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Abstract

Proton transport across membrane is one of the most important and interesting phenomena in liv-
ing cells. The present work proposes a multiscale/multiphysical model for the understanding of atomic
level mechanism of proton transport in transmembrane proteins. We describe proton dynamics quan-
tum mechanically via a density functional approach while implicitly model numerous solvent molecules
as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in
the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure
and its charge polarization to the proton transport is considered explicitly in atomic detail. We formulate
a total free energy functional to put proton kinetic and potential energies as well as electrostatic en-
ergy of all ions on an equal footing. The variational principle is employed to derive nonlinear governing
equations for the proton channel system. Generalized Poisson-Boltzmann equation and Kohn-Sham
equation are obtained from the variational framework. Theoretical formulations for the proton density
and proton channel conductance are constructed based on fundamental principles. The molecular
surface of the channel protein is utilized to split the discrete protein domain and the continuum solvent
domain, and facilitate the multiscale discrete/continuum/quantum descriptions. A number of mathemat-
ical algorithms, including the Dirichlet to Neumann mapping, matched interface and boundary method,
Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a
computationally efficient manner. The Gramicidin A (GA) channel is used to demonstrate the perfor-
mance of the proposed proton channel model and validate the efficiency of the proposed mathematical
algorithms. The electrostatic characteristics of the GA channel is analyzed with a wide range of model
parameters. The proton channel conductances are studied over a number of applied voltages and
reference concentrations. A comparison with experimental data verifies the present model predictions
and validates the proposed model.
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I Introduction
There are a couple of seemingly conflicting fundamental requirements for a living cell to survive and func-
tion properly: On the one hand, the cell needs the protection of the plasma membrane, which works as
a potential barrier and maintains the intracellular electrolyte composition that may be different from that
of the extracellular environment. On the other hand, information communication and material exchange
must be established between the intracellular and extracellular environments for all living cells. A wide
variety of biological processes, such as signal transduction, nerve impulse and so on, are modulated and
sometimes, initiated by the intro/extra-cellular information and material exchanges. These two conflicting
tasks are accomplished by ion channels, which are proteins with pores and embedded in lipid bilayers,
selectively permitting the permeation of specific ions. Because of these important biological roles, as
well as frequently serving the target for drug designing, ion channels have attracted great research in-
terest in experimental, theoretical and computational explorations. Most research activities are focused
on a few ion channel properties:30 (i) The gating of ion channels. Ion channels are not always open or
close, based on the mechanism controlling the open/close status, they are categorized as ligand-gated
ion channel (the channel is open only when the specific ligand is bonded to the extracellular receptor
domain), voltage-gated ion channel (the channel is open/close by the regulating membrane potential)
and other gating channels, such as mechanical, sound, and thermal stimuli. It is worthwhile to point
out that the present work does not focus on the ion channel gating mechanism — channels discussed
here are all assumed open. (ii) The selectivity of the ion channel. When an ion channel is open, it is
not open to all the ion species, only certain ions are impermeable. In this sense, ion channels are also
classified by the permeable ions, such as potassium channels, sodium channels, and proton channels,
etc. (iii) The efficiency of ion conductance. When an ion channel is open and conducts a specific ion
species, the efficiency of ion conductance is of major interest, which is measured by the current-voltage
(I-V) curve. Technological advance in the past few decades makes it possible to measure I-V curves
through a single channel for a variety of ion channels under physiological conditions. These techniques
are considerably empowered by the genetic engineering technology to identify the gating mechanism.
(iv) Structural analysis. Many channel protein structures have been discovered by X-ray crystallography,
nuclear magnetic resonance (NMR) and cryoelectron microscopy. Channel protein structural informa-
tion is deposited in the Protein Data Bank (PDB). (v) Theoretical and computational research. Abundant
knowledge about ion channels accumulated by experimental means has created an excellent testbed
for theoretical modeling and prediction of ion channel transport. Various mathematical/physical models
have been proposed for numerical simulations. However, there are still many important theoretical prob-
lems in the field.16 One of the problems concerns the dynamical detail of the ion permeating process.
Due to the relative narrowness of the pore size, the ion-water geometry needs to be rearranged in order
for the ion to successfully cross the channel. Therefore, the orientation and polarity of water molecules,
the interaction between partially dehydrated ions and fixed charges on the protein wall must be signif-
icantly different from those under the bath condition. Another problem is the precise role of quantum
effects in many proton channels, such as the narrow M2 channels of Influenza A. These problems pose
challenges for theoretical/mathematical modelings. Commonly used approaches include molecular dy-
namics, Brownian dynamics, and the Poisson-Nernst-Planck (PNP) equations. There are a number of
excellent reviews16,25,35,45,46,48 for various theoretical models at a variety of levels of descriptions and
approximations.

Molecular dynamics (MD) provides one of the most detailed descriptions in modeling biomolecular
systems and there are several user-friendly packages available, such as AMBER,40 CHARMM,36 etc.
In fact, MD is the only known model which is able to predict the ion selectivity in ion channel modeling.
However, the use of MD in modeling ion permeation is still limited. The most significant barrier for MD
applications in ion channels is the difficulties of predicting the channel conductance, which is the pri-
mary physical observable. Extremely small time step (around 1 or 2 femto seconds) has to be employed
in the numerical integration of the Newton’s equation to obtain the necessary accuracy because the
fast time scale of molecular bond motions. Whereas, a typical channel current (with the magnitude of
the order of pico Ampere) corresponds to average transit time of tens of nanoseconds for a single ion.
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Therefore, the MD simulation must last around microseconds in order to obtain sufficiently accurate con-
ductance calculations. Due to the total simulation time needed and the necessarily small time step, the
MD computation without invoking crude approximations is still not affordable with current computers for
accurate conductance prediction. Therefore, the full scale MD simulation of ion channels is not feasible.
In practice, it is still very useful for MD simulations to obtain alternative channel configurations, solvent
polarizations, diffusion coefficients, etc in assisting other approaches for the transport estimation.16

Brownian dynamics (BD)15 based on the Langevin equation treats ions as explicit particles in the
ion channel modeling, while describes the surrounding environments (channel protein and lipid bilayer)
implicitly by a continuum approach. In Brownian dynamics, there many forces which act on the target
ion.16 First, there is a force from fixed charges in the protein and membrane, and the applied external
field. Additionally, there is a force from the self-induced charge by an ion on the channel boundary. When
ions pass through the channel, there is always a repelling force induced at the channel boundary against
the ion motion. Finally, there is a force from mobile ions in bath regions. Among three components, the
force from fixed charges can be obtained by solving the Poisson equation in the absence of mobile ions,
whereas forces due to mobile ions can be evaluated by solving the Poisson equation while switching off
fixed charge and applied field, and allowing ions to move around all the grid points. Once these Poisson
equations are solved numerically, the forces are pre-stored in the grid and ready to be used to determine
ion trajectories.

By assuming a mean-field approximation, the Poisson-Nernst-Planck (PNP) model52 is a continuum
electro-diffusion theory which treats not only the protein, lipid layer, bath solution as continuum, but
also the ion of interest. The Poisson equation provides the electrostatic potential profile in the whole
computational domain based on charge sources from mobile ions in the solution and fixed charges in
the channel protein and lipid layer. The gradient of the electrostatic potential gives rise to the driven force,
which, together with the gradient of ion density, is used in the Nernst-Planck equation to determine ion
density flux. Therefore, ion density distribution is governed by both the electrostatics induced drifting and
the density gradient induce diffusion. The ion conductance is computed from the charge flux. Obviously,
both the BD and the PNP models have a number of similarities in their initial setups and computational
approaches.24,37,42

Due to its computational efficiency, the PNP model has been widely implemented for various ion
channels31–33,57 embedded in different lipid bilayers.7,32 Many mathematical analyses, for example,
derivation of the NP equation from Boltzmann equation via perturbation theory,52 asymptotic expansions
of the I-V relations,1 accelerating algorithms23 and inverse problems related to the ion selectivity,6 are
also popular research topics in the field. However, the validity of the PNP model has been questioned
in many aspects, particularly for narrow ion channels.17,29,38 Arguments root from the theoretical defect
that ions are treated as continuum instead of particles in the narrow channel. This continuum assumption
is only reasonable under bulk concentration condition or a channel pore with a sufficiently large diameter.
First of all, it is conceptually difficult to define ion “concentration” when the diameter of a channel pore
is comparable to that of an ion. Secondly, when the scale is down to a couple of angstroms, non-
electrostatic factors such as Brownian motion, may become important or even dominant. The screening
effect is significant when the channel diameter is smaller than the Debye length of the realistic electrolyte.
In this situation, ion particles induce dielectric boundary charges, which result in a dielectric self-energy
(DSE) barrier. The PNP model neglects these energy barrier factors,7,16 and usually overestimates
biological quantities of interest. In the PNP model ignores the non-electrostatic forces and self-energy,
and employs an artificially reduced diffusion coefficient (about a factor of 1/50) to fit experimental data.31

Several modified PNP models have been proposed, in which the ion self-energy is obtained either by
using the Poisson equation18,29 or the MD37 simulation, and is added to the Nernst-Planck equation.

Apart from the ion transport of sodium, potassium and calcium, the long range proton transfer (LRPT)
across bio-membranes also is of central importance and plays a major role in many biochemical pro-
cesses, such as cellular respiration, ATP synthase, photosynthesis and denitrification.34 The LRPT is
usually realized via proton channels or proton nanowires, where water molecules are connected in a
chain to conduct protons. Two common examples of proton channels are the Gramicidin A (GA) and
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the newly discovered M2 proton channel of Influenza A.49 Theoretical investigation has been extensively
carried out and various experimental data about the proton flux are available.41–43 However, the main
mechanism of the LRPT is not fully understood yet,53 with the belief that protons are totally different from
other ions and have larger conductance. In the Grotthuss-type mechanism theory,2,39 protons achieve
the translocation in the channel through a succession of hops along a single chain of hydrogen-bonded
water molecules, i.e., an existing hydrogen bonded network, compared to other ions for which the per-
meation occurs mainly via hydrodynamic diffusion. The actual transfer through the hydrogen bonded net
work is usually fast and both the rearrangement of the hydrogen bonded net work and energy barrier
are considered as rate limiting factors. There is an agreement that the aforementioned BD theory and
PNP model may be expected to work well for heavy ions but not for protons, which have lighter mass
and whose transfer involves the hydrogen bonds making and breaking. These processes need to be
studied quantum mechanically. Some investigators have explored proton channels via Feynman path in-
tegral simulations and quantum energy levels of protons are computed by the Schrödinger equation.41–43

Several theoretical models are proposed in the last decade.5,50,53

The objective of the present work is to propose a multiscale quantum dynamics in continuum (QDC)
model for the prediction and analysis of the proton translocation across transmembrane channels. We
describe the dynamics of protons quantum mechanically while represent the density of other ions by the
Boltzmann distribution, which is in a quasi-equilibrium due to the change of the electrostatic potential
during the proton transmembrane permeating process. Since the van der Waals interactions involve
less energy compared to electrostatic ones, the numerous solvent molecules are implicitly treated as a
dielectric continuum to reduce the number of degrees of freedom of the system. The impact of protein
molecular structure and its fixed charges to the proton transport is explicitly considered in our model.
We propose a total free energy framework to put the kinetic and potential energies of protons and the
electrostatic energy of the whole system, i.e., all ions, channels protein and lipid bilayer, on an equal
footing. By using the variational principle, we derive governing equations of the Poisson-Boltzmann
and Kohn-Sham types for the proton channel system. There are a few reasons for us to employ the
present quantum mechanical description. First, the proton transport mechanism is different and the
hydrodynamic approximation is not valid any more. Secondly, conceptually the ion concentration is no
longer well defined in a small-size channel. Instead, the probability density function is used for protons.
Moreover, many proton channels are very narrow with extremely small local diameters around 2Å,49

which implies a strong confinement in the transverse directions. The preliminary results of the present
work were reported in a poster elsewhere.10

The rest of the present paper is organized as follows. Section II is devoted to the theory and model.
We present a variational paradigm for analyzing proton channels. Our model incorporates quantum
mechanical treatment of protons, classical description of electrostatics, and atomic detail of protein
structure and charges. Formalisms for proton density and transport are derived from fundamental prin-
ciples. Section III discusses numerical implementation and computational algorithms. The molecular
surface47 is employed to separate the discrete/continuum domains and facilitate the quantum/classical
descriptions. To simplify the computation, we adopt a decomposition approximation to split the pro-
ton transport direction from the transverse confined directions. Mathematical ingredients of this quan-
tum/discrete/continuum model include coupled nonlinear partial differential equations (PDEs) and the
elliptic PDEs with discontinuous coefficients and singular sources. Therefore, the corresponding numer-
ical algorithms, matched interface and boundary (MIB) method, Dirichlet-to-Neumann mapping (DNM)
and Krylov space iteration schemes are equipped to implement the numerical simulations. In Section
IV, we employ a commonly used proton channel protein, the Gramicidin A (GA), to demonstrate the
performance of the proposed theoretical model and validate the proposed computational algorithms.
Electrostatic properties are analyzed with a number of combinations of model parameters to gain a ba-
sic understanding of the GA channel. The conductance of protons under various external voltages and
concentrations are simulated. Comparison is made with experimental measurements in the literature.
This paper ends with a brief conclusion.
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(a) (b)

Figure 1: (a) Illustration of multiscale model of a proton channel; (b) Computational domains of the multiscale model
with Ωm being the channel molecule and membrane domain and Ωs being the solvent domain. Here z-direction is
regarded as the transport direction.

II Theory and model
In this section we provide the theoretical formulation of our model of quantum dynamics in continuum.
II.A General description of the model
An ion channel system is complex in terms of biological structure, dynamics and transport. Our goal is
to model the dynamics and to predict the transport. To this end, we propose a multiscale, multiphysics
and multidomain model. The computational domain Ω is divided into two subdomains, i.e., the solvent
domain Ωs consisting of the extracellular/intracellular solvent regions and the ion channel or channel
pore region, and the biomolecular subdomain Ωm including the membrane protein(s) as well as lipid
bilayers. Therefore, we have Ω = Ωs ∪ Ωm. A detailed graph of these subdomains is given in Fig.
1. The interface Γ between solvent-membrane protein is defined by the molecular surface generated
by the MSMS software package.47 It is interesting to note that the physics in each subdomain is very
different and there are multiphysics phenomena even in a single subdomain. For the biomolecular
subdomain, the membrane protein and lipid bilayer structural data are either generated for molecular
dynamics simulations, or downloaded from the Protein Data Bank (PDB) which are collected from X-
ray crystallography or nuclear magnetic resonance (NMR) experiments. The force field parameters,
such as atomic van der Waals radii and point charges, are obtained from the CHARMM force field.36

This structural information is utilized in solving the Poisson equation for the electrostatic potential. The
electrostatic potential distribution near the channel pore is crucial to the channel selectivity, gating, and
ion conductance. The interactions between the channel protein and transmission channel ions are
accounted in the present model.

In the solvent subdomain, there are three types of materials, ions of interest (i.e., protons), all other
ion species and water molecules. In this system, the charge-charge interactions contribute to the pre-
dominate potential energy landscape. Whereas, the strength of other interactions, such as ion-water
dipolar interactions, water-water interactions and molecular van der Waals interactions, is much weaker
than that of direct charge-charge interactions. This feature provides us a ground to take a multiscale
approach to the multiphysics situation in ion channel dynamics. To reduce the number of degrees of
freedom, we treat solvent (water) molecules as continuum background or bath. The formation of ion and
water clusters and possible ion-water correlations are modeled partly as a dielectric constant effect and
partly as a non-electrostatic potential effect. Except for the ions of interest, other ions usually have a
small population in the channel pore of a selective channel. Whereas in the bath region, all ions are es-
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sentially in a quasi-equilibrium state and their densities are well described by the Boltzmann distribution
except for at the solvent-membrane protein interface. Near the solvent-membrane protein interface, the
density distribution of ions might be better described by the density functional theory of solution, or inte-
gral equations, in which the dispersion interaction between solvent and solute can be better accounted.
This effect is modeled as non-electrostatic potential effects in the present work.

The physics in the channel pore region is of central interest and is sharply different from those of
other regions. The ions of interest are selected as those which have significant population inside the
channel region. There are many evidences which indicate the quantum mechanical behavior of pro-
ton transfer in biomolecular systems and proton channels.4,19 The first reason is the small mass of
a proton which enhances the quantum tunneling effect in the proton transport. Additionally, a narrow
channel morphology in many proton channels, such as the Influenza A M2 proton channel11,49 leads to
severe quantum confinement, which consequently promotes quantum effects. Finally, hydrogen-bonded
chain (proton nanowire) of water molecules assisted proton translocation is quantum mechanical in
origin.41–43 Although theoretical models were proposed in the last decades,5,50,53 the detailed mech-
anism of proton dynamics and transport is not fully understood. For these reasons, we treat protons
quantum mechanically via a scattering formalism which describes how a quantum mechanical proton
scatters through electrostatic and non-electrostatic potential fields. The electrostatic potentials include
interactions between protons represented by a self-consistent mean field approximation, the interactions
between protons and fixed ions from membrane proteins and lipid bilayers, and the interactions between
protons and other ion species. The non-electrostatic potential is due to the impacts of the continuum
solvent, the van der Waals interaction between the solvent and biomolecules, the effect of ion-water
clusters and possible break-down of hydrogen-bonded chain in a narrow channel, etc. We utilize a total
energy functional framework9,12,54 to incorporate quantum mechanical description and continuum de-
scription. Coupled Kohn-Sham equation for the proton dynamics and Poisson-Boltzmann equation for
the electrostatic potential are derived from the variational principle. Solutions to these coupled equa-
tions give rise to proton structure dynamics, and transport in the ion-channel process, which describes
how a quantum mechanical proton scatters through electrostatic and non-electrostatic potential fields.
The electrostatic potentials include interactions between protons represented by a self-consistent mean
field approximation, the interactions between protons and fixed ions from membrane proteins and lipid
bilayers, and the interactions between protons and other ion species. The non-electrostatic potential
is due to the impacts of the continuum solvent, the van der Waals interaction between the solvent and
biomolecules, the effect of ion-water clusters and possible break-down of hydrogen-bonded chain in a
narrow channel, etc. We utilize a total energy functional framework9,12,54 to incorporate quantum me-
chanical description and continuum description. Coupled Kohn-Sham equation for the proton dynamics
and Poisson-Boltzmann equation for the electrostatic potential are derived from the variational princi-
ple. Solutions to these coupled equations give rise to proton structure dynamics, and transport in the
ion-channel process.
II.B Free energy components
This subsection describes various free energy components in our multiscale model of quantum dynamics
in continuum. In order to give a clear description, Fig. 1(a) is reduced to a sketch in Fig. 1(b) in x − z
cross section, where the z direction represents the proton transport direction: the system is restricted
to a rectangular cuboid with appropriate size and partitioned into two different computational domains.
The permittivity ε(r) has different values in two domains

ε(r) =

{
εs(r) ∀r ∈ Ωs
εm(r) ∀r ∈ Ωm

. (1)

Since both the membrane and channel protein are treated with same dielectric medium, the interface
between them is erased and a constant dielectric constant is assumed on Ωm. On the contrast, the
solvent in the bath regions and in the channel pore have different biological characteristics. Therefore
the position dependent dielectric constant is imposed on the solvent domain Ωs. In fact, εs(r) in the
channel region can differ much from that in the bulk region. The detailed discussion about the dielectric
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constants is given in Section III.E. There are three major categories of macroscopic variables in the
model which are defined in different subdomains and formulated in classical and quantum mechanisms.
II.B.1 Electrostatic free energy in the biomolecular region
The biomolecular region consists of membrane protein and lipid bilayer. Their structures determine
the channel selectivity and gating efficiency. In the present treatment, we assume that structures of
membrane protein and lipid bilayer are given and do not change during the ion transport process. This is
certainly an approximation and will be easily removed in our future work by a combination of the present
formulation with MD simulations.54 Without structural modification, the biomolecules still significantly
contribute to ion dynamics and transport by electrostatic interactions. The fixed charges in the channel
protein and nearby lipid bilayers determine the fundamental characteristics of the channel and provide
the primary environment for ions’ permeation. Since the total number of the fixed charges is not too large
(i.e., up to thousands), with the assumption that the positions of them are essentially fixed, the explicit
discrete description is actually affordable. In this sense, they serve as a source term in the electrostatic
potential calculation

ρf (r) =

Na∑
i=1

Qiδ(r− ri) (2)

where Na is the total number of fixed charges, Qi and ri are the point charge and position of the ith
atom. Therefore, the electrostatic free energy in biomolecular domain is given by

GMol[Φ, n] =

∫ [
εm(r)

2
|∇Φ|2 − Φρf

]
dr, (3)

where Φ(r) is the electrostatic potential and is defined on the whole domain Ωs ∪ Ωm.
II.B.2 Electrostatic free energy in the solvent region
The ions in the solvent region also contribute to the electrostatic potential. Protons and other ion species
are treated in different manners. Let us denote the proton number density in the solvent region as n(r)
and the charge density as ρp = qn(r), q is the elementary charge or charge carried by a single proton.
The charge density serves as a source term in the electrostatic free energy.

In the solvent region, particularly, in the extracellular and intracellular solvent regions, apart from ions
of interest, there are many other ions. In the present model, all other ions are treated in a different
manner from the ion of interest. Specifically, no detailed description is given to individual ions except
for the ions of interest. However, other ions contribute considerably to the electrostatic property of the
whole system. To account for their electrostatic effort, we describe other ions by using the Boltzmann
distribution. The charge density of other ions is given by

ρ′ =

N ′c∑
j

qjn
′
j(r) =

N ′c∑
j

qjn
0
je
−qj(Φ(r)−VExt)/kBT , (4)

where N ′c is the total number of other ionic species, n0
j and qj are the bulk constant density and charge

of the jth ion species. Here n′j = n0
je
−qj(Φ(r)−VExt)/kBT is the number density of jth ion species, it can

be noticed that the Boltzmann distribution of the other ionic species with respected to the potential has
been modified with the generalized chemical potential VExt, which represents the effects of the chemical
potential of jth ion species and the external electric field.44,46

The corresponding electrostatic free energy in the solvent region is given by

GSol[Φ] =

∫ εs(r)

2
|∇Φ(r)|2 − Φ(r)ρp(r) + kBT

N ′c∑
j

n0
j

(
e−qj(Φ(r)−VExt)/kBT − 1

) dr, (5)

Note that the electrostatic free energy of other ions in Eq. (5) is similar in spirit to Sharp and Honig,51

Gilson et al,28 Chen et al12 and and Wei.54
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II.B.3 Proton free energies and interactions
The solvent region might admit a number of ion species, of which a full quantum model can be technically
complicated and computationally time consuming. We therefore only treat the ions of interest, i.e.,
protons, quantum mechanically and assume a continuum description of other ion species. To simplify
the problem further, we consider a generalized density functional theory for protons.
Kinetic energy. The proton density operator nH is given by

nH = e−(H−EExt)/kBT . (6)

where H is the Hamiltonian of the system and EExt is the external electrical field energy. We define the
proton density n(r) as

n(r) = 〈r|nH |r〉 =

∫
|ΨE(r)|2e−(E−EExt)/kBT dE, (7)

where ΨE and E are the wavefunction and corresponding energy associated with H. The Boltzmann
statistics is adopted in the present work. The kinetic energy is given by p2

2m(r) where p is the momentum
and m is proton effective mass. In the coordinate representation, the kinetic energy of protons can be
given as ∫ ∫

~2e−(H−EExt)/kBT

2m(r)
|∇ΨE(r)|2dEdr, (8)

where the Boltzmann factor weights different energy contributions.
Electrostatic potential. Protons have a number of electrostatic interactions. First, protons interact
repulsively among themselves

UIon−Ion(r) =
1

2

∫
q2n(r)n(r′)

ε(r)|r− r′|
dr′. (9)

These interactions lead to a term that is nonlinear in density n and the resulting equations are to be
solved iteratively.

Additionally, interactions between protons in the solvent and fixed charges in biomolecules are de-
scribed as

UIon−Fix(r) =

Na∑
i=1

qn(r)Qi
ε(r)|r− ri|

. (10)

This contribution can be handled by the so called Dirichlet to Neumann mapping approach.9

Finally, interactions between protons and other ion species are of the form

UIon−Other(r) =

N ′c∑
j=1

∫
qqjn(r)n′j(r

′)

ε(r)|r− r′|
dr′. (11)

where the other ionic densities are determined from the continuum Boltzmann distribution in the solvent
region with a given profile of electrostatic potential as shown in Eq. (4). Therefore, the electrostatic
potential energy functional of protons is∫

[UIon−Ion(r) + UIon−Fix(r) + UIon−Other(r)] dr.

Non-electrostatic potential. The electrostatic potential plays a dominant role in the ion channel pro-
cess. However, non-electrostatic effects are also important to ion conductance efficiency. Sometimes,
non-electrostatic effects can even determine the channel selectivity. Non-electrostatic effects physi-
cally originate from van der Waals interactions, ion-water dipolar interactions, ion-water cluster forma-
tion/dissociation, temperature and entropy effects, etc. For example, one of non-electrostatic effects is
an energy barrier to the ion transport due to the change in the solvation environment from the bulk water
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to a relatively dry channel pore. However, due to the lack of a comprehensive understanding of the ion
behavior in channel region, the modeling of non-electrostatics is less quantitative, compared to the elec-
trostatic modeling. In the Brownian dynamics model and the PNP theory, these non-electrostatic effects
are encapsulated in the relaxation time and diffusion coefficients, respectively, which are obtained from
experimental data and tuned in a reasonable biological range to predict new results. Here we also set
up a reduced model for non-electrostatics potential energy, denoted as UNonelec. Similar to the electro-
statics, the UNonelec is also a functional of the ion density n(r) and includes two contributions: One is
the interaction among the target ions themselves, which represents those short range interactions and
possible collisions; the other is the interaction between the ion and the surrounding water molecules,
which may include the ion-water collisions and dehydration effects. In an analogous structure of energy
(9), the former should be a quadratic form while the latter is a linear form like Eq. (10) of the ion density
n(r). Based on these considerations, we assume that the non-electrostatic potential energy functional
has the following form∫

UNonelec(r)dr =

∫
VNonelec(r)n(r)dr =

∫ (
αkBT

∫
n0
jdr
′ + VIon−sur(r)

)
n(r)dr (12)

For the first term of Eq. (12), the quadratic form of the density functional is reduced to a linear form
by replacing one of the density n(r) by the system reference concentration n0

j . The reason to do so is
that one has to establish the connection of the non-electrostatic potential energy with the total provided
ion number. Intuitively, if more ions exist in the system, the possibility of the ion-ion non-electrostatic
interaction is higher. The energy resulting from the ion-surrounding interaction is simply modeled as
energy VIon−sur, which can be considered as related to the relaxation time of ions. The range o VIon−sur

value is discussed in Section III.E. Here α is a relative weighting parameter for balancing the contribution
of two components in the overall UNonelec[n(r)].
External potentials Since the extracellular and intracellular surroundings can be infinitely large, it is
impossible to include them in a detailed description. In the present work, we make appropriate trun-
cation of the surrounding system. As such, the interaction of channel protons with extracellular and
intracellular surroundings are described by external potentials UExter. In addition to the truncation effect,
the external potentials also describe the experimental conditions such as the effect of given extracellular
and intracellular bulk concentrations. We denote channel potential energy functional as∫

UExterdr =

∫
VExter(r)n(r)dr =

∫
[VExtra(r)n(r) + VIntra(r)n(r)] dr (13)

where VExtran(r) and VIntran(r) are extracellular and intracellular positions, respectively. Because much
of extracellular and intracellular surrounding is not explicitly described, VExter must be non-hermitian.
This aspect is discussed in Section II.E.
Proton total energy functional. The total proton potential consists of electrostatic, non-electrostatic
and external potentials

U(r) = UElec(r) + UNonelec(r) + UExter

=
1

2

∫
q2n(r)n(r′)

ε(r)|r− r′|
dr′ +

Na∑
i=1

qn(r)Qi
ε(r)|r− ri|

+

N ′c∑
j=1

∫
qqjn(r)n′j(r

′)

ε(r)|r− r′|
dr′

+ VNonelec(r)n(r) + VExter(r)n(r). (14)

Thus, the total free energy functional of protons includes kinetic and potential contributions

GIon[Φ, n] =

∫ [
~2e−(E−EExt)/kBT

2m(r)
|∇ΨE(r)|2dE + U(r)

]
dr, (15)

where each kinetic energy term is weighted by the Boltzmann distribution, which is similar to the treat-
ment in our recent work.9
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II.C Total free energy functional of the system
To understand the behavior of protons and their interactions, we consider a total free energy functional
that includes all significant kinetic and potential energies. Similar energy framework has been developed
in our recent work for biomolecular systems and nano-electronic devices.9,12,54 The total free energy
functional of the present system is given by the combination of the electrostatic energy of the system
and the quantum mechanical energy of protons. However, it is important to avoid double counting when
one constructs the total energy functional.54 For the present system, it is interesting to note that had the
charge sources qn(r′) +

∑Na
i=1Qiδ(r− r′) +

∑N ′c
j=1 qjn

′
j(r
′) been independent of Φ, we would have

qn(r)Φ(r) =
1

2

∫
q2n(r)n(r′)

ε(r)|r− r′|
dr′ +

Na∑
i=1

qn(r)Qi
ε(r)|r− ri|

+

N ′c∑
j=1

∫
qqjn(r)n′j(r

′)

ε(r)|r− r′|
dr′ (16)

in a homogeneous dielectric medium. Therefore, the charge source for the electrostatic potential also
serves the electrostatic potential energy for protons. With this consideration, we propose the total free
energy functional

GTotal[Φ, n] =

∫ {[
ε(r)

2
|∇Φ|2 − ρ(r)Φ

]
−

[∫
~2e−(E−EExt)/kBT

2m(r)
|∇ΨE(r)|2dE + UNonelec(r)n(r) + UExter(r)n(r)

−
∫
Ee−(E−EExt)/kBT |ΨE(r)|2dE

]}
dr. (17)

where the total charge sources are given by

ρ(r) = ρp(r) + ρf (r) + ρ′(r) (18)

and the last term in Eq. (17) is the Lagrange multiplier for the energy constraint. The energy functional
(17) is a truly multi-physical and multi-scale framework that contains the continuum approximation for
solvent and membrane while explicitly takes into account for the channel protein in a discrete fashion.
More importantly, it mixes the classical theory and quantum mechanical descriptions in an equal footing.

Note that Eq. (17) is a typical minimization-maximization problem, where the electrostatic free energy
is to be minimized while the kinetic energy of protons is to be maximized. Fortunately, this situation
does not create a problem as the optimization of the total free energy functional is achieved with two
governing equations as described in the next section.
II.D Governing equations
The present system has two unknown functions: the electrostatic potential Φ and the wavefunction ΨE .
All other functions either are to be explicitly given or depend on Φ and Ψ. The governing equations for Φ
and ΨE are to be derived from the free energy functional by variational principle via the Euler-Lagrange
equation. This multiscale variational framework approach was developed in our recently work.9,54 It
offers successful predictions of the solvation free energies of proteins and small compounds.12,13

II.D.1 Generalized Poisson-Boltzmann equations
The total free energy functional given above determines the density distribution and dynamics of protons.
The governing equation for electrostatic potential can be derived by the variation of the functional with
respect to the potential Φ

δGTotal[Φ, n]

δΦ
=⇒ −∇ · (ε(r)∇Φ) = ρ(r), (19)

where ρ(r) is defined in Eq. (18). Equation (19) is a generalized Poisson-Boltzmann (GPB) equation
describing the electrostatic potential generated from three types of charge sources: the ions of interest,
other ions species in the solvent described by the continuum approximation and the fixed point charges
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in biomolecules. This equation is not closed because n(r) needs to be evaluated from another governing
equation.

A special case of Eq. (19) is also very interesting. Let us assume that all ions in the system are
described either by fixed point charges from biomolecules, or by the continuum treatment. Therefore,
the system is closed and we arrive at the classical Poisson-Boltzmann equation

−∇ · (ε(r)∇Φ) = ρf (r) + ρs(r), (20)

where ρs(r) =
∑Nc
j=1 qjn

′
j(r), and Nc is for all ions in the continuum solvent.

II.D.2 Generalized Kohn-Sham equations
In the present multiscale model, the density n of protons in Eq. (19) is governed by generalized Kohn-
Sham equations. This set of equations is obtained by the variation of the total free energy functional
with respect to wavefunction Ψ∗E

δGTotal[Φ, n]

δΨ∗E
=⇒ −∇ · ~2

2m(r)
∇ΨE(r) + V (r)ΨE(r) = EΨE(r) (21)

where
V (r) = qΦ(r) + VNonelec(r) + VExter(r)

is the effective potential, which includes electrostatic, non-electrostatic and external interactions. The
effective potential is discussed in Section II.B.3.

Equation (21) appears to be the conventional Kohn-Sham equation. However, there are some impor-
tant differences. First, the exchange-correlation potential, which is crucial to electrons, is not presented
in Eq. (7). The origin of the exchange-correlation potential is from the Fermi-Dirac distribution, spin and
many other unknown effects. In the present theory, we use the non-electrostatic potential to represent
many unaccounted effects. We assume the Boltzmann statistics for ions of interest at ambient temper-
ature. Additionally, we define the density as in Eq. (7), instead of the conventional choice for electrons:
nelectron(r) =

∑
j |Ψj(r)|2. This definition is partially due to the Boltzmann statistics and partially due

to the spectrum of the present Kohn-Sham operator, which is bounded from below. Technically, the
Hamiltonian of the generalized Kohn-Sham equation (21) has not only discrete spectra, but also abso-
lute continuum spectrum. As such, a Boltzmann factor in the density definition is indispensable. Finally,
unlike the conventional Kohn-Sham equation, the present generalized Kohn-Sham equation is not a
closed one. It is inherently coupled to the generalized Poisson-Boltzmann equation (19). This coupled
Kohn-Sham and Poisson-Boltzmann system endows us the flexibility to deal with complex multiphysics
in a multiscale fashion — the quantum dynamics in continuum.
II.E Proton density operator for the non-hermitian Hamiltonian
As mentioned earlier, the external potential has a non-hermitian component to describe the interaction
with truncated extracellular and intracellular surroundings. Let us explicitly separate the anti-hermitian
(or skew hermitian) components

VExtra = V hExtra + V ahExtra, VIntra = V hIntra + V ahIntra, (22)

where
V hα =

1

2
(Vα + V †α ), V ahα =

1

2
(Vα − V †α ), α = Extra, Intra. (23)

The non-hermitian parts of the external potentials describe the relaxation effect or spectral line shape
broadening due to the interaction with the surroundings. Accordingly, we split the Hamiltonian as

H = Hh + V ah = Hh + V ahExtra + V ahIntra. (24)

We first note that the density of protons can be further given by

nH =

∫
e−(E−EExt)/kBT δ(E −H)dE. (25)
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In this work, we define the spectral operator δ(E −H) as

δ(E −H) =
i

2π
lim
ε→0

lim
‖V ah‖→0

[
1

E − (H − iε)
− 1

E − (H − iε)†

]
(26)

We therefore approximate the proton density operator by

nH =
i

2π

∫
e−(E−EExt)/kBT

[
G(E)−G†(E)

]
dE, (27)

where G is the Green’s function (operator)

G(E) = (E −H)−1. (28)

We therefore arrive at a useful expression for the proton density

nH =
i

π

∫
e−(E−EExt)/kBT

[∑
α

G(E)V ahα G†(E)

]
dE (29)

=
i

π

∑
α

∫
e−(E−Eα)/kBTG(E)V ahα G†(E)dE, α = Extra, Intra, (30)

where EExtra and EIntra are the external electrical field energies at extracellular and intracellular elec-
trodes, respectively. Note that EExt behaves like an operator such that its value is chosen according
to the nearest external interaction. Equation (30) provides an appropriate expression for computing the
total proton density.
II.F Proton transport
Typically, external electrical field is applied as the difference of electrical potentials, (EExtra/q−EIntra/q).
The experimental measurements are given as the current and voltage curve, or the so called I-V curve.
Therefore, a major goal of our theoretical model is to provide predictions of the current under different
external voltages. The current in the standard quantum mechanics is given by

I = qTr
1

2

(
nHv

† + vnH
)

(31)

= q

∫ ∫
~

2mi
[Ψ∗E(r)∇ΨE(r)−ΨE(r)∇Ψ∗E(r)] e−(E−EExt)/kBT drdE, (32)

where Tr is the trace operation and 1
2

(
nHv

† + vnH
)

is the symmetrized current operator with v being
the velocity vector. Equation (32) requires the evaluation of the full scattering wavefunction ΨE(r). The
spatial derivative can be carried out at a location consistent with the specific feature of the external
electrical field EExt.

An alternative current expression can be given by examining the transition rates due to the anti-
hermitian parts of the external interaction potential. Let us evaluate the transition rate according to the
interaction potential V ahExtra

I = q
1

i~
Tr

1

2

[
nH
(
V ahExtra

)†
+ V ahExtranH

]
(33)

=
q

h
Tr

{∫
e−(E−EExt)/kBT

∑
α

G(E)V ahα G†(E)
(
V ahExtra

)†
dE

+

∫
V ahExtrae

−(E−EExt)/kBT
∑
α

G(E)V ahα G†(E)dE

}
(34)
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Now we need to make a decision for EExt because each term involves two interaction potentials. In this
work, we systematically choose EExt according to the nearest external interaction

I =
q

h
Tr

{∫
e−(E−Eα)/kBT

∑
α

G(E)V ahα G†(E)
(
V ahExtra

)†
dE

+

∫
V ahExtrae

−(E−EExtra)/kBT
∑
α

G(E)V ahα G†(E)dE

}
(35)

=
q

h
Tr

∫
G(E)V ahIntraG

†(E)V ahExtra

[
e−(E−EExtra)/kBT − e−(E−EIntra)/kBT

]
dE (36)

Similarly, we obtain a current expression by using the interaction potential V ahIntra

I = q
1

i~
Tr

1

2

[
nH
(
V ahIntra

)†
+ V ahIntranH

]
=

q

h
Tr

∫
G(E)V ahExtraG

†(E)V ahIntra

[
e−(E−EIntra)/kBT − e−(E−EExtra)/kBT

]
dE (37)

Equations (36) and/or (37) can be used for current evaluations under different external electrical field
strengths and concentrations.
III Computational algorithms
The implementation of the theoretical model described in Section II.D involves a number of compu-
tational issues. The present section is devoted to the computational implementation of our quantum
dynamics in continuum model.
III.A Proton density structure and transport
Proton density structure concerns the solution of the generalized Kohn-Sham equation whereas the
proton transport offers the current-voltage curves, which are to be compared with experimental mea-
surement. This subsection describes the solution strategy of the generalized Kohn-Sham equation and
theoretical prediction of experimental data.
III.A.1 The solution of the generalized Kokn-Sham equation
Typically, solving the full-scale Kohn-Sham equation can be a major obstacle in the simulation. Due to
the fact that biological characteristics for each subdomain of the ion channel system are quite different
and the Kohn-Sham operator will have distinct properties correspondingly. In this subsection, we make
use of various decomposition schemes to reduce the computational complexity in solving Eq. (21).

Motions of quantum particles in the present system can be generally classified into three categories:
scattering along transport directions, confined motion and free motion. The channel pore direction (i.e.,
the z direction) is designated as the transport direction, in which protons cross the transmembrane
protein or scatter back to the solvent. Along the z direction, the Kohn-Sham operator has an absolutely
continuous spectrum. In the x − y directions, the Kohn-Sham equation possesses different behaviors.
In the extracellular and intracellular regions where the solvent domains are sufficiently large, proton
motions are essentially unconfined in the x−y directions. They undergo intensive electrostatic and non-
electrostatic interactions although the system can be regarded as near the equilibrium. The associated
Kohn-Sham operator for protons also has an absolutely continuous spectrum. In contrast, in channel
pore region, the protons are confined in x − y plane by the channel wall. In the confined plane, the
Kohn-Sham operator is essentially compact and has a discrete spectrum. For two different regions,
formulations and corresponding treatments of the proton density are different.

The proton density structure in the channel pore is crucial to the proton transport. Whereas, the
behavior of protons in the bath is relatively less important. Therefore, as a good approximation, we
can truncate the computational domain in the bath regions. Consequently, the Kohn-Sham operator
becomes compact for all x − y directions and has discrete eigenvalues. As a good approximation for
many ion channels, we split the total wavefunction ΨE(r) as

ΨE(r) = ψj(x, y; z)ψjk(z) (38)
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where ψj(x, y; z) is the j-th eigen-mode in the confined directions at a specific location z, and ψjk(z) is
the wavefunction along the transport direction, with transport wave number k. Under this circumstance,
it is convenience to relabel the total energy E as Ejk, where j and k are related to the energies for
confined and transport directions, respectively. If the mode-mode interaction along the confined direction
is neglected, it is easy to verify that ψj and ψjk satisfy the following decomposed Kohn-Sham equations,[

−~2

2

(
∂

∂x

1

mx

∂

∂x
+

∂

∂y

1

my

∂

∂y

)
+ V (x, y; z)

]
ψj(x, y; z0) = U j(z)ψj(x, y; z) (39)

ψj(x, y; z) = 0 on ∂ΩD(z);[
−~2

2

∂

∂z

1

mz

∂

∂z
+ U j(z)

]
ψjk(z) = Ejkψ

j
k(z), j = 1, 2, · · · , (40)

where V (x, y; z) is the restriction of the potential operator V (x, y, z) at position z, U j(z) is the jth eigen-
value of the 2D problem at position z, and ψj(x, y; z) is the corresponding eigenfunction. Here ψjk(z) is
the scattering wavefunction associated with the scattering potential U j(z). Here ∂ΩD(z) is the boundary
for the cross section at z. The transport equation (40) can be solved as a scattering problem. Finally the
proton density (7) can be modified as

n(r) =
∑
j

∫
|ψj(x, y; z)|2|ψjk(z)|2e−(Ejk−EExt)/kBT dEjk

.
=

∑
j

|ψj(x, y; z)|2njscat(z). (41)

Equation (41) only gives the symbolic proton density structures for an unspecified EExt. More detailed
consideration of EExt requires the further treatment of the scattering boundary conditions as shown in
Sections II.E and II.F. However, the 2D wavefunction |ψj(x, y; z)|2 in Eq. (41) can be evaluated from
the Kohn-Sham equation (39). The solution to this equation is quite standard — it is just the eigenvalue
problem of an equation of elliptic type. While to solve the transport problem, as indicated in the theory,
one needs to find appropriate expressions of the non-hermitian external operators. The corresponding
computational aspects are presented in the next subsection.
III.A.2 Boundary treatment of the transport calculation
Although the quantum confinement Eq. (39) only happens in finite channel region, the transport problem
Eq. (40) is associated with infinitely large surroundings, in principle. Since the same procedure is used
to solve Eq. (40) for different j, let us drop the j label(

−~2

2

∂

∂z

1

mz

∂

∂z
+ U

)
ψk(z) = Eψk(z), z ∈ (−∞,∞), (42)

where −~2

2
∂
∂z

1
mz

∂
∂z +U is the scattering Hamiltonian and E is the scattering energy. In practical compu-

tations, the extracellular and intracellular surroundings have to be truncated. Suppose [z1, z2] is the finite
transport interval of interest and the regions (−∞, z1) and (z2,∞) are assumed as infinitely long extra-
cellular and intracellular environments. We assume that in regions (−∞, z1) and (z2,∞), the interaction
potential U is independent of position due to the spatial average of homogenization type over the large
scale. Consequently, Eq. (42) admits planewave solutions asymptotically. For instance, if one considers
the wavefunctions ψk(z) in the extracellular environment, it has the following form

ψk(z) = eikz + rme
−ikz if z ∈ (−∞, z1)

ψk(z) = tme
ikz if z ∈ (z2,∞)

(43)

where rm and tm are reflection and transmission coefficients, respectively. Given the specific formulation
of the wavefunction in the extracellular bath, Eq. (43) can be employed as boundary conditions of Eq.
(42) to obtain the proton density originated from the extracellular part. Similar boundary conditions for
the intracellular part can be derived in the same fashion.
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Suppose that the interval [z1, z2] is discretized as z1, z2, ..., zN , where N is the total number of grid
points and the grid size is denoted as ∆z = (z2 − z1)/N . For simplicity, let t = ~2

2mz(∆z)2 , then for interior
points zi, (i = 2, ..., N − 1), the discretization of Eq. (42) is quite standard by the finite difference method

−tψi−1 + (2t+ Ui − E)ψi − tψi+1 = 0 (44)

where ψi represents the numerical solution of ψk(zi) and Ui is for U(zi). For the discretization at bound-
ary point z1, we first define a fictitious function value of ψ(z) on z0, the point ahead of z1 as ψ0, then the
discretization at z1 is

−tψ0 + (2t+ Ui − E)ψ1 − tψ2 = 0. (45)

Now one needs to determine the fictitious value ψ0 in terms of ψi, (i = 1, 2, ..., N). From the boundary
condition (43), we have

ψ0 = eik0z0 + rme
−ik0z0

ψ1 = eik1z1 + rme
−ik1z1 .

(46)

In fact, we have k0 = k1 since the free motion of the wave in the asymptotic regions. We can denote k0

and k1 by k1 with (~k1)2

2mz
= E − U1. By this notation, we have

ψ0 − ψ1e
ik1∆z = eik1z0 − eik1(z1+∆z)

= eik1(z1−∆z) − eik1(z1+∆z). (47)

Inserting Eq. (47) into Eq. (45), one yields

−tψ1e
ik1∆z + (2t+ U1 − E)ψ1 − tψ2 = −2ti sin (k1∆z)eik1z1 . (48)

Applying the same strategy for ψN and fictitious function value ψN+1, we have

ψN+1 − ψNeikN∆z = tme
ikNzN+1 − tmeikNzN eikN∆z = 0, (49)

where (~kN )2

2mz
= E − UN and further

−tψN−1 + (2t+ UN − E)ψN − tψNeikN∆z = 0. (50)

Follow the same boundary treatment for the intracellular environment, the whole system is discretized in
vector and matrix forms as the following

G−1ΨExtra = (Hs − EI)Ψ = bExtra (51)

where ΨExtra = (ψ1, ψ2, ..., ψN )T , I is the identity matrix of dimension N ×N and

Hs =


2t+ U1 − teik1∆z −t . . . . . . 0

−t 2t+ U2 −t . . . 0
...

...
...

. . .
...

0 . . . . . . −t 2t+ UN − teikN∆z


N×N

. (52)

Here bExtra is the source term for the incoming waves from the extracellular surroundings

bExtra = (2ti sin (k1∆z)eik1z1 , 0, . . . , 0)T . (53)

The wavefunction ΨExtra can be written as

ΨExtra = GbExtra. (54)
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Let Ψ†Extra be the complex conjugate of ΨExtra. We have

ΨExtraΨExtra
† = GbExtrab

†
ExtraG

† = G


[2t sin (k1∆z)]2 0 . . . . . . 0

0 . . . . . . . . . 0
...

...
...

. . .
...

0 . . . . . . . . . 0

G†. (55)

Similar derivation can be carried out for the wavefunction ΨIntra related to intracellular surroundings,

ΨIntraΨIntra
† = GbIntrab

†
IntraG

† = G


0 0 . . . . . . 0
0 . . . . . . . . . 0
...

...
...

. . .
...

0 . . . . . . . . . [2t sin (kN∆z)]2

G†. (56)

Therefore, the total density matrix is

D =
1

2π

∫ [∑
α

e−(E−Eα)/kBTGbαbα
†G†

]
dk, α = Extra, Intra. (57)

Use the relation

dE = d
(~k)2

2m
+ 0 =

~2k

m
dk (58)

to change the above integral into that with respect to energyE, and use the simple limit sin (k∆z)/(k∆z)→
1 as ∆z → 0, the above integral can be easily revised as

D =
i

π∆z

∫ [∑
α

e−(E−Eα)GV ahα G†

]
dE, α = Extra, Intra, (59)

where

V ahExtra =


−it sin (k1∆z) 0 . . . . . . 0

0 . . . . . . . . . 0
...

...
...

. . .
...

0 . . . . . . . . . 0

 (60)

and

V ahIntra =


0 0 . . . . . . 0
0 . . . . . . . . . 0
...

...
...

. . .
...

0 . . . . . . . . . −it sin (kN∆z)

 . (61)

It is clear that VExtra and VIntra are the non-hermitian components in the external potential Eq. (22) that
are introduced to truncate the surroundings. Since V ahα is solely nonzero for one entry in the matrix and
this fact is independent of the discretization, it is easy to verify that lim∆z→0 ||V ahα || = 0, as required in
Eq. (26).

Obviously, Eq. (59) is actually the discretization form of Eq. (30). Finally, the scattering number
density is calculated as

nscat(z) = diag(D). (62)
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III.B Dirichlet-to-Neumann mapping for the generalize PB equation
Considering Eq. (4) and expression (19), the generalized Poisson-Boltzmann equation is

−∇ · (ε(r)∇Φ) = qn(r) +

Na∑
i=1

Qiδ(r− ri) +

N ′c∑
j=1

qjn
0
je
−
qj(Φ−VExt)

kBT (63)

Recall the fact that the electrostatic potential Φ(r) is defined throughout the domain Ω, which is inho-
mogeneous with respect to the dielectric constant ε(r). Therefore, we need to physically impose the
continuity matching conditions at the interface Γ of two adjunctive subregions. The continuity matching
conditions are given as

[Φ]|Γ = Φ+(r)− Φ−(r) = 0, (64)
[ε∇Φ · ~n]|Γ = ε+∇Φ+(r) · ~n− ε−∇Φ−(r) · ~n = 0 (65)

where superscripts “+” and “−” represent the limiting values of a certain function at two sides of interface
Γ, and ~n is the unit outward normal direction of Γ. Equation (65) guarantees the continuities of the
potential function and its flux.

Theoretically, Eq. (63) admits the boundary condition Φ(∞) = 0 at the infinity. However, in practical
computation, a finite domain is used and appropriate boundary conditions need to be imposed at the
domain boundary ∂Ω. In our studies, the channel protein and the associated membrane are embedded
in a rectangular cuboid with appropriate sizes. It is very nature to apply the Dirichlet boundary conditions
along the electrode portions of the rectangular cuboid boundary, while for the remainder of the boundary,
we apply the Neumann boundary condition (i.e., the zero normal electric filed conditions).

Physically, the generalized Poisson-Boltzmann equation (63) has two types of charge source terms,
i.e., the fixed charges given by the delta functions, and the unsteady charges. Therefore, it is wise to
treat these source terms separately such that when we keep updating the unsteady source term, we
just need to compute the effect of the fixed charge source term once. Mathematically, the solution of Eq.
(63) has a singular part due to the delta function (i.e., fixed charges) which may cause computational
problems. Thus, we should treat the regular part and the singular part of the solution differently27

Φ = Φ̄ + Φ̃ (66)

where Φ̄ and Φ̃ denote the singular part and regular part of Φ, respectively. More specifically, Φ̄ should
correspond to the singular delta function term and vanish outside the protein and membrane domain
Ωm, while Φ̃ is defined in the whole domain. By this consideration, we split Φ̄(r) as

Φ̄(r) = Φ∗(r) + Φ0(r) (67)

where

Φ∗(r) =

Na∑
i=1

Qi
εm|r− ri|

(68)

represents the Coulomb’s potential from the protein fixed charges. Since Φ̄(r) is required to vanish
outside the Ωm as well as the boundary ∂Ωm, the Φ∗(r) should be corrected by Φ0(r), which is a
harmonic function on Ωm and

Φ0(r) = −Φ∗(r), ∀r ∈ ∂Ωm. (69)

For the regular part Φ̃, we can take the advantage of the fact that n0
j is zero in Ωm, and have the following

equation and interface jump conditions:

−∇ ·
(
ε(r)∇Φ̃

)
−

N ′c∑
j=1

qjn
0
je
−
qj(Φ̃−VExt)

kBT = qn(r) (70)

[Φ̃]Γ = 0 (71)
[ε∇Φ̃ · ~n]|Γ = −[εΦ̄ · ~n]|Γ (72)
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Through Eqs. (66) to (70), the electrostatic potential Φ is decomposed into a singular part and a regular
part. It should be noted that it is Φ̃ that is coupled to the Kohn-Sham equation since Φ̄ is solely nonzero
in the protein and membrane region. The effect of the fixed charges is actually first mapped on the ∂Ωm
in a Dirichlet sense (Eq. (69)) and reflected into the solvent region in a Neumann manner (Eq. (72))
at the solvent-protein interface Γ. This Dirichlet-to-Neumann mapping (DNM) analytically takes care
of the Dirac delta functions and is successfully employed in various applications.9,27 The trade-off of
this treatment is that one has to solve an elliptic equation (70) with non-homogeneous interface jump
conditions.

Traditional finite difference or finite element methods fail to come up with high-order accuracy and
convergence in solving Eq. (70) due to geometric singularities in the molecular surface47 and the
need to enforce the interface conditions (71) and (72). The matched interface and boundary (MIB)
method has been developed for elliptic equations with complex interfaces, geometric singularity, and
singular charges.8,27,55,56,58,59 It offers second-order accuracy and convergence in solving the Poisson-
Boltzmann equation with biomolecular context.8,27,56,58 Therefore, the combination of DNM and MIB
provides a robust and efficient solution to the generalized PB equation with second-order accuracy and
convergence, even for complex channel protein geometries.
III.C The self-consistent iteration
In this section we analyze the self-consistent iteration between the generalized PB equation and the
Kohn-Sham equation. To focus on the essential idea, Eq. (70) is symbolically written as

LΦ̃ + F (Φ̃) = ρp, (73)

where Φ̃ and ρp represent the electrostatic potential energy and proton density, L represents the linear
part of the GPB equation while the F (Φ̃) is the nonlinear part. Simply substituting the quantity ρp into
Eq. (73) does not offer a clue about the iteration convergence analysis and efficiency. The Gummel
iteration21 proposed in semiconductor device applications was verified practically that it works well for a
similar self-consistent iteration problem. The idea of the Gummel iteration is described below.

The proton density ρp and the electrostatics potential Φ̃ are assumed to have the following intrinsic
connection

ρp(r) = F (Φ̃(r), EExt), (74)

where F (Φ̃, EExt) = qn0e
−(qΦ̃−EExt)/kBT is the Boltzmann function and n0 is the reference number

density of the protons. Equation (74) represents the relation between the electrostatic potential and
the particle density in the equilibrium state. However, the relation does not hold any more at non-
equilibrium. Nevertheless, we can extend EExt to a function defined over the entire domain EExt(r)
such that ρp(r) = F (Φ̃(r), EExt(r)). The intermediate values of EExt(r) can be easily found once ρp and
Φ̃(r) are available. Based on this argument, Eq. (73) is written as a new nonlinear equation

LΦ̃ + F (Φ̃) = F (Φ̃, EExt). (75)

We need to linearize Eq. (75) appropriately. Note that F ′(Φ̃, EExt) = − q
kBT

F (Φ̃, EExt) = − q
kBT

ρp, with
F ′(Φ̃, EExt) being the Fréchet derivatives of F with respect to Φ̃. Similarly, F ′(Φ̃) can be evaluated.

Suppose Φ̃l, ElExt and ρlp are the values of Φ̃, EExt and ρp at lth step iteration, then the Newton’s
method for solving Eq. (75) is naturally reduced to the Gummel iteration:(

L+ F ′(Φ̃l) +
q

kBT
ρlp

)
∆Φ̃l = ρlp − LΦ̃l − F (Φ̃l) (76)

where we update Φ̃l+1 as Φ̃l+1 = Φ̃l+λ∆Φ̃l and 0 < λ ≤ 1 is chosen through a line search to guarantee

||LΦ̃l+1 + F (Φ̃l+1)− q

kBT
ρl+1
p || < ||LΦ̃l + F (Φ̃l)− q

kBT
ρlp||. (77)

Once Φ̃l+1 and ρl+1
p is obtained, El+1

Ext can be modified, and whole iteration can continue till the conver-
gence is achieved. It is worthwhile to point out that in order to improve numerical efficiency, Eq. (76)
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can be solved by applying various inexact Newton’s methods. There is plenty of literature about the con-
vergence order discussion so it is necessary for us to generalize the Gummel iteration to the Newton’s
method.

Another technique to enhance the self-consistent convergence is the relaxation method.9 If we define
the Ks, Us and Ns as the spaces which the external potential EExt(r), electrostatics Φ̃(r) and proton
charge density ρ(r) belong to, respectively. For the whole iteration of the generalized Poisson-Boltzmann
Kohn-Sham system, it can be interpreted as the application of the fixed point map T on any of the above
spaces, say T : Us → Us for the electrostatics

Φ̃(r) = T (Φ̃(r)). (78)

To characterize the details of the map T , we denote the operator G : Us → Ns, which indicates the
process of using the Kohn-Sham equation to solve for proton charge density based on the electrostatic
potential. Such a process is followed by F−1 : Ns → Ks, which updates EExt(r) by ρp(r) and Φ̃(r).
Finally L : Ks → Us represents solving the nonlinear GPB equation. The combination of all the above
operations yields the definition of the operator T , which shows the outer iteration

T := L ◦F−1 ◦ G (79)

and
Φ̃l+1 = L ◦F−1 ◦ G (Φ̃l). (80)

The relaxation scheme converts Eq. (80) into the steady-state problem of an ordinary differential equa-
tion (ODE)

∂Φ̃

∂t
= L ◦F−1 ◦ G (Φ̃)− Φ̃. (81)

Therefore many ODE related techniques such as the Runge-Kutta method can be used to improve the
convergence properties. One simple treatment is the discretization of Eq. (81) as

Φ̃l+1 − Φ̃l

β
= L ◦F−1 ◦ G (Φ̃n)− Φ̃n, (82)

which leads to a self-consistent iteration with a relaxation factor β9,12

Φ̃? = L ◦F−1 ◦ G (Φ̃n)

Φ̃n+1 = βΦ̃? + (1− β)Φ̃n. (83)

The traditionally used outer loop iteration actually is the special case of Eq. (83) with β = 1. By carefully
choosing the relax factor β, one can reach the steady state (fix point) by self-consistent iterations.
III.D The work flow of the self-consistent iteration
In previous sections algorithms and related mathematical treatments for solving the GPB equation and
the Kohn-Sham equation individually are introduced. Here we assemble all the components together
and give a main work flow for the numerical simulation of these coupled equations.

• Step 0. Preparation. All the necessary preparations for the whole loop are accomplished in this
step, which include:

– 1. The channel protein of interest is downloaded from the Protein Data Bank. The par-
tial charges, positions, radii of all atoms as well as molecular surfaces are determined by
CHARMM force field36 and related software packages, such as PDB2PQR, see Section IV for
detail. The prepared channel structure and surface are then embedded in a proper computa-
tional domain.

– 2. Use Eqs. (68) and (69) to solve for Φ̄, then the quantity in Eq. (72) is obtained. Implement
the DNM and the MIB schemes to discretize the Laplace operator as matrix L.
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Figure 2: Work flow of the overall self-consistent iteration.

• Step 1. Solving the generalized PB equations (70) and (72). Given ρmp (taken an initial guess if
m = 0), use the inexact Newton’s method, Eq. (76) and Eq. (77) to obtain Φ̃m. Note that the index
l in Eq. (76) is for the Newton’s method or inner iteration and the index m is for the outer or whole
self-consistent iteration loop.

• Step 2. Solving the Kohn-Sham equation. The solution of the Kohn-Sham equation consists of two
parts, the eigenvalue problem and the scattering problem with the evaluated electrostatic potential
energy operator U = qΦ̃m.

– 1. Solving the eigenvalue problem Eq. (39).

– 2. Solving the transport problem Eq. (40).

– 3. Assembling the total charge density nm+1 by Eqs. (41) and (62).

• Step 3. Convergence check. Go to Step 1 to obtain Φ̃m+1, if ||Φ̃m+1−Φ̃m|| < ε1 and ||ρm+1
p −ρmp || <

ε2, where ε1 and ε2 are predefined error tolerances, then go to Step 4; otherwise go to Step 2.

• Step 4. Current calculation by Eq. (36).

Figure 2 gives an explicit illustration of the above work flow.
III.E Model parameter selection
III.E.1 The selection of non-electrostatic potential
Non-electrostatic effects are important to ion conductance efficiency. Unfortunately, it is expensive to
give a full quantitative description for UNonelec. In current existing models, such as PNP based ones, the
UNonelec is integrated as an overall effect and represented implicitly by the phenomenologically reduced
diffusion coefficients in the channel pore region. While in BD based models, the effect of UNonelec exists
in the ion friction factor, which is also related to the diffusion coefficient by Einstein’s relation.35 All
these treatments indicate that UNonelec should be related to the diffusion coefficient of ions, which is
a physical observable. Based on this discussion, we ignore all detailed components while describe
the non-electrostatic interactions as one effective, overall component in the mean field manner. As
indicated by Eq. (12), the UNonelec is also a density functional of the n(r), and the first term represents
the connection between UNonelec and given reference ion density. It is quite obvious that α is a tunable
parameter. Here we focus on how to choose parameter VIon−sur.
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For a simple start, let this energy be related to the relaxation time τ of an ion by VIon−sur = ~/2τ ,
according to the Einstein’s relation D = kBTτ/m, where D and m are the diffusion coefficient and mass
of the particle. Then the energy VIon−sur can be given by

VIon−sur =
~kBT
2mD

(84)

for protons. With appropriate the proton mass and the diffusion coefficient in the bath, one yields
VIon−sur ≈ 3.4kBT . However, the value of diffusion coefficient in the channel is commonly believed
reduced, but is inconclusive due to the variation of the channel pore structure diameters and solvation
conditions. According to Table 1 of Ref.,20 proton diffusion coefficients reduce to 1/2 to 1/7 of that in the
bath condition in various lipid layers. We take the resulting reduction accordingly in the channel region.
This argument gives the UNonelec a range of 6kBT ∼ 20kBT .
III.E.2 Choices of the dielectric constants
The Poisson equation describes the electrostatic potential function due to existence of free charges. The
left hand side of the Poisson equation can be written as

−∇2Φ(r) +∇ · P (r) (85)

P (r) is the polarization field vector which describes the density of permanent or induced electric dipole
moments in a dielectric material. For an isotropic medium that has linear response, the polarization field
can be defined by

P (r) = χE(r) = −χ∇Φ(r) (86)

where χ(r) = ε(r)− 1 is the dielectric susceptibility of the medium. Then Eq. (85) can be written as

−∇ · ε(r)∇Φ(r). (87)

Therefore, the permittivity ε(r), which is also called dielectric constant, represents the polarizability of
the medium. In biomolecular calculations, ε(r) is generally assumed as piecewise constants in most
applications. It is noted that in charge neutral molecules, electric polarization corresponds to the rear-
rangement of electrons in molecules. In most popular force field packages, some of the polarizations of
a charge neutral macromolecule are often treated as partial charges located at the centers of individual
atoms. These partial charges give rise to most of the fixed charge source term ρf in the generalized
Poisson-Boltzmann equation. Due to this treatment of the polarization effect, a relatively small ε(r) value
is normally assigned to the biomolecular domain. For example, when calculating the solvation energy
of proteins, ε(r) is set to 1 or 2 for the biomolecular domain while 80 for the solvent domain. These
values are commonly accepted and vary in only small ranges for different purposes. However, in the
application of ion channels, choices of dielectric constants in different regions of interest are worthwhile
to be carefully explored.

First, although the ion permeation is a dynamical process, dielectric constants are all assumed time
independent due to fact that the electrolytic solution is a fast relaxing bath, i.e., the relaxation time of
the solvent water is extremely short. Secondly, the dielectric constants are approximated as piecewise
constants for computational simplicity. In the bulk concentration, a widely used dielectric constant as
80, which is the experimental measurement at room temperature for water. The value of ε is usually set
to 1 or 2 in the protein domain, which partially accounts for the field-induced atomic polarization of the
protein. However, two features about protein structures are neglected in the continuum approximation
for ion channels and should be partially compensated by the dielectric constant of the channel protein.
One is the re-organization of the protein and water in extremely confined channels and the other is
the protein’s response to ion’s presence in the channel, since the ion permeation takes places at the
same time scale. Therefore, in order to encapsulate these features in a continuum model with a single
dielectric coefficient, the value of ε(r) for channel proteins is suggested to be greater than 2.

There are also some issues in assigning the dielectric coefficient for the aqueous region in the ion
channel. A general conclusion is that ε(r) in the bulk aqueous region should be much higher that
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that in the channel region. The main reason is the high confinement of the channel geometry. In ion
channel pores which are usually very narrow, water molecules are highly ordered, and their motions are
restricted, so are their response to external fields. Therefore, the value of ε(r) should be much smaller
than 80, and can be as small as 3 for a dry channel pore. However, these extreme value do not work
well in practical computations. In fact, the dielectric coefficient in the channel pore region is still taken as
80 in most existing models despite the above arguments. In the present work, ε(r) values are set to be
smaller than 80, but are not too small in order to model the biological environment.
III.E.3 Effective mass of the proton
The choice of effective mass m(r) of the particle in the total Hamiltonian H as in Eq. (21) is an important
issue to be discussed. The concept of effective mass origins from the solid state physics, which de-
scribes the response of the charge carrier to the electric or magnetic fields when quantum mechanism
is applied. It is defined by analogy with Newton’s second law but in the quantum mechanical framework

m = ~2

[
d2E

dk2

]−1

(88)

where E and k are the energy and the corresponding wavenumber of the particle, respectively. Gen-
erally the effective mass is chosen in the range of 0.001 or 10 times the real mass of the particle and
depends on the material and the experimental condition. However, little research has been done, to our
knowledge, on the choice of the effective mass of protons in proton channels or proton experiments.
In the present model, we describe protons by quantum mechanics while treat many other particles by
classical mechanics and/or continuum description. Therefore, an effective mass approximation is ap-
propriate for our model. We set effective mass m(r) as a model parameter and its value is chosen from
0.01 to 1.0 time of the real proton mass.
III.E.4 Normalization of the proton density
The integration of the density function n(r) of protons is constrained by the total number of protons in
the system ∫

Ωs

n(r)dr = Np, (89)

where n(r) satisfies the governing Kohn-Sham equation and Np should be a known quantity. However,
in most experimental set-ups, one does not know Np. Instead, the bulk concentration or the bulk number
density, n0

p, is given. When the solvent domain is sufficiently large compared to the channel pore region,
one has two approximations

Np ∼= n0
p

∫
Ωs

e−q(Φ(r)−VExt)/kBT dr ∼= n0
p

∫
Ωs

dr, (90)

where the second approximation is a crude estimation.
IV Numerical simulations
In this section, the validity of the proposed model and related performance analysis are presented based
on a specific channel protein, Gramicidin A (GA, PDB code: 1MAG). The GA channel protein is obtained
from the soil bacterial species Bacillus brevis and is one of the best studied molecular channels, both
structurally and functionally. In a bilayer membrane, the GA is dimers and consists of two head-to-head
β-helical parts. Each part of the dimer has the sequence of FOR-VAL-GLY-ALA-DLE-ALA-DVA-VAL-
DVA-TRP-DLE-TRP-DLE-TRP-DLE-TRP-ETA, and forms a narrow pore of about 4Å in diameter and
25Å in length. It appears to select small monovalent cations while reject multivalent ions, both cations
and anions. In our approach, the GA structure is downloaded from the PDB, and the pdb file is processed
by the PDB2PQR,22 in which the radii and partial charges are adopted from the CHARMM force field
values.36 The molecular surface of the GA is generated via the MSMS package47 with water probe radius
1.3 Å and density 10. Figure 3 gives an illustration of the GA in a 3D display of the structure, surface
and electrostatics distribution. From Fig. 3(a), one can see that a complete channel pore is formed after
the generation of the molecular surface. Although the GA is neutral in general, its surface electrostatics
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(a) (b)

Figure 3: 3D illustration of the Gramicidin A channel structure and surface electrostatic potential. The negative
surface electrostatics as indicated by the intensive red color on the channel upper surface and inside the channel
pore implies that the GA selects positive ions. (a) Top view of the channel; (b) Side view of the channel.

is negatively distributed near the channel mouth as indicated by the red color. Furthermore, as shown in
Fig. 3(b), the inner part of the channel pore is also intensively negatively charged. This fact indicates the
selectivity of GA channel to positive ions. Having prepared the GA structure and surface, the channel
pore is aligned to z-direction. The simulation grid resolution is taken as 0.5Å. Under this discretization
all the grid points are classified as either in the solvent domain or in the molecular domain. Furthermore,
the molecular surface is projected on each layer along the transport direction to determine the beginning
and the end of the channel respectively by the first layer and the last layer on which closed projections
can be found. An artificial membrane slab is added along the transport direction between the beginning
and end of the channel, see Fig. 1(b).
IV.A Electrostatic properties of the Gramicidin A channel
This subsection presents the electrostatic analysis of the GA channel over a wide range of ε(r) values
in the present model. At the atomic level, the motion of an ion when it is passing through the channel
is determined by a number of factors, such as electrostatic interactions and non-electrostatic interac-
tions. The electrostatic interactions include the Columbic interactions between ions, and between ions
and fixed charges of the channel. The non-electrostatic interactions consist of ion-ion excluded vol-
ume effects, the thermal fluctuation of the solvent, van der Waals interactions, and other short range
interactions such as the frequent collisions and associations between water molecules and ions. One
more factor is the structural cooperation of the channel protein during ion permeation. In the present
model, the quantitative description of electrostatic interactions is the major ingredient while the degrees
of freedom of non-electrostatic interactions are suppressed to reduce the computational cost.

The electrostatics of the channel system depends on the dielectric constants. In the present work, we
carefully test the effect of dielectric constants within an appropriate biological range in order to obtain
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Figure 4: Electrostatic potential and charge density of the GA channel along the z-axis obtained with εm = 2 and
n0
p = 0.1 molar (Red: εch = 20; Green: εch = 40; Blue: εch = 80). (a) Electrostatic potential profiles in channel; (b)

Proton density profiles in the channel.

a reasonable prediction. It is also worth checking the dependence or changing trend of the electrostat-
ics upon these parameters for model training and validity verification. Before the transport problem is
simulated, the mathematical algorithms, choices of dielectric constants are carefully examined via the
generalized Poisson-Boltzmann equation.

As discussed earlier, εm(r) is given as constant in Ωm and its value is tested over a range. However,
εs(r) is strongly position dependent, having different values in the bulk solvent and the channel pore. For
simplicity, we take εs(r) as piecewise constant, i.e., impose a constant value denoted as εbath in the bulk
solvent, whereas another for the channel pore denoted as εch. There is no controversy upon the choice
of εbath = 80, which is employed in all the following simulations. Figures 4-6 display the electrostatic
potential profiles and (positive) ion density in GA protein with various combinations of εch and εm within
the range discussed in the earlier section. The reference ion density is taken as 0.1 molar.

All quantities in Figs. 4-6 are averaged on each cross section along the channel axis. The vertical
dash lines in these figures indicate the entrance (left) and exit (right) of the channel. The GA protein is
overall neutral in charge, but possesses a negative environment in the channel region and this fact leads
to potential well. Near the entrance and the exit of the channel, there are two local potential minima (the
valley near the dash line) and a major barrier in the middle of the channel. Accordingly, for the density
profile, there are two peaks at the positions where two energy minima present and the density is lower
in the middle of the channel. These electrostatic profiles agree with the biological properties of the GA
channel.

For each fixed εm, the magnitude of the electrostatic potentials responds directly to the change of εch
value, as showed in Fig. 4(a). When the εch decreases from 80, which is the commonly used value for
the solvent, to the lower values suggested by biological observations, the contrast between the energy
wells near the entrance/exit and the barrier in the middle becomes sharper. This phenomenon verifies
the impact of εch value and leads us to prefer the lower value in our model. For the ion density profile
shown in Fig. 4(b), the changes in the peaks with respect to the changes of εch are very clear. As εch
doubles, the magnitudes of the density at the peaks decrease half accordingly.

The impact of εm can be examined by fixing εch, i.e., checking the same color curves throughout Figs.
4-6. It can be found out that changes in εm do not affect the potential structure but solely change the
magnitudes. When εm increases, the absolute value of electrostatic potential decreases, and conse-
quently the proton density becomes smaller.

Figure 7 depicts the electrostatics profile change with respect to reference proton densities at a certain
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Figure 5: Electrostatic potential and charge density of the GA channel along the z-axis obtained with εm = 5 and
n0
p = 0.1 molar (Red: εch = 20; Green: εch = 40; Blue: εch = 80). (a) Electrostatic potential profiles in channel; (b)

Proton density profiles in the channel.
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Figure 6: Electrostatic potential and charge density of the GA channel along the z-axis obtained with εm = 10 and
n0
p = 0.1 molar (Red: εch = 20; Green: εch = 40; Blue: εch = 80). (a) Electrostatic potential profiles in the channel;

(b) Proton density profiles in the channel.

combination of dielectric constants (εm = 5 and εch = 40). It is easy to see that the higher the proton
reference concentration, the higher the sources in the Poisson equation and the results in electrostatic
potential profiles are.
IV.B Conductivity properties of the Gramicidin A channel
The mechanism of the selectivity of the GA channel can be easily explained in view of the overall
potential landscape. Figure 8 shows the total effective potential with both the electrostatic and non-
electrostatic contributions. Since the latter component is described in reduced manner in the present
treatment. Figure 8(a) is for the monovalent cautions while Fig. 8(b) is for monovalent anions. Accord-
ing to the previous discussion, the non-electrostatic potential serves as an energy barrier while the GA
protein provides a negatively charged environment for cations in the channel region. Two energy compo-
nents with opposite signs cancel each other and result in an overall potential landscape that permeates
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Figure 8: The total potential of the GA channel which includes electrostatic and non-electrostatic contibutions
under various voltage biases. Dielectric constants are εm = 5 and εch = 30. The pH value of the solution is 2.75.
(a) Total potential of monovalent cations; (b) Total potential of monovalent anions.

a monovalent cation. However, the overall potential gives rise to a huge barrier for the anions since the
positive non-electrostatic potential adds up with the positive electrostatic potential, as Fig. 8(b) shows.

Conductance reveals the efficiency of the ion channel transport of some specific ions. Due to the fast
development of experimental technologies in the past several decades, the single-channel conductance
can be measured and becomes one of the prevalent descriptor of the channel function. The simulation of
channel conductance mainly focuses on calculating the channel current within the physiological ranges
of membrane potentials (i.e., −0.2V < V < 0.2V) and bath concentrations (up to molars). The channel
conducting current is measured at the scale of pico-Ampere (pA) for ion channels. The corresponding
characteristics of channel conductance is observed at the scale of pico-Siemens (pS) and is recorded in
the voltage-current (I-V) curves and concentration-current (C-C) curves. Based on experimental obser-
vations, the I-V curves are expected to be in linear or sub-linear form while the C-C curves are supposed
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Figure 9: The first 15 eigenvalues (the U j(z) in Eq. 40) of the effective potentials along the transport direction
used in the transport calculations at the voltage bias of 0.2V.

to exhibit saturation behavior, i.e., when the concentration increases, the conductance increases linearly
at beginning and then becomes saturated later on.

The conductivity of the proton channel mainly depends on the proton scattering process. Thus we first
present the effective potential profile along the transport direction. Figure 9 depicts the first 15 effective
potential eigenvalues (i.e., U j(z) in Eq. (40)) used in the current calculation under the voltage bias
of 0.2V. Similarly, the channel region is presented between two black dash lines. The channel region
is essentially confined by the protein surface and a tube-like pore is formed. As displayed in Fig. 9,
the potential energy profile in the channel pore region has discrete eigenstates, due to the small area
confinement at each cross section and the light mass of the proton. For each specific location along the
transport direction, the discrete ascending energies correspond to the eigenvalues of the operator in Eq.
(39). In theory, the total number of the eigenvalues is infinite, but is finite in practical computations, and
depends on the discretization of the cross section. In principle, all the eigenvalues should be accounted
in computations. However, numerically, due to the Boltzmann distribution, higher energy components
contribute little in the total transport quantity. In practical, only a few low lying eigenvalues need to be
included in numerical simulations. In our case, the first 15 eigenstates are sufficient to obtain a good
degree of convergence in calculating the proton density and current.

Figure 10 illustrates the simulation results of the present multiscale model for proton transport, com-
pared with the experimental data from the literature50 for the GA channel. The blue dots in each figure
represent the available experimental observations for certain voltage biases while the red curves are
our model predictions calculated with sufficiently many voltage samples. The model parameters are
chosen to match the experimental data but all of the choices are taken within the range of physical mea-
surements. The dielectric coefficients are taken as εm = 5, εch = 30 and εbath = 80, according to the
discussion in previous sections. To determine the non-electrostatics the diffusion coefficients of protons
are taken as 3.6 × 10−9 m2/s in the channel, less than a half of the value in the bulk environment, and
the relative weighting parameter is set to α = 0.03. Taking into account above considerations, we can
conclude that experimental data and the present predictions agree quite well and this agreement verifies
the validity of our quantum dynamics in continuum model.

Apart from I-V curves, there are also experimental data available about the conductance-concentration
relation (C-C curve) of the proton transport under given voltages. Figure 11 displays such a relationship
with a comparison between experimental data and model predictions. At a given voltage bias, the con-
ductance of the channel is calculated with various proton concentrations as indicated by the horizontal
axis. Using the same set of parameters as those in Fig. 10, the computed conductance-concentration
relation also agrees fairly well with experimental data. At lower proton concentrations (i.e., pH value
being greater than 2), the agreement between our prediction and experimental data is quite good. At
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Figure 10: Voltage-current relation of proton translocation of GA at different concentrations. Blue dots: experimen-
tal data of Eisenman et al;26 Red curve: model prediction.
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Figure 11: Conductance-concentration relation of proton translocation at a fixed voltage. Voltage bias=0.05V; Blue
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relatively higher concentrations, although the numerical simulations slightly overestimate the observed
conductance, the conductance saturation against the concentration can still be observed in simulations
and it corresponds to the sub-linear characteristics or the flat tail of the C-C curve.

The experimental data used in this work are reported by Eisenman et al26 and are also employed
to verify another proton transport model by Schumaker et al.50 There are other experimental data on
proton conductance available3,14,20 but under different experimental conditions. First, the experimental
data provided by Cukierman et al.20 offer proton conductions recorded with natural Gramicidin A and with
its Dioxolane-Linked dimer in different lipid bi-layers (phosphatidylethanolamine-phosphatidylcholine, or
PEPC and glycerymonooleate, or GMO). Their experimental studies were carried out for low (9.8 mM)
and high (1578 mM) proton concentrations against the transmembrane voltages. Additionally, in another
piece of work,14 the attenuation of proton transfer in Gramicidin water wires by phosphoethanolamine
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was investigated and a number of I-V curves were provided. It is impossible to fit all the experimental
data by a single group of parameters because of the difference in experimental conditions and lipid
membrane types. Nevertheless, it can be observed that our simulation curves under the current set
of parameters have shown similar qualitative shapes. Therefore, the present model can fit to these
experimental data by slightly adjusting model parameters to reflect the different experimental conditions.
Finally, Akeson and Deamer3 also reported I-V curves of proton conductance for the F1F0ATPases
studies. In their results, a severe saturating or sublinear character is found for proton concentration of 10
mM and there were an obvious superlinear pattern for 1.0 M hydrogen chloride (HCl). Our model can
not capture these characteristics by just tuning the parameter values. In fact, this set of experimental
data was also found difficult for another theoretical model of proton transport.50

IV.C Model limitations
Based on the multi-scale approximation, the present mode captures the most important factors which
have large impacts on the proton permeation. Meanwhile, the quantum treatment of protons provides
a potential analysis tool to account for the quantum behavior in proton channel transport and proton
translocation in biomolecules. The setup of the present model roots from essential biophysical principles
with reasonable approximations, and thus the numerical simulations give considerably good agreements
with experimental data under appropriate choices of model parameters. However, this model also has a
number of limitations, which are to be studied further in the future. First, in this model, the channel is as-
sumed to be rigid, i.e. it does not response to the permeation of ions. This is not true in real situation and
the configuration change of the channel protein has been found to have fairly important impact on the
ion permeation process. Although the omitted ion-protein interaction has been somehow compensated
implicitly by adjusting the dielectric constants, this interaction can not be fully accounted unless more so-
phisticated models, such as the multiscale molecular dynamics,54 are invoked. Additionally, the plasma
membrane where the channel protein is embedded is simplified. There are various types of membranes,
some of them have dipoles and others have charges. In our model, the membrane is just approximated
by the uniformly distributed dielectric medium and the charges or dipole effects are neglected. However,
there is no essential difficulty to improve this aspect in our model. Point charges from membranes can
be added in the present model. Otherwise, a position dependent dielectric constants for the biomolec-
ular region can also represent the charge effects in the membrane. Finally, the other limitation of the
present model is the simplified treatment of non-electrostatic interactions, which reduces the number of
the degrees of freedom, although. Compared to the electrostatic potential, the non-electrostatic potential
plays a less important role in general. However, it may be of crucial importance for channel selectivity
in certain situations. Therefore, an emergent task of our future work is to come up with more quantita-
tive modeling of non-electrostatic interactions meanwhile without significantly increasing the number of
degrees of freedom.
V Conclusion
Proton dynamics and transport across membrane proteins are of paramount importance to the normal
function of living cells. Although there are a variety of excellent theoretical models and efficient com-
putational methods for ion channels in general, most commonly used models are much less successful
when they are applied to the proton channel transport due to the unique characteristics of protons. It is
commonly believed that to a certain extent, proton channels demonstrate quantum mechanical proper-
ties such as the translocation as shown in the Grotthuss-type mechanism.2,39 However, the exact role of
quantum mechanics in the atomic mechanism of proton channels is still unclear despite of a number of
elegant theories in the literature, partly due to the complexity of ion channel systems. The present paper
introduces a quantum dynamics in continuum (QDC) model for the prediction and analysis of proton den-
sity distribution and conductance in proton channels. Our essential ideas are as follows. First, protons
behave quantum mechanically due to their light masses and channel geometric confinement in protein
channels. Therefore, a quantum mechanical treatment of protons is necessary. Additionally, since the
primary interactions in proton channels are of ion-ion electrostatic type and the van der Waals type of
interactions involve less energy, a dielectric continuum treatment of solvent medium may provide a rea-
sonable approximation to the effect of numerous solvent molecules. Most importantly, this treatment
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dramatically reduces the dimensionality of the problem. As such, our approach is called a QDC model.
Moreover, since the atomic detail of the protein structure serves as a physical boundary for proton dy-
namics and transport, the present model returns molecular surface to separate the continuum solvent
domain from the discrete charge domain of the protein. Finally, densities of all other ions and counteri-
ons in the solvent are described by the Boltzmann distribution, which is a quasi-equilibrium description
as the electrostatic potential varies during the process of proteins permeating the membrane.

We propose a multiscale variational paradigm to accommodate the aforementioned aspects in a uni-
fied framework. The total free energy functional encompasses the kinetic and potential energies of
protons, and the electrostatic energies of ions and fixed charges in the channel system. The first varia-
tion is carried out via the Euler-Lagrange equation to derive the governing equations for the system. A
generalized Poisson-Boltzmann equation is obtained for the electrostatic potential while a generalized
Kohn-Sham equation is resulted for the state of protons in the system. The solution to these two cou-
pled nonlinear equations leads to the desirable electrostatic distribution and proton density profile in the
channel system. Expressions for proton density and proton flux across the membrane are derived from
fundamental principles.

The computation of the proposed coupled equations involves a number of mathematical issues, such
as the linearization of coupled nonlinear partial differential equations (PDEs) using the Gummel itera-
tions and/or inexact Newton iterations, and the solution of elliptic PDEs with discontinuous coefficients
(i.e., piecewise dielectric constants), singular sources (i.e., Dirac delta functions for protein charges),
and nonsmooth interfaces (i.e., geometric singularities). In the present work, we utilize the Dirichlet to
Neumann mapping method to take care of singular charges, and the matched interface and boundary
(MIB) method to accurately handle the discontinuous coefficients and geometric singularities.

The Gramicidin A (GA) channel protein, a popular protein structure, is employed in our numerical stud-
ies to demonstrate the performance of the proposed QDC model. We give a detailed discussion about
the rational for model parameter selections. The electrostatic property of the GA channel is analyzed
with the proposed model against a large number of model parameters. Proton transport properties, i.e.,
the current voltage (I-V) curves, are investigated over a large number of combinations of applied volt-
ages and reference bulk concentrations. Our model predictions are compared with experimental data,
which validates the present QDC model. Finally, we provide detailed discussion of model limitations and
possible future improvements.
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