∥V z∥2/σ2

1 , where σ1 is the
largest singular value of V . Since this value is closely
related to the cardinality of z, we set the required cardi-
nality s to be p/5 for S1-SPCA and Sc-SPCA, while we
use line search for GPower0 to obtain solutions with
the same sparsity, i.e., 20% nonzero components. In
the Figure 5.2, we plot the curve of relative explained
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Figure 2: When the size of the matrix is increasing
from 100 to 2000, this figure displays the curves of
the time for a single run of all three methods. The
cardinality of solution for S1-SPCA and Sc-SPCA is
fixed as p/5, while the parameter in GPower0 is γ =
0.002maxi ∥vi∥2/n.

variance against matrix size. Observe that while S1-
SPCA achieves better numerical quality compared to
GPower0, Sc-SPCA with c > 1 can be faster than the
latter one at the expense of a little loss in solution qual-
ity. Another important observation is that the PC with
20% sparsity can explain a large portion of variance ex-
plained by the dense PC.

In the second experiment, the size of the square
matrix is fixed as 5000. We input the cardinality of
the solution z computed by GPower0 to both versions
of our method, so that we can compare their solution
quality based on relative explained variance ∥V z∥2/σ2

1 .
To obtain z with different cardinality, we choose 20 pa-
rameters γ = 0.01maxi ∥vi∥2/n/

√
j, j = 1, . . . , 20 for

GPower0. The trade-off curve of the relative explained
variance against the cardinality of the solution is dis-
played in the first graph in Figure 5.2. The second
graph plots running time against the cardinality. Ob-
serve that S1-SPCA method outperforms GPower0 in
terms of solution quality but the running time is propor-
tional to the cardinality of solution. The running time
of our speed-up algorithm Sc-SPCA barely increases as
the cardinality increasing, at the expense of an accept-
able sacrifice in solution quality.

Our third experiment consists of two parts. In the
first (resp., second) one, we have randomly generated
sparse matrices with n/p = 0.1 (resp., n/p = 10), with
the sparsity set to 20% and with their larger dimension
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Figure 3: When the size of the matrix is increasing from
100 to 2000, this figure displays curves of the relative
explained variance ∥V z∥2/σ2

1 . GPower0 uses line search
to obtain z with cardinality p/5, which can be directly
achieved by S1-SPCA and Sc-SPCA.

increasing from 200 to 4000. For Sc-SPCA, we set
the required cardinality s to be p/10. For GPower0,
we set the parameter γ = 0.01maxi ∥vi∥2/n and γ =
0.00005maxi ∥vi∥2/n respectively to obtain solutions
with similar sparsity. The corresponding graphs of the
running time against the size of the larger dimension
are given in Figure 5.2. Observe that while the speed
of Sc-SPCA method is comparable to GPower0 when
n/p = .1, it is faster than GPower0 when n/p = 10.

5.3 Image data In this subsection, we compare our
method with GPower method using real-world data
matrix from handwritten digits database MNIST [6].
The matrix we use has size 5000 by 784. Each row
of the matrix corresponds to a image with 28 by
28 pixels, and hence of size 784. To obtain PCs
with different sparsity, we choose 20 parameters γ =
0.00002maxi ∥vi∥2/n/j, j = 1, . . . , 20 for GPower0 and
then directly control the cardinality constraint in S5-
SPCA. In Figure 5, the first graph plots running time
against the cardinality of solution, while the second
graph plots the relative explained variance of the so-
lution against its cardinality. Observe that on this data
set, S5-SPCA method outperforms GPower0 in terms
of speed and generates sparse PCs with quality close to
GPower0.

Using SCc-PCA algorithm, we minimize the to-
tal cardinality of six PCs z1, . . . , z6 to explain at
least 70% of the variance explained by dense PCs(i.e.,
rAdjV ar(V Z) ≤ 0.7). For comparison, we implement
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Figure 4: We fix the data matrix as a square sparse
matrix of size 5000. The trade-off curve of variance
against cardinality is on the top. The curve of running
time against cardinality is on the bottom. In this
experiment, we input the cardinality of the solution z
computed by GPower0 to both versions of our method
so that solutions of all three methods have exactly the
same cardinality.
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Figure 5: As the number of variables p increases from
200 to 4000 and n/p = 0.1, the running time curve is
shown in the top graph. As the number of observations
n increases from 200 to 4000 and n/p = 10, the running
time curve is shown in the bottom graph.
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Figure 6: Experiments on 5000 handwritten digits im-
ages from MNIST database. The top one plots running
time against cardinality curves while the bottom one
plots variance against cardinality curves.

the GPower0 with line search for parameter under the
framework of sparsity-controlled PCA . It turns out that
with a random initial parameter, it takes dozens of runs
for GPower0 to obtain sparse PCs with desired relative
adjusted variance. We also include the result by block
version algorithm GPower0,6 with line search technique
choosing parameter. It is shown that GPower0,2 fails
to find such z1, . . . , z6 with relative adjusted variance
closely above 0.7 in finite time. In Table 5.3, we show
the cardinality of each sparse PC, the total running time
and the actual value of relative adjusted variance.

5.4 Sparsity-controlled PCA on Pitprops data
The pitprops data is a benchmark data for performing
sparse PCA, which consists of 180 observations and 13
measured variables. The first 6 PCs can explain 86.9%
of the total variance, but are dense and hard to explain.
Previous studies tried to find 6 sparse PCs based on
the 13 × 13 sample covariance matrix. However, the
way they found the sparse PCs was to try different
parameters or cardinalities for each sparse PC since
it is not clear how to distribute the total cardinality
among PCs. Our method is the first one to address
this problem. To avoid the trials and errors process, we
formulate the problem as sparsity-controlled PCA (4.17)
to find 6 sparse as possible PCs with relative adjusted
variance at least 0.9. It turns out that in just a single
run we can find a set of 6 sparse PCs with cardinality
pattern 7 − 4 − 5 − 2 − 5 − 2 explaining 90.69% of the
variance explained by dense PCs. The resulting loading
vectors are shown in the Table 5.4. To achieve the
same goal, we use GPower0,6 method with balancing
parameter N = (1, 1/2, 1/3, 1/4, 1/5, 1/6) and random
initial parameter γ and line search technique. It usually
takes GPower0,6 more than 20 runs to obtain the set of
6 PCs with relative adjusted variance close to 0.9. The
best result given by GPower0,6 is a set of 6 sparse PCs
with cardinality pattern 12− 11− 11− 2− 1− 1 which
explaining 90.12% of the variance explained by dense
PCs.

5.5 Sparsity-controlled PCA on Leukemia data
The Leukemia data set is a DNA microarray dataset
consisting of 72 dense observations in R7129. This a
typical problem with many more variables than obser-
vations. Using SCc-PCA algorithm, we minimize the
total cardinality of two PCs z1 and z2 to explain at
least 70% of the variance explained by dense PCs(i.e.,
rAdjV ar(V z1, V z2) = 0.7). In our experiment, we try
c = 10 and c = ⌈20%p/10⌉ since it is reasonable to
expect 20%-sparse PC can explain 70% of the total
variance. For comparison, we implement the GPower0
with line search for parameter under the framework



Table 3: Sparsity-controlled PCA on digits image data. Four algorithms are performed to compute the first six
sparse loading vectors with relative adjusted variance at least 0.7. GPower0,6 fails to find such PCs so we present
the best available result.

∥z1∥0 ∥z2∥0 ∥z3∥0 ∥z4∥0 ∥z5∥0 ∥z6∥0 total cardinality # trials total time rAdjV ar(V Z)

SC1-PCA 76 73 57 62 41 43 352 1 25.38 0.7004
SC5-PCA 80 75 60 55 45 40 355 1 11.82 0.7036
GPower0 88 76 60 39 71 61 395 24 25.69 0.7308
GPower0,6 535 0 0 340 0 317 1192 NA NA 0.6755

Table 4: Sparsity-controlled PCA on pitprops data with relative adjusted variance at least 0.9.
Variables z1 z2 z3 z4 z5 z6
topdiam 0.4229 0 0 0 0 0
length 0.4295 0 -0.2610 0 0 0
moist 0 0.6676 0 0 0 0
testsg 0 0.6435 0 0 0 0
ovensg 0 0 0.5377 0 0 0.7157
ringtop 0.2695 0 0.4897 0 0.2898 0
ringbut 0.4043 0 0.3682 0 0 0
bowmax 0.3131 0 0 0 -0.3549 0
bowdist 0.3782 0 0 0 0 0
whorls 0.3994 0 0 0 -0.3332 0
clear 0 0.2030 0 0.8723 0.4030 0
knots 0 0.3147 0 -0.4890 0.7188 0
diaknot 0 0 -0.5172 0 0 0.6984

Cardinality 7 4 5 2 5 2

of sparsity-controlled PCA . It turns out that with a
random initial parameter, it takes dozens of runs for
GPower0 to obtain z1 and z2 with desired relative ad-
justed variance. We also include the result by block ver-
sion algorithm GPower0,2 with parameter search tech-
nique. It is shown thatGPower0,2 fails to find z1 and z2,
with relative adjusted variance closely above 0.7. In Ta-
ble 5.5, we show the cardinalities of the sparse PCs, the
cosine of the angle between them, the total running time
and the actual value of relative adjusted variance using
SC10-PCA, SCc-PCA and GPower0 . For GPower0,2 ,
we show the best available result.

5.6 Sparsity-controlled PCA on document data
By implementing sparsity-controlled PCA on huge doc-
ument data from [3], we give a flavor of sparse PCs as
combinations of words. The document data set we use
is the NIPS full papers data set, with 1500 documents
and 12419 words forming a large sparse matrix of size
1500 by 12419. Using (2.9) and (3.13), we carefully de-
signed our code and also modified GPower0,k’s code to
avoid loss of sparsity due to centering and deflation. By
SC10-PCA with objective proportion ρ = 0.9, we find 6
sparse PCs with cardinality (20, 140, 70, 110, 170, 50) in
only 11.8 seconds. The actual relative adjusted variance

is 0.9006. The top ten weighted words in each sparse
PCs are given in the Table 5.6. In contrast, it takes
220 seconds on average for GPower0,6 to find 6 PCs
with relative adjusted variance close to 0.9. With bal-
ancing parameter N = (1, 1/2, 1/3, 1/4, 1/5, 1/6) and
line search technique for another parameter γ, the
loading vectors found by GPower0,k have cardinality
(3679, 50, 120, 43, 89, 42), with rAdjV ar = 0.9175.
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