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Abstract

Solvation is an elementary process in nature and is of paramount importance to more sophisticated
chemical, biological and biomolecular processes. The understanding of solvation is an essential pre-
requisite for the quantitative description and analysis of biomolecular systems. This work presents a
Lagrangian formulation of our differential geometry based solvation model. The Lagrangian represen-
tation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for
biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules.
Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many
existing theoretical algorithms and computational software packages can be directly employed. Finally,
the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as
often required by the Eulerian representation in solvation analysis. The main goal of the present work
is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms
of the solvation model. Such analysis is important to the understanding of the differential geometry
based solvation model. The present model extends the scaled particle theory (SPT) of nonpolar solva-
tion model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a
Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of sur-
faces is employed to provide a natural description of solvent-solute interfaces. The minimization of the
total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled
potential driven geometric flow and Poisson-Boltzmann equations. Due to the development of singulari-
ties and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric
flow equation is embedded into the Eulerian representation for the purpose of computation, thanks to
the equivalence of the Laplace-Beltrami operator in the two representations. The coupled partial differ-
ential equations (PDEs) are solved with an iterative procedure to reach a steady state, which delivers
desired solvent-solute interface and electrostatic potential for problems of interest. These quantities
are utilized to evaluate the solvation free energies and protein-protein binding affinities. A number of
computational methods and algorithms are described for the interconversion of Lagrangian and Eule-
rian representations, and for the solution of the coupled PDE system. The proposed approaches have
been extensively validated. We also verify that the mean curvature flow indeed gives rise to the minimal
molecular surface (MMS) and the proposed variational procedure indeed offers minimal total free en-
ergy. Solvation analysis and applications are considered for a set of 17 small compounds and a set of
23 proteins. The salt effect on protein-protein binding affinity is investigated with two protein complexes
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by using the present model. Numerical results are compared to the experimental measurements and
to those obtained by using other theoretical methods in the literature.

Key words: Differential geometry based multiscale model, Poisson-Boltzmann equation, Potential
driving geometric flows, Solvation free energy, Implicit solvent model, Laplace-Beltrami operator, Protein-
protein interaction.
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Figure 1: A solvation free energy cycle adapted from Levy et al.118 The total
solvation energy (1) is decomposed into several steps: “charging” the solute
in solvent (6) and vacuum (2), including attractive dispersive solute-solvent
interactions in solvent (5) and vacuum (3), and cavity formation associated
with repulsive solute-solvent interactions (4). The energy associated with Step
(7) is generally termed a “nonpolar solvation energy” while the difference in
energies associated with Steps (1) and (7) is generally considered as “polar
solvation energy”.

Almost all important biological pro-
cesses in nature, including signal
transduction, DNA recognition, tran-
scription, post-translational modifica-
tion, translation, protein folding and
protein ligand binding, occur in wa-
ter, which comprises 65-90% of cellu-
lar mass. The understanding of sol-
vation is an elementary prerequisite for
the quantitative description and analy-
sis of the above-mentioned processes.
Solvation involves the energetics of in-
teractions between solute molecules
and solvent molecules or ions in the
aqueous environment. Solute-solvent
interactions are typically described by
solvation energies (or closely related
quantities): the free energy of transfer-
ring the solute from a vacuum to the
solvent environment of interest (e.g.,
water at a certain ionic strength), as
shown in more detail in Fig. 1. Solva-
tion free energy is a physical quantity
that can be measured by experiments.
To help the calculation of solvation en-
ergy, one can conceptually break up
the solvation process as the follows: #1 in this figure can be decomposed into two basic processes:
a “nonpolar” process of inserting the uncharged solute into solvent (#7) and a “polar” process of charg-
ing the solute in vacuum (#2) and solvent (#6). The free energy change in #7 is called the nonpolar
solvation energy. The difference of energies associated with #6 and #2 is called the “charging” or polar
solvation energy and represents the solvent’s effect on the solute charging process. The polar portion of
solvation originates from electrostatic interactions, which are ubiquitous for any system of charged or po-
lar molecules, such as biomolecules (proteins, nucleic acids, lipid bilayers, sugars, etc.) in their aqueous
environment.6,8,57,61,72,75,92,184–186,216,217 The nonpolar portion describes the remaining contributions,
including the surface tension, mechanical work, and attractive solvent-solute dispersion interactions.

Solvation free energies can be calculated by a variety of computational methods ranging from very
time-consuming quantum mechanical approaches99,107,136,169 to simple phenomenological modifica-
tions of Coulomb’s law. Solvation models can be roughly divided into two main classes:171,184,185,216

explicit solvent models that describe the solvent in molecular or atomic,165 and implicit solvent mod-
els that generally replace the explicit solvent with a dielectric continuum.7,9,57,96,106,171 Explicit solvent
models provide the detailed information on molecular constitutions, and generally require extensive sam-
pling to extract meaningful thermodynamic, statistical or kinetic properties of interest. Whereas implicit
solvent models focus on the biomolecules of interest, and take a mean field approximation for solvent
properties. Because of their fewer degrees of freedom, implicit solvent methods have become popular
for many applications in molecular simulation.6,8,61,72

Electrostatic interactions are ubiquitous in nature. For biomolecular systems in aqueous environment,
the analysis of molecular solvation and electrostatics is of great importance to research in chemistry,
biophysics, medicine and nano-technology. Implicit solvent models are widely used in such an anal-
ysis which can be classified into two general types: quantitative analysis and qualitative study. One
of the primary quantitative application in computational biology and chemistry has been the calcula-
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tion of thermodynamic properties. Implicit solvent methods “pre-equilibrate” the solvent and mobile
ions, thus effectively pre-compute the solvent contribution for a system.171 Such pre-equilibration is
particularly evident in MM/PBSA models,137,160,196,201,224 which combine implicit solvent approaches
with molecular mechanical models to evaluate binding free energies from an ensemble of biomolec-
ular structures.3,14,84,119–121,133,138,149,150,150,204,229 These methods have been employed to interpret
experimental titration curves, analyze residue contributions in protein-protein and protein-ligand binding
energetics, examine structural/functional consequences of RNA nucleotide protonation, etc. Another
quantitative application of implicit solvent models is the evaluation of biomolecular kinetics where im-
plicit solvent models are generally taken to compute solvation forces for molecular Langevin dynam-
ics,129,130,166,167,200 Brownian dynamics,69,78,135,179 or continuum diffusion44,45,191,192,233 simulations. A
major qualitative study of implicit solvent methods is the visualization and qualitative analysis of elec-
trostatic potentials on and around biomolecular surfaces.6,10,163,218 Visualization has become a stan-
dard procedure in the analysis of biomolecular structures, including ligand-receptor binding, drug de-
sign, macromolecular assembly, protein-nucleic acid complexes, protein-protein interactions, enzymatic
mechanism study, etc.

Polar solvation process and electrostatic effect are described by a variety of implicit solvent mod-
els;8,9,37,57,81,109,171,178,182,184,202,212,216,217 however, the most widely-used ones are Poisson-Boltzmann
(PB) models,6,57,61,75,92,106,112,184 generalized Born (GB) methods13,37,60,81,89,109,144,155,206,208,241 and
polarizable continuum models (PCM).12,30,47,53,101,198,207 Polarizable continuum models are proposed
to model the solvent either as polarizable dielectrics or as conductor-like media, and treat the so-
lute compound by the quantum mechanical means.12,30,47,53,101,198,207 These approaches have often
been used in reactively kinetics where quantum mechanical descriptions are desired. Generalized Born
methods are relatively fast, but are not as accurate as the PB methods.8,55,60,154,154,206,209 They are
often employed in high-throughput applications such as molecular dynamics.13,37,55,60,72,109,155,185,208

PB methods can be formally derived from more detailed theories19,94,147 and provide a more accurate,
although somewhat slower, approach for evaluating polar solvation properties.13,55,154 Moreover, unlike
most generalized Born methods, PB models offer a global description for the electrostatic properties,
therefore making them uniquely suited to visualization and other study25,56,58,69,78,126,180,192,213 where
the electrostatic information is required for both inside and outside a biomolecule.

The separation of discrete and continuum domains in implicit solvent models requires an interface to
indicate the separation of solute atoms from the surrounding solvent. Naturally, such an interface can
be regarded as the surface or the profile of a molecule. The definition of molecular profiles, or molecular
graphics traces back to Corey and Pauling in 1950s,52 who tried to depict the profiles of amino acids,
peptides and proteins from X-ray crystallography. In quantum chemistry, molecular graphics are often
associated with the shapes of polynomial functions that provide approximation to electron wavefunctions.
In fact, since the electron wavefunction changes its distribution under different environments, molecu-
lar profiles change accordingly. Commonly used interface definitions in implicit solvent models include
the van der Waals surface, the solvent accessible surface,114 and the molecular surface (MS).51,170 In
certain sense, these interface definitions determine the performance of implicit solvent models because
all of the physical properties of interest, including electrostatic free energies, biomolecular surface ar-
eas, molecular cavitation volumes, solvation free energies, and pKa values are very sensitive to these
interface definitions.62,64,151,197

Current two-scale implicit solvation models have a severe limitation that undermines their performance
in practical applications. While traditional surface definitions have found much success in biomolecular
modeling and computation,22,54,65,103,110,124,127,193 they are simply ad hoc divisions of the solute and
solvent regions of the problem domain. In reality, the solvation is a physical process and its equilibrium
state should be determined by fundamental laws of physics. Moreover, these surface definitions admit
non-smooth interfaces, i.e., cusps and self-intersecting surfaces, that lead to well-known instability in
molecular simulations due to extreme sensitivity to atomic positions, radii, etc.173 This sensitivity often
drives the use of alternative “smoothed” solvent-solute interface definitions88,100 that can introduce ad-
ditional computational artifacts.62,64 Furthermore, the wide range of surface definitions has often led to
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confusion and misuse of parameter (radii) sets developed for implicit solvent calculations with specific
surface definitions.

The recent development of a new class of molecular interfaces that incorporate the fundamental laws
of physics starts with the construction of partial differential equation (PDE) based molecular surface by
Wei el al. in 2005.223 This approach distinguishes itself from many other PDE based surface smooth-
ing methods227,234 by utilizing only atomic information, i.e., atomic coordinates and radii, instead of an
existing surface. The atomic information is embedded in the Eulerian formulation and a family of hyper-
surfaces are evolved in time under the PDE operator, which is designed to control the curvature and
surface tension. The generalized molecular surface is subsequently extracted from the final hypersur-
face by a level-set type of approach.223 This PDE based surface construction procedure generates well
defined molecular surfaces for both small molecules and large proteins.223 To our knowledge, geometric
PDE based approach was the first of its kind for molecular surface construction. A further progress in
the development of a “physical interface” was the introduction of the minimal molecular surface (MMS)
that minimizes a surface free energy functional by the variational principle and leads to the mean cur-
vature flow in 2006.16,17 To our knowledge, MMSs were the first set of biomolecular surfaces that had
ever been constructed by means of variational principles. The construction of the MMS was driven by
the desire to understand the true physical boundary of a biomolecule in solvent. As a physical concept,
the solvent-solute interface should be in general determined by the minimization of the free energy of
the macromolecule in the aquatic environment. The MMS is constructed by using essentially the same
procedure as that developed in the first PDE based surface generation method.223 Another desirable
property of the MMS is that it is free of geometric singularities. The MMS model was applied to the cal-
culation of electrostatic solvation free energies of 26 proteins.18 However, the MMS, which incorporates
only the minimization of the free energy associated with the surface tension, offers only an approxi-
mation to the true physical boundary of a biomolecule in solvent. Moreover, the representation of the
surface by the Gram determinant and hypersurface is also an approximation. More rigorous definition
was given by the geometric measure theory.221 To account for other important effects that determining
the solvent-solute interface, we have recently proposed potential driven geometric flows (PDGFs) that
allow the incorporation of many other potential effects in surface formation and evolution.15 The PDGFs
are inherently multiscale in nature, and enable the incorporation of microscopic interactions, such as van
der Waals potentials, into the macroscopic curvature evolution.

Another criticism of implicit solvent models is the lack of uniqueness in polar and nonpolar decompo-
sition of the solvation process136 and the neglect of the polar-nonpolar coupling as well as solvent-solute
interactions.4,28,34,49,66,74,76 Dzubiella et al66,67 considered this problem by adding a solvent-solute cou-
pling (interaction) term to the total free energy functional discussed by Sharp and Honig184 and Gilson
et al.86 A feature of this new model is that surface tension energy and mechanical work of immersing
a molecule into the solvent were also included in the total free energy functional. However, their initial
work does not provide a protocol for the construction of molecular interfaces and systematical analysis
of solvation energy for macromolecules. Recently, Cheng et al.43 have extracted solvent-solute inter-
faces from the free energy functional of Dzubiella et al66,67 in a setting very similar to our earlier Eulerian
geometric PDE approaches of biomolecular surfaces and solvation analysis.16–18,223

Much of the recent development in implicit solvent models is due to the use of geometric flows,15,16,18,221,223

particularly mean curvature flows, which have been of considerable interest in applied mathematics for
decades.73,87,140,156,158,172,175,177,181,181,190,225 Earlier research work and part of present research are
focused on image processing,158,172 computer vision, materials design181 and surface smoothing.227,234

Computational techniques using the level set theory were devised by Osher and Sethian158,172,181 and
have been further developed and applied by many others.33,48,188 An alternative approach for image
analysis is to minimize a functional in the framework of the Mumford-Shah variational functional,146

and/or the Euler-Lagrange formulation of variation.26,32,122,157,172,174 We introduced some of the first
family of high-order geometric flow equations for image analysis.220 In fact, the nonlinear production
term in these high-order operators provides a framework to accommodate the PDGF in our later forma-
tion for macromolecular surfaces. Our high-order geometric flow equations have led to many interesting
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applications.35,85,132,195,220,222 Mathematical analysis of these high order equations in Sobolev space
was carried out by Bertozzi and Greer,24,90,91 who proved the existence and uniqueness of the solution
to a case with H1 initial data and a regularized operator. A similar analysis was performed by Xu and
Zhou.228 We also introduced a coupled geometric flow equation system for image edge detection.222

Such an algorithm works extremely well with texture images. Recently, we have proposed an evolution
operator based single-step method for image denoising and enhancement.195 Most recently, a family
of differential geometry based multiscale models have been developed for chemical and biomolecular
systems, including fuel cells, ion channels, DNA packing, nanofluidic systems, and virus evolution.221

These models describe not only the structure, but also the dynamics and transport of the above men-
tioned chemical and biomolecular systems.

Most recently, we have extended our earlier variational formulation of surface free energy16–18 to the
analysis of the total solvation free energy42 via differential geometry theory of surfaces. Such an analysis
makes use of the geometry measure theory to represent the surface area density of the solute molecule
by the gradient of the hypersurface function, which can be regarded as the characteristic function of
the solute molecule, and provides a smooth representation of the solvent-solute interface. With this
area representation, we construct a total free energy functional of solvation. The variation of the total
free energy functional leads to coupled generalized Poisson-Boltzmann equation and the generalized
Laplace-Beltrami equation. The latter governs the formation and evolution of the solute characteristic
function. This set of coupled nonlinear PDEs minimizes the total free energy functional. In this approach,
the total free energy functional encompasses not only the curvature effect, the mechanical work and the
electrostatic energy, but also the solvent-solute interactions. Although the spirit of the present approach
is similar to that of Sharp and Honig,183 Gilson et al.,86 Dzubiella et al.,66,67 and our earlier work,16,18

the present work is unique in its rigorous implementation of differential geometry theory of surfaces. The
numerical realization of the new solvation model was carried by using the protocol of the PDE based
molecular surface construction established in the past few years.15–18,223

In terms of computation, the formation and evolution of biomolecular surfaces can be described by
either the Lagrangian formulation or the Eulerian formulation. In the Lagrangian formalism, surface
elements are directly evolved according to a governing equation or a set of rules. In the Eulerian for-
malism, the surface is embedded in a hypersurface function, or a level set function, and such a function
is evolved under prescribed physical and/or biological principles.18,42 A sharp surface can be obtained
from an isosurface extraction procedure, such as the level set approach. Usually, the Lagrangian for-
malism is straightforward for force prescription as shown in our earlier work15 and is computationally
efficient, but typically encounters difficulties in handling geometric singularities, such as surface break-
up or surface merging. In terms of solvation analysis, the Lagrangian representation of biomolecular
surfaces offers a basis for visualization, surface electrostatic potential map and visual perception of
biomolecules. Additionally, the Lagrangian representation is consistent with the conventional setting of
the Poisson-Boltzmann theory. As such, many existing theoretical algorithms and software packages
can be applied directly. Finally, the Lagrangian representation avoids the use of artificially enlarged van
der Waals radii as often required by smooth surface models.42,214

In principle, an isolated molecule can be analyzed by the first principle — a quantum mechani-
cal description of the wavefunction or density distribution of all the electrons and nuclei. However,
such a description is computationally intractable for large biomolecules. Under physiological condition,
biomolecules are in a non-isolate environment, and are interacting with solvent molecules and/or other
biomolecules. Therefore, their wavefunctions overlap spatially, so do their electron density distributions.
Consequently, there is no sharp interface between the solvent and the solute. The Eulerian formulation is
important in the sense that is able to produce an overlapping solvent-solute boundary, which may be able
to describe the true physical boundary between the solvent and solute when its generation is governed
by the variational principle — the total free energy minimization.42,221 Moreover, Eulerian formulation is
important because it is able to handle topological changes during the surface evolution. Finally, Eulerian
formalism provides a convenient approach for multiscale analysis.221 In summary, Lagrangian and Eu-
lerian formulations of solvation models are complementary to each other in many aspects and are both
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important and valuable.
The objective of the present work is to explore the Lagrangian formulation of the differential geome-

try based solvation model, and analyze the similarity and difference of two differential geometry based
formulations. The mathematical analysis of biomolecular surfaces in the Lagrangian formulation is quite
different from that of the Eulerian formulation. The Lagrangian analysis of biomolecular surfaces makes
the direct use of differential geometry theory of surfaces and manifolds. The surface minimization leads
to the Laplace-Beltrami operator, or the mean curvature operator. Whereas the Eulerian analysis of
biomolecular surfaces utilizes the coarea theorem of the geometric measure theory. The resulting op-
erator from surface area minimization can also be identified as a generalized Laplace Beltrami operator
in a higher dimension. The connection of two representations is analyzed in the present work. The
structure of governing equations, and the accuracy and efficiency of two formulations are compared.

The rest of this paper is organized as follows. In Section II, we present the Lagrangian formulation of
differential geometry based solvation models. The total free energy functional of solvation is constructed,
and followed by detailed analysis of on-manifold variations. Such variations produce coupled potential
driven geometric flow and Poisson-Boltzmann equations. Section III is devoted to the computational
methods and algorithms. We discuss different realizations of biomolecular surfaces, including direct on-
manifold evolution and Eulerian embedding approaches. Algorithms for Eulerian and Lagrangian inter
converting are also discussed. A solution strategy for the coupled equations is designed and analyzed.
The proposed PDE methods are of second order in convergence. Method for solvation free energy
calculations is also given. The proposed methods and algorithms are validated in Section IV. A large
number of numerical examples are designed to test the numerical accuracy, convergence order and
computational efficiency of computational methods and algorithms. The proposed differential geometry
based solvation model is applied to two classes of problems in Section V. First, we examine the solvation
free energy calculation of a set of small molecules. We then extend our solvation calculations to a set
proteins. Results are compared with experimental data, those obtained by using our earlier Eulerian
formulation and those obtained by the classic molecular surface definition. Finally, we consider two
cases of salt-regulated protein-protein interactions. The protein binding affinities are computed by using
the proposed new models. The resulting binding affinities compare well with experimental data in the
literature. This paper ends with a conclusion.
II Theory and model
This section presents the differential geometry based solvation model. We first review the theory of sur-
faces and curvatures for smooth manifolds. We then discuss a few free energy functionals of solvation.
These functionals may appear exactly the same as the solvation energy expressions in the classic the-
ory of solvation. However, a fundamental difference is that, in the present approach, the solvent-solute
interface will be obtained by the variational principle, rather than by a prefixed surface, such as the van
der Waals surface or the molecular surface. The governing equations for the solvation system, including
the Poisson-Boltzmann equation and the generalized Laplace Beltrami equation, will be derived from
the first variation.
II.A Manifold and curvature preliminary
In this work, we consider the solvent-solute boundary as a 2-dimensional (2D) differentiable manifold
embedded in a 3D Euclidean space or a hypersurface in a Riemannian manifold. Therefore, the sub-
sequent free energy minimization can be carried out on the 2D manifold. For example, the area of a
solvent-solute interface is modeled as a surface integration over the biomolecular manifold. Therefore, it
is necessary to present a brief review of manifolds and curvatures15,18 so as to establish notations and
provide basic ideas for the further theoretical development.

Consider a C2 immersion f : U → Rn+1, where U ⊂ Rn is an open set and U is compact.226

Here f(u) = (f1(u), f2(u), · · · , fn+1(u)) is a hypersurface element (or a position vector), and u =
(u1, u2, · · · , un) ∈ U . Tangent vectors (or directional vectors) of f are Xi = ∂f

∂ui
, i = 1, 2 · · ·n. The

Jacobi matrix of the mapping f is given by Df = (X1, X2, · · · , Xn). The first fundamental form is a
symmetric, positive definite metric tensor of f , given by I(Xi, Xj) := (gij) = (Df)T · (Df). Its matrix
elements can also be expressed as gij = 〈Xi, Xj〉, where 〈, 〉 is the Euclidean inner product in Rn,
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i, j = 1, 2, · · · , n.
Let N(u) be the unit normal vector given by the Gauss map N : U → Rn+1,

N(u1, u2, · · · , un) := X1 ×X2 · · · ×Xn/‖X1 ×X2 · · · ×Xn‖ ∈ ⊥uf , (1)

where “×′′ denotes the cross product. Here ⊥uf is the normal space of f at point X = f(u), where the
position vector X differs much from tangent vectors Xi. The normal vector N is perpendicular to the
tangent hyperplane Tuf at X. Note that Tuf ⊕⊥uf = Tf(u)Rn, the tangent space at X. By means of the
normal vector N and tangent vector Xi, the second fundamental form is given by

II(Xi, Xj) = (hij)i,j=1,2,···n =

(〈
−∂N
∂ui

, Xj

〉)
ij

. (2)

The mean curvature can be calculated from H = 1
nhijg

ji, where we use the Einstein summation con-
vention, and (gij) = (gij)

−1.
For n = 2, which fits into our purpose, let us choose f(u) = (u1,u2, χ), where χ(u1, u2) is a function

of interest. We have the first fundamental form:

(gij) =

(
1 + χ2

1 χ1χ2

χ1χ2 1 + χ2
2

)
, (3)

where χi = ∂χ
∂ui

, i = 1, 2. The inverse matrix of (gij) is given by

(gij) =
1

g

(
1 + χ2

2 −χ1χ2

−χ1χ2 1 + χ2
1

)
, (4)

where g = Det(gij) = 1 + χ2
1 + χ2

2 is the Gram determinant. The normal vector can be computed from
Eq. (1)

N =
(−χ1,−χ2, 1)

√
g

, (5)

The second fundamental form is given by (hij) =
(

1√
gχuiuj

)
, i.e., the Hessian matrix of χ.

The explicit form for the mean curvature operator can be written as

H =
1

2g
(h11g22 + h22g11 − 2h12g12) (6)

=
1

2

[
∂

∂u1

(
χ1√
g

)
+

∂

∂u2

(
χ2√
g

)]
. (7)

In Section II.C.2, we show that the mean curvature operator can be expressed in a (3D) formulation.
II.B Solvation free energy functionals
This subsection presents a few solvation models and establishes the notations for the further develop-
ment of differential geometry based solvation analysis. A polar solvation model is described before a
nonpolar solvation model is given. The total solvation free energy functional is designed as the combi-
nation of the polar and nonpolar components.
II.B.1 Polar solvation functional
As illustrated in Fig. 1 above, the polar solvation energy is generally associated with a difference in
charging free energies in vacuum and solvent. The origin of polar solvation energy is electrostatic inter-
actions, which are of long range in nature and ubiquitous for any system of charged or polar molecules.

In general, biomolecules are very polarizable and can be highly charged. Therefore, according to
electrodynamics, both electric field E and electric displacement D are important quantities for describing
biomolecules. However, it is a convention in biophysics to only deal with the electric field in many
force field models. As such, the polarization effects of neutral biomolecules are described as explicit

9



partial point charges associated with atoms. This approach is simple and systematic, and provides a
reasonable approximation to a system without a strong external field, rapidly changing electric current
and external magnetic field. In fact, if there is no external magnetic field and moving electric filed,
the effects of magnetic field H, magnetic displacement B and magnetic displacement are normally
neglected in describing biomolecular systems.

The free energy functional of the electrostatic system was given by Sharp and Honig,183 and Gilson
et al.86 A sharp solvent-solute interface is assumed in their free energy expression

Gp =

∫
Ω

(
λmρmφ−

1

2
ε|∇φ|2 − kBTλs

Nc∑
i=1

ci

(
e−φqi/kBT − 1

))
dr (8)

where Ω denotes the whole computational domain, φ is the electrostatic potential, kB is the Boltzmann
constant, T is the temperature, cj is the bulk concentration of jth ionic species, Nc is the number of
ionic species, and ρm(x, z) =

∑Nm
j Qjδ(x− zj) is the canonical density of molecular free charges, with

Qj being partial charges on (discrete) atoms and Nm is the number of charged particles. Here, the
permittivity ε(r) (also called dielectric coefficient) and the ionic function λm(r) and λs(r) are defined
as6,82,131

ε(r) = εmλm + εsλs (9)

and

λm(r) =

{
1 r ∈ Ωm
0 r ∈ Ωs

, λs(r) =

{
0 r ∈ Ωm
1 r ∈ Ωs

(10)

where, the computational domain is divided into two subdomains, Ω = Ωm∪Ωs, with Ωm and Ωs, denoting
the solute and solvent accessible regions, respectively. The domains Ωm and Ωs are separated by an
interface Γ. Here, εm = ε0εm and εs = ε0εs are the permittivities of the macromolecule and the solvent,
respectively, where ε0 is the permittivity of vacuum and εα (α = m, s) are relative permittivities. We treat
εα as constants. Note that in the class PB theory, these functions explicitly depend only on the radii of
the solute6,82 — they do not depend on Γ. However, in the present theory, these functions only implicitly
depend on the radii of the solute. They depend explicitly on the interface Γ, which in turn, depends on
the total energy functional.

The standard PB equation86,183 can be derived by the variation of the electrostatic energy functional
Eq. (8). The PB theory has a few well-known limitations. First, most implicit solvent models assume
linear and local solvent response. However, nonlinear solvent response (usually through dielectric sat-
uration or electrostriction) can be important in regions of strong electric field such as the regions near
highly charged ions, biomolecules, and other interfaces.71,182,216 Nonlocal solvent response, which gen-
erally describes the finite non-zero size of water and its unique hydrogen bonding with solute and other
solvent molecules, can be crucial in accurately describing the orientation of water at biomolecular inter-
faces,34 the solvation of cations from anions, and the solvation of asymmetric charge distributions.142

Additionally, the PB theory utilizes the mean-field treatment for ions, which assumes that each ion expe-
riences only the average influence of the other ions in solution. Such averaging precludes the detailed
ion-ion interaction including the Coulombic interactions of ions and repulsive and attractive pairing. It
thereby keeps us from the important analysis of correlations and fluctuations in the solutions with di-
valent and multivalent ions surrounding highly-charged molecules such as nucleic acids.41,50,176,202,203

Finally, as implied by the above limitations, the PB theory neglects the detailed ion-solvent interactions
and eliminates the differences between ions species in solutions which can be important in biophysical
modeling. However, these limitations are not unique to the PB and apply to most other implicit solvent
models. Furthermore, new implicit solvent models5,50,147,161,202 and hybrid treatments11,115,145,153,211

have been proposed in the literature to address these limitations and thereby extend the applicability of
the PB theory while preserving some of its computational efficiency through pre-averaging solvent and
ion response.
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II.B.2 Nonpolar solvation functional
Poisson-Boltzmann methods provide polar solvation energies and therefore must be complemented by
nonpolar solvation models to provide a complete view of solvent-solute interactions. As illustrated in
Fig. 1, nonpolar solvation is generally associated with the insertion of the uncharged solute into solvent.
There are many nonpolar solvation models available. The most commonly used one is the scaled
particle theory (SPT)164,194 which includes the energy of surface tension effect and the mechanical work
of immersing a particle into the solvent. Recent work by Levy, Gallicchio, and others79–81,118,214 has
demonstrated the importance of nonpolar solvent models which include treatment of attractive solute-
solvent dispersion terms (#5 in Fig. 1) as well as models of solvent-solvent repulsive interactions (#4 in
Fig. 1), in addition to both area and volume contributions.214 In the present work, we use the following
model for nonpolar solvation free energies214

Gnp = γ(Area) + p(Vol) +

∫
Ωs

ρsU
vdWdr, (11)

where γ is the surface tension, Area is the solvent-excluded area of the solute, p is the hydrodynamic
pressure, Vol is the solvent-excluded volume of the solute, ρs is the solvent density, Ωs denotes the
solvent accessible region, and UvdW is the solvent-solute van der Waals (vdW) interaction potential.
The first two terms in Eq. (11) are those from the SPT model.164,194 In general, UvdW can be obtained
by the sum of the interaction of individual atoms in Ωm with the solvent continuum in Ωs under the
assumption that the nonpolar solute-solvent potential is pairwise: UvdW =

∑
i V

vdW
i . This model of

nonpolar solvation has been demonstrated by us to give good agreement with explicit solvent solvation
forces on proteins214 and RNA hairpins.63 Work by Levy and co-workers has demonstrated the good
performance of a similar model.79–81,118

In the present work, we further allow the solvent density ρs to be a function of position in general. In
particular, we split the solvent density ρs into the sum of atomic or ionic density distribution functions
ρs =

∑
i ρs,i. The distribution of an individual solvent component can be computed by integral equations

or other approaches, such as Monte Carlo and generalized Langevin equation.20,77,210 This design of
solvent density allows us to recover the nonlinear and nonlocal effects of the solvent-solute interactions.
II.B.3 Total free energy functional of solvation
The electrostatic free energy functional is complemented by nonpolar free energy functional to give the
total free energy functional of solvation for biomolecules at equilibrium

Gfull = γ(Area) + p(Vol) +

∫
Ωs

ρsU
vdWdr

+

∫
Ωm

(
ρmφ−

εm
2
|∇φ|2

)
dr−

∫
Ωs

(
εs
2
|∇φ|2 + kBT

Nc∑
i=1

ci

(
e−φqi/kBT − 1

))
dr, (12)

where we have used the coefficient definitions provided in Eqs. 9 and 10 to simplify the integrals. This to-
tal free energy functional might be subject to a variety of corrections and modifications. However, it is de-
signed to maintain the computational efficiency of the implicit solvent models, while effectively address-
ing a number of major concerns in the implicit solvent theory. First, it provides atomic details of solute-
solvent interactions to describe solvent behavior in situations where nonlinear and nonlocal solvent re-
sponses to the solute are important.1,2,4,8,28,34,38,49,66–68,74,76,97,98,105,113,116,141,143,168,187,198,199,205,214

Additionally, as shown in the next subsection, the associated solvation model allows the solvent-solute
interface to vary according to the minimization of the total free energy functional, which removes the
ad hoc nature of prefixed surface definitions in the current practice and the associated controversy in
choosing surfaces.62,64

II.C Lagrangian formulation of the solvation model
The total free energy functional (12) is an important component of the present differential geometry
based solvation model. However, it does not provide a protocol for practical solvation analysis. This
subsection describes the variation principle which leads to desirable governing equations for the surface
formation and evolution, and for the evaluation of the electrostatic potential.
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II.C.1 Surface variation
In our previous minimal molecular surface (MMS) model,16,18 the surface variation was accomplished via
the Euler-Lagrange equation in the Eulerian representation. In the present Lagrangian representation,
we perform the minimization of Gfull on manifold Ξ with respect to the solvent-solute interface Γ. In the
spirit of differential geometry, the interface can be represented as a closed surface in the 3D Euclidean
space and denoted as Γ(u1, u2), which depends on the two real parameters u1 and u2. The solute
region, Ωm(Γ) and the solvent region, Ωs(Γ) can be regarded as functions of Γ(u1, u2). We use δ(·)

δΓ to
denote the first variation of (·) with respect to surface definition Γ,

δGfull

δΓ
=

δ

δΓ

[
γ(Area) + p(Vol) +

∫
Ωs

ρsU
vdWdr +

∫
Ωm

ρmφdr (13)

−1

2

(∫
Ωs

εs|∇φ|2dr +

∫
Ωm

εm|∇φ|2dr
)
−
∫

Ωs

kBT

Nc∑
i=1

ci

(
e−φqi/kBT − 1

)
dr

]
.

We set δGfull

δΓ = 0 to construct the governing equation that describes the optimized solvent-solute in-
terface. To carry out this variation, we express the surface area and volume as the following integrals

Area =

∫
Ξ

dσ and Vol =

∫
Ωm

dr, (14)

where dσ represents the infinitesimally small surface element on the solute-solvent interface. The com-
plete first variation formula of G can be obtained by adding up the variation of each term from Eq. (13).
To this end, we consider a surface element f(u1, u2) and its infinitesimal displacement in the normal
direction

f (ε)(u1, u2) := f(u1, u2) + εϕ(u1, u2) ·N(u1, u2) (15)

where N is the outward unit normal direction and ϕ is an arbitrary C2 function. In other words, we
consider a one-parameter family f (ε) of surface elements and the unperturbed surface element is a
particular case, f = f (0). The tangent vectors of f (ε) are given by

∂f (ε)

∂ui
=

∂f

∂ui
+ ε

∂ϕ

∂ui
N + εϕ

∂N

∂ui
. (16)

To analyze the impact of the perturbation, we examine the first fundamental form of differentiable mani-
folds

g
(ε)
ij =

〈
∂f (ε)

∂ui
,
∂f (ε)

∂uj

〉
(17)

= gij + 2εϕ

〈
∂f

∂ui
,
∂N

∂uj

〉
+ ε2

(
ϕ2

〈
∂N

∂ui
,
∂N

∂uj

〉
+
∂ϕ

∂ui

∂ϕ

∂uj

)
= gij − 2εϕhij +O(ε2).

We therefore have
∂g

(ε)
ij

∂ε

∣∣∣∣∣
ε=0

= −2ϕhij . (18)
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By virtue of surface elements f (ε) and the first fundamental form, we can carry out the surface variation
of the area as follows

δA

δΓ
=

δ

δΓ

(∫
Ξ

dσ

)
(19)

=
δ

δΓ

(∫
U

√
gdu1du2

)
=

∂

∂ε

∣∣∣∣
ε=0

(∫
U

√
g(ε)du1du2

)
=

(∫
U

∂

∂ε

∣∣∣∣
ε=0

√
g(ε)du1du2

)
=

∫
U

1

2
√
g

(
g22

∂g
(ε)
11

∂ε

∣∣∣∣∣
ε=0

+ g11
∂g

(ε)
22

∂ε

∣∣∣∣∣
ε=0

− 2g12
∂g

(ε)
12

∂ε

∣∣∣∣∣
ε=0

)
du1du2

= −
∫
U

ϕ
1

g
(h11g22 + h22g11 − 2h12g12)

√
gdu1du2

= −
∫
U

ϕ2H
√
gdu1du2

= −
∫

Ξ

ϕ2Hdσ,

where g is the Gram determinant, g = Det(gij) = g11g22−g2
12 andH the mean curvatureH = 1

2g (h11g22+

h22g11 − 2h12g12), where gij and hij are defined in Section II.A.
The first variation of the volume enclosed by the manifold Ξ is derived as follows. We first express the

volume enclosed by the surface element f (ε) as a Taylor expansion in terms of ε

Vol(f (ε)) = Vol(f) + ε
δVol

δΓ
+O(ε2). (20)

As shown in the above calculation, we can pursue the volume variation with respect to Γ by means of
the variation with respect to ε

δVol

δΓ
=
∂Vol(f (ε))

∂ε

∣∣∣∣
ε=0

=
∂(Vol(f (ε))−Vol(f))

∂ε

∣∣∣∣
ε=0

. (21)

It follows21

δVol

δΓ
=

∂(Vol(f (ε))−Vol(f))

∂ε

∣∣∣∣
ε=0

=
∂
∫ ε

0

∫
U

√
DetJdu1du2dτ

∂ε

∣∣∣∣∣
ε=0

=

∫
U

√
DetJdu1du2

∣∣∣∣
τ=ε=0

=

∫
U

ϕ
√
gdu1du2

=

∫
Ξ

ϕdσ, (22)
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where matrix J is defined as

J =


〈
∂f (τ)

∂u1
, ∂f

(τ)

∂u1

〉 〈
∂f (τ)

∂u1
, ∂f

(τ)

∂u2

〉 〈
∂f (τ)

∂u1
, ∂f

(τ)

∂τ

〉〈
∂f (τ)

∂u2
, ∂f

(τ)

∂u1

〉 〈
∂f (τ)

∂u2
, ∂f

(τ)

∂u2

〉 〈
∂f (τ)

∂u2
, ∂f

(τ)

∂τ

〉〈
∂f (τ)

∂τ , ∂f
(τ)

∂u1

〉 〈
∂f (τ)

∂τ , ∂f
(τ)

∂u2

〉 〈
∂f (τ)

∂τ , ∂f
(τ)

∂τ

〉
 , (23)

and similarly, f (τ) = f + τϕ ·N, τ ∈ (0, ε). We have carried out the calculation of inner products〈
∂f (τ)

∂ui
,
∂f (τ)

∂τ

〉∣∣∣∣
τ=0

=

〈
∂f (τ)

∂ui
, ϕN

〉∣∣∣∣
τ=0

= 0, (24)

where
〈
∂f (τ)

∂ui
, ϕN

〉
vanishes since ∂f (τ)

∂ui
and N are orthogonal to each other. Moreover, we have〈
∂f (τ)

∂τ
,
∂f (τ)

∂τ

〉
= ϕ2, (25)

where we use the fact that ∂f
(τ)

∂τ = ϕN. Therefore, we can compute the determinant of the J matrix as

DetJ |τ=0 = Det


〈
∂f
∂u1

, ∂f∂u1

〉 〈
∂f
∂u1

, ∂f∂u2

〉
0〈

∂f
∂u2

, ∂f∂u1

〉 〈
∂f
∂u2

, ∂f∂u2

〉
0

0 0 ϕ2

 = ϕ2g. (26)

Moreover, the above derivation process can be extended to the first variation of a general volume
integral

∫
Ωm

F (r)dr.

δ
(∫

Ωm
Fdr

)
δΓ

=
∂
∫ ε

0

∫
U
F (u1, u2, τ)

√
DetJdu1du2dτ

∂ε

∣∣∣∣∣
ε=0

(27)

=

∫
Ξ

F (u1, u2)ϕdσ

where F represents a general integrable function of u1 and u2, and is defined in the whole domain.
Similar to the volume variation, we end up with a surface integral.

Furthermore, because
∫

Ω
Fdr is independent of the surface variation, we have

δ(
∫

Ω
Fdr)

δΓ
= 0. (28)

Then, it follows that
δ
(∫

Ωs
Fdr

)
δΓ

=
δ(
∫

Ω
Fdr−

∫
Ωm

Fdr)

δΓ
= −

∫
Ξ

Fϕdσ. (29)

Therefore, the first variation of all other volume integration terms in Eq. (13) can be attained by
replacing F with appropriate integrands in Eq. (27) and Eq. (29)

δ
(∫

Ωm
ρmφdr

)
δΓ

=

∫
Ξ

ρmφdσ, (30)

δ
(∫

Ωs
εs|∇φ|2dr

)
δΓ

= −
∫

Ξ

εs|∇φ|2ϕdσ, (31)
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δ
(∫

Ωm
εm|∇φ|2dr

)
δΓ

=

∫
Ξ

εm|∇φ|2ϕdσ, (32)

δ
(∫

Ωs
ρsU

vdWdr
)

δΓ
= −

∫
Ξ

ρsU
vdWϕdσ (33)

and

δ
(∫

Ωs
kBT

∑Nc
i=1 ci

(
e−φqi/kBT − 1

)
dr
)

δΓ
(34)

= −
∫

Ξ

kBT

Nc∑
i=1

ci

(
e−φqi/kBT − 1

)
ϕdσ,

where ∇φ on the surface represents the first derivative of potential φ. These expressions have different
signs due to the flux continuity condition in the Poisson-Boltzmann equation when the discontinuous
dielectric constant is applied.

Substituting Eqs. (19), (22), (30) (31), (32), (33), (34) into Eq. (13) yields

δGfull

δΓ
=

∫
Ξ

[
−2γH + p− ρsUvdW + ρmφ+

1

2
εs|∇φ|2 −

1

2
εm|∇φ|2 (35)

+kBT

Nc∑
i=1

ci

(
e−φqi/kBT − 1

)]
ϕdσ = 0.

Since ϕ is an arbitrary function, the following condition must be satisfied for each point on the optimized
interface

Wn ≡ −2γH + p− ρsUvdW + ρmφ+
1

2
εs|∇φ|2 −

1

2
εm|∇φ|2 (36)

+kBT

Nc∑
i=1

ci

(
e−φqi/kBT − 1

)
= 0

It is noted that this condition was also obtained in our earlier work, but was derived in the Eulerian
representation using different mathematical techniques.42,221

II.C.2 Governing equations
The directional derivative of solvation free energy functional G in the direction of a normal variation ϕ
can be expressed as

DϕGfull(f) =
∂Gfull(f

(ε))

∂ε

∣∣∣∣
ε=0

=

∫
Ξ

Wnϕdσ. (37)

If we choose ϕ(u1, u2) = −Wn, then DϕGfull(f) = −
∫

Ξ
W 2
ndσ ≤ 0. This means that the total free energy

decreases along the normal direction when ϕ(u1, u2) = −Wn until it reaches a local minimal. Therefore
the evolution f (ε) = f − εWnN leads to a steady state and associated solvent-solute interface with
strictly smaller energy. This analysis motivates the following potential driven geometric flow equation for
the optimization of the solute-solvent interface

∂X

∂t
= −WnN, (38)

where X ∈ Ξ ⊂ R3 is a position vector on the evolving manifold Ξ. Equation (38) is a Lagrange formu-
lation of generalized geometric flows and its structure has been discussed in our earlier work.15 This
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approach is computationally efficient but may have difficulties in handling topological changes during the
biomolecule surface evolution. Numerical schemes for the solution of geometric flow equations will be
described in Section III.B.

The electrostatic potential φ is governed by the Poisson-Boltzmann equation for traditional continuum
biomolecular electrostatics applications. In the present approach, the Poisson-Boltzmann equation can
be easily derived from the variation of the full free energy functional in Eq. (12) with respect to the
electrostatic potential φ for a fixed interface Γ via the Euler Lagrange equation86,183,221

δGfull

δφ
= 0⇒ −∇ · (ε(r)∇φ)− λs(r)

Nc∑
i=1

qicie
−φqi/kBT = λmρm. (39)

This Poisson-Boltzmann equation admits a sharp solvent-solute interface Γ and is quite different from
the generalized Poisson-Boltzmann equation derived in our earlier work,42,221 which has an optimized
smooth surface (OSS).

Note that the Poisson-Boltzmann equation (39) and the potential driven geometry flow equation (38)
are fully coupled. The existence and the uniqueness of their solution under the biomolecular context
can be an interesting mathematical issue. In practice, these two equations have to be solved in a self-
consistent manner. This aspect is discussed in §III.B.3. The solution of the Poisson-Boltzmann equation
is subject to the far field boundary condition, which in practice can be approximated by the Dirichlet type
of boundary conditions commonly used in continuum electrostatic modeling (see Eq. (44)).

Assuming that there are only two mobile ion spices and all ions are univalent, we can treat them as
positive and negative ions with charge +ec and −ec, where ec is the electron charge. Then the nonlinear
Poisson-Boltzmann (NLPB) equation (39) becomes82,95

−∇ · (ε(r)∇φ) + κ2(r)

(
kBT

ec

)
sinh

(
ecφ

kBT

)
= λmρm, (40)

where κ is the modified Debye-Hückel screening function describing ion strength and is determined by

κ2 =

(
2λsNae

2
c

1000kBT
Is

)
, (41)

where Na the Avogadro’s number, and Is the ion strength in the unit of mole. Numerically, when T =
298K, the value of κ2 can be obtained via κ2 = 0.675365 Å−2Is. Note that Debye-Hückel parameter κ
can also be expressed as86

κ2 =
λs
kBT

Nc∑
i=1

ciq
2
i . (42)

Equations (41) and (42) are equivalent to each other via the following formula95

Is =
1

2e2
c

Nc∑
i=1

ciq
2
i =

1000M

Na
, (43)

where M is the bulk concentration of ions in the unit of mole per cubic centimeter
(

mol
cm3

)
for both positive

and negative ionic charges. Equation (40) is subject to the far-field boundary condition φ(∞) = 0.
However, the Dirichlet boundary condition is used in practical computations

φ(r) =
∑
i

φi =

Nm∑
i=1

Qi
εs|r− ri|

e−κ|r−ri|/εs ∀r ∈ ∂Ω, (44)

where φi is the exact solution of a single ion in a homogeneous media. The linear superposition in Eq.
(44) is very accurate if the macromolecule domain Ωm is sufficiently away from the boundary ∂Ω.
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Let define a dimensionless potential u through u = ecφ/kBT , one yields another formulation of the
nonlinear PB equation in terms of u36

−∇ · (ε(r)∇u) + κ2(r) sinh(u) =
ec
kBT

λmρm. (45)

If the potential is very weak, i.e., u � 1, one can numerically solve the following linearized PB (LPB)
equation

−∇ · (ε(r)∇u) + κ2(r)u(r) =
ec
kBT

λmρm. (46)

Note that in the Poisson-Boltzmann theory, there are two unit conventions in the literature that differs
by a factor of 4π. Specifically, the convention used by Sharp and Honig,184 and in some of our earlier
work36,82 has a factor of 4π in the Poisson-Boltzmann equation. Whereas, the convention used by
Gilson et al.86 and in our recent work42,221 as well as the present derivation, the 4π factor does not
appear. Therefore, care is needed in the comparison of the electrostatic potentials computed by these
two conventions.
III Method and algorithm
This section discusses the solution strategies for the coupled potential driven geometric flow and the
Poisson-Boltzmann equation.
III.A Interconversion between the Lagrangian and Eulerian representations
The generalized geometric flow equation (38) is in the Lagrangian representation which is well suited for
boundary element or finite element type of methods. Although this Lagrangian formulation of geometry
flow models is relatively easy to implement in many applications, such as surface smoothing, it can lead
to computational difficulties in the case where there are topological changes, such as surface breaking
or merging. These difficulties origin from the fact of singularity development on the manifold which is
supposed to be smooth and differentiable. These topological changes commonly occur in biomolecular
surface constructions and molecular dynamics applications. One way to overcome these obstacles is to
use the Eulerian formulation.15–18,223 The essential idea of resolving the difficulty of a “singular manifold”
or non-smooth surface is to embed the problem in a higher dimensional space such that the embedded
function is smooth and differentiable. Another way to avoid the difficulty of singular manifolds is to use
a hybrid Eulerian-Lagrangian approach for biomolecular surface generation. In such a hybrid approach,
the surface evolution is carried out most in the Lagrangian representation, but is temporally switched
to the Eulerian representation whenever there is a singularity development on the manifold. In the rest
of this subsection, we discuss computational tools for the interconversion between the Lagrangian and
Eulerian representations.
III.A.1 Embedding the Lagrangian dynamics into the Eulerian representation
To embed a Lagrangian operator into its Eulerian representation, we introduce arbitrary hypersurface
function S(r) with r ∈ R3. The earlier function χ(u1, u2) can be obtained by solving S = 0. For example,
if S = X0x

2 + Y0y
3 + Z0z +D0, where, X0, Y0 and Z0 are constants, and z0 6= 0, then one can set

χ(t) = z = −x0x
2 − y0y

3 − d0, x0 =
X0

Z0
, y0 =

Y0

Z0
, d0 =

D0

Z0
. (47)

Via this example, it is easy to verify that the unit norm vector defined in Eq. (5) can also be expressed in
term of S

N =
(−χ1,−χ2, 1)

√
g

=
∇S
‖∇S‖

. (48)

Then the desired surface can be represented as a set of points with a constant value of function S

Ξ = {r|S(r) = L} (49)
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where L is an isosurface value. By the chain rule

∂S

∂t
=

∂S

∂X
· ∂X
∂t

(50)

= ∇S · ∂X
∂t

= −Wn∇S ·N,

where X is a 3D position vector confined to the manifold Ξ. Due to Eq. (48), one has

∂S

∂t
= −‖∇S‖Wn (51)

= ‖∇S‖
[
2γH − p+ ρsU

vdW − ρmφ−
1

2
εs|∇φ|2

+
1

2
εm|∇φ|2 − kBT

Nc∑
i=1

ci

(
e−φqi/kBT − 1

)]

where all terms should be expressed in terms of level surface function S. In particular, surface mean
curvature H must be rewritten in terms of S. The explicit form of mean curvature (7) implies the equality
2H = ∇ ·N which gives

H =
1

2

[
∂

∂u1

(
χ1√
g

)
+

∂

∂u2

(
χ2√
g

)]
=

1

2
∇ ·
(
∇S
‖∇S‖

)
. (52)

One can easily verify this relation by Eq. (47). Equation (52) connects the Lagrangian representation of
the Laplace-Beltrami operator with its Eulerian representation. Eventually, the potential driven geometry
flow equation in the Eulerian form is obtained for the optimized solvent-solute interface

∂S

∂t
= ‖∇S‖

[
∇ ·
(
γ∇S
‖∇S‖

)
− p+ ρsU

vdW − ρmφ−
1

2
εs|∇φ|2 (53)

+
1

2
εm|∇φ|2 − kBT

Nc∑
i=1

ci

(
e−φqi/kBT − 1

)]

= ‖∇S‖
[
γ∇ ·

(
∇S
‖∇S‖

)
+ V

]
where

V = −p+ ρsU
vdW − ρmφ−

1

2
εs|∇φ|2 +

1

2
εm|∇φ|2 − kBT

Nc∑
i=1

ci

(
e−φqi/kBT − 1

)
. (54)

Equation (53) is the same as the generalized geometric flow equation derived in our earlier work using
the characteristic function and geometric measure theory.42 This consistency lays the foundation for
switches forwards and backwards between the Eulerian and Lagrangian representations and the de-
velopment of hybrid methods for biomolecular surfaces. In fact, Eq. (53) has the same structure as
that of our potential and curvature driven geometric flows and V is essentially the generalized potential
defined in our earlier work.15 Eq. (53) is subject to the similar boundary and initial conditions as those
of geometric PDEs described in our earlier work.15,16,18

III.A.2 Transform from the Lagrangian representation to the Eulerian representation
Usually the Lagrangian representation of surfaces is expressed in the form of triangulations.173 To con-
vert the Lagrangian representation of surfaces into the Eulerian representation, specifically, a Cartesian
grid, we need to register the set of intersecting points between the surface and the Cartesian mesh. For
the purpose of computing the electrostatic potential from the Poisson-Boltzmann equation which admits
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discontinuous coefficients across the solvent-solute interface, we have to calculate the norms at all of the
intersecting points as well. A numerical algorithm for this Lagrangian-Eulerian transformation of molecu-
lar surfaces was developed by Zhou et al.,237 although the original paper did not provide implementation
details.

We first set up a plane equation for each triangle on the molecular surface. For each plane equation,
we compute all the intersection points between plane and the Cartesian mesh. For this set of intersecting
points, we further record the subset that are located within the triangle. For this subset of intersecting
points, we finally compute their norms as well by the second order finite difference scheme.237 This
algorithm has been extensively tested in our previous work.18,82,230,237

III.A.3 Transform from the Eulerian representation to the Lagrangian representation
Once the hypersurface function S(x, y, z, T ), where T is the stopping time, is obtained from the potential
driven geometric flow equation (53) the solvent-solute interface can be extracted easily as an isosurface,
S(x, y, z, T ) = L, where isosurface value L = (1 − δ)S0. Here S0 is set as the initial amplitude in
geometry flow equation and 1 > δ > 0. In our earlier work,16,18 we have chosen S0 = 1000 and a
small δ. Recently, in our differential geometry based multiscale models,221 we have designated S as
characteristic function of the solute and chosen 0 ≤ S ≤ 1. There is no need to specify L in such a
formulation. In the present work, we choose L = Smax/2, where Smax is the maximum of S. This choice
is computationally stable and delivers correct MMSs, when the potential term is absent. It is to point
out that S here is quite different from the S used in our Eulerian formulation.42 In the present work,
S only serves as a hypersurface function for evolving and extracting the solvent-solute interface and
can take any real value. Numerically, isosurface extraction can be done by existing software such as
MATLAB. However, for further electrostatic analysis, we need a Cartesian representation of the interface
locations and the associated norm values. Therefore, we construct a stand-alone algorithm to extract
interface information. To this end, the marching cubes method is adopted.128 For a given grid partition,
the marching cubes algorithm simply deals with a local meshing problem by processing each cell or
cube independently. Each vertex of a cube can be either greater or less than the threshold value L,
giving 256 different scenarios. In considering the symmetry and complementarity, there are only 15
canonical configurations in each cell needed to be addressed for the local meshing.59,128 A look-up
table is a quite efficient local triangulation or Cartesian algorithm. The marching cubes method can
be modified in many ways to improve the accuracy, efficiency, robustness, and topological correctness.
Auxiliary binary tree structures are typically employed in the range-space approaches, such as kd-tree
method and interval tree method, to speed up the marching cubes method. For a structured grid dataset,
geometric searching methods exploiting spatial coherence can be simpler and more efficient than the
range space approaches.

To implement this scheme, first all points inside or outside the surface must be identified according to
S value in the Cartesian grid domain. The surface must intersect those cube edges where one vertex
is outside and the other is inside the surface. Therefore the surface intersection points and their normal
directions can be approximated by linear interpolation. For instant, to compute an intersection point ro
between an inside grid point r1 with value S1 and an outside grid point r2 with value S2, the distance d
between ro and r1 is calculated by

L = S1 ∗ (1− d) + S2 ∗ d (55)

d =
S1 − L
S1 − S2

where L is the isosurface function value. Obviously, with known positions r1 and r2, distance d deter-
mines the position of the intersection point ro. To calculate the norm vector at ro, we need to compute the
normal vectors at r1 and r2. In general, the normal direction of a grid point (xi, yj , zk) can be estimated
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by

nx(xi, yj , zk) =
Si+1,j,k − Si−1,j,k

2∆x
(56)

ny(xi, yj , zk) =
Si,j+1,k − Si,j−1,k

2∆y

nz(xi, yj , zk) =
Si,j,k+1 − Si,j,k−1

2∆z
n = (nx, ny, nz)

where nx, ny and nz are the x, y and z components of the norm, respectively. Thus, the norm at the
intersecting point ro, denoted as no, can be interpolated through n1 and n2, the norms of r1 and r2,
respectively

no = (1− d)n1 + dn2. (57)

Clearly, the choice of L = Smax/2 offers the best computational accuracy and stability. The unit norm No

at the intersecting point can be easily computed as No = no
‖no‖ . This algorithm is used in our calculation

of unit norms at the intersecting points. Obviously, higher-order algorithms can be easily constructed
when they are needed.
III.A.4 Numerical surface integral and volume integral in the Eulerian representation
Very often, we need to accurately carry out surface integration and volume integration in the Eulerian
representation. The surface integral of a density function f can be approximated by189∫

Ξ

f(x, y, z)dσ =

∫
Ω

f(x, y, z)δ(d(x, y, z))dr ≈
∑
i,j,k

f(xi, yj , zk)δ̃i,j,kh
3 (58)

where (xi, yj , zk) is the coordinate of grid point (i, j, k), d(x, y, z) is the distance of a point (x, y, z) defined
in Ω from the interface Γ, h is the uniform grid size, and f(x, y, z) is the surface density function defined
on Γ. The delta function δ̃i,j,k is given by

δ̃i,j,k = δ̃
(+x)
i,j,k + δ̃

(−x)
i,j,k + δ̃

(+y)
i,j,k + δ̃

(−y)
i,j,k + δ̃

(+z)
i,j,k + δ̃

(−z)
i,j,k (59)

where δ̃(±α)
i,j,k , (α = x, y, z) are discrete delta functions.189 To carry out integration exactly on the interface,

we use the following discrete surface integration formula83∫
Ξ

f(x, y, z)dσ ≈
∑

(i,j,k)∈I

(
f(xo, yj , zk)

|nx|
h

+ f(xi, yo, zk)
|ny|
h

+ f(xi, yj , zo)
|nz|
h

)
h3 (60)

where (xo, yj , zk) is the intersecting point of the interface and the x meshline that passes through (i, j, k),
and nx is the x component of the normal vector at (xo, yj , zk). Similar relations exist between (xi, yo, zk)
and ny, and (xi, yj , zo) and nz. Since Eq. (60) has already taken into account the contribution from
irregular grid points outside the interface, the summation is restricted to I, the set of irregular grid points
inside or on the interface.83 The derivation of Eq. (60) is lengthy and is omitted here but it can be
seen elsewhere.83 The surface area can be calculated by setting f = 1 in Eq. (60). The error of the
surface integration depends on the grid resolution and was observed to be approximately second-order
convergence.83

The volume integral of the density function f can be simply approximated by83∫
Ωm

f(x, y, z)dr ≈
∑

(i,j,k)∈J

f(xi, yj , zk)h3 (61)

where the summation is over J , the set of points inside the surface.
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III.B Solution strategies
III.B.1 Solution of the potential driven geometry flow equation
The solution of potential driven geometric flow equation, or the generalized Laplace-Beltrami equation,
has been discussed in our earlier work,18,42 including many discretization schemes. Here, we present
a brief description with an emphasis on different details. An important issue is how to determine all of
the physical parameters involved in solving Eq. (53). Some parameters in the literature,118,148 can be
adopted for this purpose. However, due to the nonpolar solvation energy expression in our model, not
all parameters can be adopted from the literature. In particular, surface tension γ is used as a fitting
parameter in our model due to the ambiguity of its specific value in atomic-scale models.118,148,214 To
this end, we write

∂S

∂t
= ‖∇S‖

[
∇ ·
(
γ
∇S
‖∇S‖

)
+ V

]
(62)

= ‖∇S‖γ
[
∇ ·
(
∇S
‖∇S‖

)
+ Vγ

]
where Vγ = V

γ . In addition to the Lennard Jones parameters ε̄i, σs and σi, other parameters that are to
be determined in the generalized geometry flow equation are p/γ, ρs/γ, εs/γ, εm/γ.

Since near the solvent-solution interface, ‖∇S‖2 is much larger than 1,18 it does not make a significant
difference in practice to modify Eq. (62) as

∂S

∂t′
=
√

1 + ‖∇S‖2
[
∇ ·

(
∇S√

1 + ‖∇S‖2

)
+ Vγ

]
(63)

where t′ = tγ. This modification is necessary to avoid the possible blowup during the surface evolution
where S2

x + S2
y + S2

z is very small. For the initial value of S, we consider an indicator function

S(x, y, z, 0) =

{
S0, (x, y, z) ∈ D
0, otherwise (64)

where we define the domain enclosed by the solvent accessible surface to be D =
⋃Na
i=1{r : |r− ri| ≤

ri + rm}, where rm is the probe radius, ri = (xi, yi, zi), i = 1, · · · , n is the atom center, and ri represents
the radius of the ith atom. Here Na denotes the total number of the atoms in the molecule. To protect the
van der Waals surface and make the computation more efficient, we only update the values of S(x, y, z, t)

at the points in between van der Waals surface and solvent accessible surface. i.e., (x, y, z) ∈
⋃Na
i=1{r :

|r− ri| < (ri + rm) and |r− ri| >= ri}. In practice, the forward Euler method is employed for time
integration, while the second order central different scheme is used for the spatial discretization.15 Note
that the numerical algorithms based on the semi-implicit scheme and alternating-direction implicit (ADI)
methods have often been designed and applied.15 The validity of these methods has been carefully
examined.15,42

III.B.2 Solution of the Poisson-Boltzmann equation
In general, electrostatic energy is much larger than the non-electrostatic part so that the accuracy of
electrostatic potential calculation based on the Poisson-Boltzmann (PB) equation plays a critical role in
controlling the accuracy of the total solvation free energy. Therefore, numerical methods that are able to
deliver highly accurate solution of the PB equation is desirable. In the present Lagrangian model, there
exists a sharp solvent-solute interface and it leads to discontinuous dielectric constant definition in the PB
equation. When the continuous dielectric profile is applied across the interface, the standard numerical
methods, including the centered finite differences scheme, lose their accuracy and convergent order.
This problem is aggravated by complex geometric shapes, possible geometric singularity, and singular
charges of biomolecules. In the worst-case scenario, the standard numerical methods do not converge
at all for complex irregular solvent-solute interfaces.82,230
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The solution of elliptic equations with discontinuous coefficients and singular sources is a challeng-
ing problem in computational mathematics. In order to achieve high-order numerical accuracy, it is
indispensable to develop mathematical interface techniques. Peskin pioneered the immersed boundary
method (IBM)111,162 to address this class of problems. Recently, many other elegant methods have
been proposed, including the ghost fluid method,70,125 the upwinding embedded boundary method,29

finite-volume-based methods,152 and integral equation methods.139 A major advance in the field was
due to LeVeque and Li,117 who proposed a remarkable second order sharp interface scheme, the im-
mersed interface method (IIM).117,123 Chen and Strain discussed a piecewise-polynomial discretization
and Krylov-accelerated multigrid for elliptic interface problems.40 However, these interface techniques
have not been implemented for the Poisson-Boltzmann equation in the context of realistic biomolecules.

We have recently proposed a highly accurate algorithm, the matched interface and boundary (MIB)
method231,232,236,238,239 for solving elliptic equations. Many essential ideas of the current MIB method
were introduced in earlier interface schemes for solving Maxwell’s equation.236 The MIB is of arbitrarily
high-order accuracy in principle, and sixth-order accurate MIB schemes have been constructed.231,239

We have developed three generations of MIB based PB solvers, MIBPB-I,237 MIBPB-II,230 and MIBPB-
III82 (http://www.math.msu.edu/˜wei/MIBPB/). The MIBPB-I is the first PB solver that explicitly enforces
the flux continuity conditions at the dielectric interface in a biomolecular context; however, it cannot
maintain its designed order of accuracy in the presence of molecular surface singularities, such as cusps
and self-intersecting surfaces commonly occurred in biomolecular systems.173 This problem was first
addressed in the MIBPB-II by utilizing an advanced MIB technique developed by Yu et al.;231 however,
the MIBPB-II still loses its accuracy when the mesh size is as large as half of the smallest van der Waals
radius, because of the interference of the interface and singular charges. To split the singular charge
part of the solution,27,39,240 a Dirichlet to Neumann mapping approach46 was designed in the MIBPB-III,
which is by far the most accurate and stable PB solver. To our knowledge, the MIBPB method is only
existing method that is able to offer second order accuracy in solving the Poisson-Boltzmann equation
with discontinuous coefficients, singular sources and arbitrarily complex interfaces. The MIBPB is a few
orders of magnitude more accurate at a given mesh size and about three times faster at a given accuracy
than some traditional PB solvers.82

The most important idea in all interface techniques is to take care of interface conditions, which may
vary from systems to systems. Complex interface conditions are needed for the Helmholtz equation235

and Maxwell’s equations.236 For the Poisson-Boltzmann equation, interface conditions are the following

[φ]Γ = φ+(r)− φ−(r) = 0

[εφ]Γ = (εs∇φ+) ·N− (εm∇φ−) ·N = 0. (65)

where φ+ and φ− are the electrostatic potential inside and outside the solvent-solute surface, respec-
tively. Different methods may have different strategies in dealing with these conditions. The MIB method
has a unique set of procedures in implementing Eq. (65). The interested reader is referred to our earlier
work.231,232,236,238,239

In this work, we make use of our MIBPB-III scheme. We take dielectric constants εm = 1 and εs = 80
in our calculations. We use the Dirichlet far-field boundary condition and the electrostatic potential
values at the boundary are practically obtained by the sum of potential contributions from individual atom
charges with an exponential decay factor.82 The MIBPB-III is used to handle discontinuous dielectric
constants, complex geometry and charge singularity. Note that although the geometry is complex, there
is no geometric singularities, such as cusps and intersecting surfaces, in the biomolecular surfaces
generated by the present approach. The extraction of surface information is carried out by the marching
cubes algorithm embedded in our codes.
III.B.3 Dynamic coupling of the Poisson-Boltzmann and geometry flow equations
As described earlier, optimized electrostatic potential φ is obtained by solving the Poisson-Boltzmann
equation (39) in which solvent-solute interface Γ is used to determine ε and λ values. The interface Γ
is generated by the solution of the potential driven geometry flow equation (53) which in turn depends
on the electrostatic potential. Therefore, the geometry flow equation and the PB equation need to
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be solved simultaneously in the present differential geometry based solvation model. In practice, this
coupled nonlinear system can be solved by an iterative procedure: First solving the PB equation with
a fixed interface Γ for φ; Then obtaining the interface Γ from solving the potential driven geometry flow
equation with a fixed potential φ. A more detailed algorithm follows:

1. Start with an initial solvent-solute interface, such as a solvent accessible surface.

2. Solve the Poisson-Boltzmann equation (39) for the potential with the initial solvent-solute interface.

3. Obtain new solvent-solute interface by solving the potential driven geometry flow equation (53)
with the updated potential.

4. Calculate the solvation free energy with the resulting φ and Γ.

5. Go back to Step 2 until it converges.

The initial solvent-solute interface can be set by the solvent accessible surface with a probe radius of 1.4
Å. Another way to define the initial geometry is to use the interface obtained from solving the potential
driven geometry flow equation (53) without the potential term V . Both approaches lead to the same
result. In this study, we take the latter. The iteration will be stopped if the values of total solvation free
energy converge to within a designated small criteria value which is 0.01kcal/mol for small molecules
and 0.1kcal/mol for proteins in this paper.
III.C Evaluation of the solvation free energy
The total free energy functional of solvation does not directly provide the total solvation free energy. In
the computation of the total solvation free energy, one needs to count only the difference of the system in
solvent and in the vacuum. Note that the nonpolar energy already describes the change in free energy;
therefore, only the electrostatic energy in vacuum needs to be removed:

∆G = G−G0 (66)

where G0 is the polar free energy calculated from the homogeneous (vacuum) environment and is
independent of nonpolar energy. Therefore, we have

∆G = Gnp + (Gp −G0). (67)

The expressions of Gnp and Gp are given in Section §II.B. Here (Gp − G0) can be considered as the
polar solvation free energy. In all calculations presented here except for salt effect calculations, mobile
ions will be set to zero corresponding to a solution without ion term. Thus, the polar expression is

Gp =

∫
Ωm

ρmφdr−
1

2

∫
Ω

ε(r)|∇φ|2dr =
1

2

∫
Ωm

ρmφdr. (68)

Discretizing the integral yields

Gp =
1

2

Nm∑
i=1

Q(ri)φ(ri), (69)

where Q(ri) is the ith partial charges at position ri inside the biomolecule, Nm is the total number of
partial charges. Now the electrostatic solvation free energy can be given by:

∆Gp = Gp −G0 =
1

2

Nm∑
i=1

Q(ri)(φ(ri)− φ0(ri)) (70)

where φ and φ0 are electrostatic potentials in the presence of the solvent and in vacuum, respectively.
Here, φ is computed from the Poisson equation using the optimized solute-solvent interface

−∇ · (ε(r)∇φ(r)) = λmρm (71)
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where ε(r) and ρm are the same as those in Eq. (39). The homogeneous solution φ0 is computed with
ε(r) = εm in the whole domain. Equation (71) is subject to the far-field boundary condition in principle
and the Dirichlet boundary condition in practice.82 The nonpolar part, Gnp, is computed exactly by using
Eq. (11). The effect of salt concentration is discussed in Section V.B.
IV Validation
This section is devoted to the validation of the proposed differential geometry based solvation model
and a number of computational algorithms used in the present work. The overall accuracy of solvation
free energy calculation depends on the reliability and accuracy of the solution of the geometry flow
equation and the PB solver, surface and volume integrations, and the interface extraction process. The
explicit Euler algorithm guarantees the reliability and convergence of the solution of the geometry flow
equation. The finite central different scheme is of second order convergence in space and first-order in
time although it is computationally expensive.15 The MIBPB-III has been verified to be of second-order
in convergence even with molecular surface singularities of proteins.82 Therefore, it will be second order
accurate for the present application. In fact, the biomolecular surfaces generated with geometric flows
are free of geometric singularities, which is computationally easier.

We first examine the impact of the interaction potentials to the surface morphology, and surface elec-
trostatic potentials. A few small molecular systems and 23 protein molecules are used in this examina-
tion. We then check the behavior of the surface area under different potential interactions. In particular,
we verify whether the proposed minimal molecular surface (MMS)18 provides the extreme surface area
for various molecules and proteins. Finally, we investigate the convergence of the proposed iterative
procedure for solving the coupled Poisson-Boltzmann and geometric flow equations.
IV.A Validation of interface extraction
The numerical algorithm for surface integrations has second-order convergence.83,189 However, the
MIBPB-III here has been modified for our purpose to admit the present optimized molecular surface
(OMS) as the solvent-solute interface definition. This implies that the reliability of the present MIBPB-III
solver depends on the interface extracted by the marching cube algorithm. Moreover, the performance
of our surface integration and volume integration algorithms is also determined by the resulting interface
instead of some pre-determined interface such as the molecular surface.170 Therefore, it is worthwhile to
validate the interface extraction procedure and algorithm in terms of surface area (Å2), surface enclosed
volume (Å3) and electrostatic solvation free energy (kcal/mol). In general, there is no analytical result
for electrostatic energy except for the one-atom system due to Kirkwood.108 For the one-atom system
without interaction potential, the resulting solvent-solute interface from the geometry flow evolution is
a sphere with the same radius as the initial one, for which the PBE admits analytical solution. The
surface area and volume can be calculated analytically. Therefore, we consider a dielectric sphere of
radii 2Å with a unit charge at the center. We set p

γ = 0.5, S0 = 1000 and L = 500. Table 1 lists the
numerical results under different grid resolutions h, which are compared with the exact solution. The
convergence in space is observed and satisfactory result is attained.

Table 1: Comparison of surface areas (Å2), volumes (Å3) and energies (kcal/mol) for two small systems.

One Atom Two Atom
h Area Volume Energy Area Volume Energy

0.5 48.86 34.00 -84.92 95.24 71.00 -238.03
0.25 49.04 33.56 -82.92 99.28 72.73 -233.66
0.125 50.09 33.52 -82.08 100.5 73.20 -232.37

Referenced Value 50.265 33.510 -81.98 100.34 71.18 −233.67

Another test is done with a diatom system. It has been illustrated previously that molecular surface of
a diatom system can be reproduced by our PDE based approach at an appropriate constant potential
value.15 In particular, when the van der Waals (VDW) radii of two atoms are 2Å, the generated surface
with p

γ = −0.222 will be almost identical visually to the molecular surface with probe radius rm = 1.4Å.
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In this setting, the corresponding solvation free energy, surface area and volume calculated by our
numerical procedure are compared with those based on molecular surface. To calculate the electrostatic
solvation energy, a unit charge is set at the centers of two atoms (-2.3,0,0) and (2.3,0,0). The numerical
results are summarized in Table 1. For a comparison, the reference molecular surface area and volume
of this diatom system are obtained by using the MSMS program173 with probe radius 1.4 Å and density
100. The electrostatic solvation energy (-233.67 kcal/mol) based on molecular surface is calculated by
the original MIBPB-III.82 A good agreement is also observed from this test.
IV.B Effect of interaction potentials
In this section, we illustrate the impact of potentials to the generation of solvent-solute interface, con-
sequently to the solvation analysis. Since the effect of the pressure term has already been shown in
our previous study, we focus our attention on the study of potential effects which include short-ranged
repulsive interaction, long-ranged attractive dispersion interaction and electrostatic potential effect. Here
we consider the following 12-6 Lennard-Jones pair potential to model V LJ

i ,

V LJ
i (r) = ε̄i

[(
σi + σs
‖r− ri‖

)12

− 2

(
σi + σs
‖r− ri‖

)6
]

(72)

where ε̄i is the well-depth parameter, σi and σs are the radii of solute and solvent, respectively. Here, r
and ri are used to represent positions. The L-J potential can be divided into the attractive V att and the
repulsive V rep in different ways. It can be a “6-12” decomposition as

V att,LJ
i (r) = −2ε̄i

(
σi + σs
‖r− ri‖

)6

(73)

V rep,LJ
i (r) = ε̄i

(
σi + σs
‖r− ri‖

)12

.

It can also be a Weeks-Chandler-Andersen (WCA) decomposition based on the original WCA theory.219

V att,WCA
i (r) =

{
−ε̄i(r) 0 < ‖r− ri‖ < σi + σs
V LJ
i (r) ‖r− ri‖ ≥ σi + σs,

(74)

V rep,WCA
i (r) =

{
V LJ
i (r) + ε̄i(r) 0 < ‖r− ri‖ < σi + σs

0 ‖r− ri‖ ≥ σi + σs.
(75)

For the purpose of demonstration, all the surface profiles here are constructed by using 6-12 decom-
position and based on the geometry flow Eq. (63) in absence of the pressure term and the ionic effect

∂S

∂t
=
√

1 + ‖∇S‖2
[
∇ ·

(
∇S√

1 + ‖∇S‖2

)
+
ρs
γ
V LJ −

(
1

2

εs
γ
|∇φ|2 − 1

2

εm
γ
|∇φ|2

)]
. (76)

Without any potential term, this geometry flow equation leads to minimal molecular surface (MMS).18

The effects of those three potentials are demonstrated by a diatom system, a four-atom system and
finally a protein molecule which is also used to illustrate the potential impacts on surface electrostatic
potential analysis. In the present computation, we have treated the solvent density ρs as homogeneous.
IV.B.1 Surfaces of a diatom system
We first consider a diatom system with van der Waals radius 1.87Å and coordinates (x, y, z) = (−2.2, 0, 0)
and (2.2, 0, 0). Mesh size h = 0.04Å is used. The L-J parameters are set as follows: σi is taken from
atomic radius and σs is chosen to be 0.65Å. Well depth ε̄i = 0.035 kcal/mol and bulk density coefficient
ρs
γ = 2. To account for electrostatic potential effect, a unit charge is set on the center of each atom and

we choose εs
γ = 80∗εs and εm

γ = 80∗εm. We use εm = 1 and εs = 80 for dielectric constants in solute and
solvent, respectively. Figure 2 illustrates the different potential effects on the surface morphology for the
diatom system. We systematically change the potential effects to generate different surfaces. We begin
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Figure 2: Illustration of surface morphology of a diatom system with radii 1.87Å and coordinates (x, y, z) = (−2.2, 0, 0), and
(2.2, 0, 0) under different potentials. Top Left: The MMS (no potential); Top Right: The repulsive potential (V rep,LJ

i ); Bottom Left:
The attractive potential (V att,LJ); Bottom Right: Electrostatic potential effect.

Figure 3: Surfaces of a four-atom system with radii 1.87Å and coordinates (x, y, z) = (−3.40, 0, 0), (3.40, 0, 0), (0,−2.94, 0) and
(0, 2.94, 0) under different potentials. Top Left: The MMS (no potential); Top Right: The repulsive potential; Bottom Left: The
attractive potential; Bottom Right: Electrostatic potential effect.

with no potential effect, which leads to the minimal molecular surface (Top Left), then add the repulsive
part of the L-J potential (Top Right), then add an attractive interaction (Bottom Left) and finally add the
electrostatic potential effect in (Bottom Right). It can be seen that the repulsive potential produces a “fat”
surface, while an attractive potential or electrostatic potential leads to a “slim” surface. In other words,
with a purely repulsive interaction turning on, there is less bulk area between or around two spherical
solutes, while more bulk area with attractive potential or electrostatic potential turning on. This result is
consistent with experimental observations215

IV.B.2 Surfaces of a four-atom system
The effects of potentials on the surface generation are further demonstrated by a four-atom system in
Figure 3 with van der Waals radius 1.87 Å and coordinates (x, y, z) = (−3.40, 0, 0), (3.40, 0, 0), (0,−2.94, 0)
and (0, 2.94, 0). The needed parameters in Eq. (76) are set as the same as above diatom system except
for setting 1/2 charge at the center of each atom. We also systematically change the potential effects
by beginning with no potential which leads to the MMS in Fig. 3(Top Left), then add the repulsive part
of L-J potential Fig. 3(Top Right), then add the attractive part in Fig. 3(Bottom Left) and finally add
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the electrostatic potential effect in Fig. 3(Bottom Right). The impact of potential is similar to that in the
diatom system. It is found that the size of hole in the four atoms changes dramatically when varying non-
bonding potential. This would imply that the size of pocket or cavity inside a protein can be dramatically
changed under different electrostatic potentials and/or solute-solute interaction potentials. Therefore, it
may result in a significant difference in physical properties of biological systems, which can dramatically
influence the selectivity and gating mechanism of ion channels.
IV.B.3 Surfaces and electrostatic potentials of a protein

Figure 4: Electrostatic surface potentials of protein 451c under different solvent-solute interactions. Top Left: Attractive surface;
Top Right: The MMS; Bottom Left: Repulsive surface; Bottom Right: Polar surface.

Table 2: Electrostatic solvation free energies, surface areas and volumes of protein 451c with different solvent-solute interactions.

Surface Energy (kcal/mol) Area (Å2) Volume (Å3)
MMS -724.3 3695.0 12881.9

Repulsive -635.2 3805.6 13458.3
Attractive -897.9 3904.9 11635.6

Polar -838.1 3702.9 12595.7

Having illustrate the effects of various potentials to surface generations for simple artificial systems,
we now consider their impacts to surface morphology as well as solvation analysis of proteins. For this
purpose, we choose a protein called heme-binding protein, Fe(II) cytochrome C551 from the organism
Pseudomonas aeruginosa (PDB ID: 451c). For the structure, extra water molecules that are attached to
proteins are excluded and hydrogen atoms are added to obtain a full all-atom model. Partial charges at
atomic sites and atomic van der Waals radii in angstroms are taken from the CHARMM22 force field.134

To show the potential effects, each time we keep one and only one potential term in Eq. (76) to pro-
duce a new surface which is used in our PB solver to calculate the electrostatic potential. Starting with
the MMS, the surface is called a repulsive surface when only a repulsive potential term is added, an
attractive surface when only an attractive interaction is added and a polar surface if only the electrostatic
potential effect is allowed. The needed parameters for potential expressions are set in the same way as
in the 17 compounds which is described in Section V.A.1. Surface electrostatic potentials are plotted on
the corresponding surfaces in Fig. 4. Meanwhile, electrostatic solvation free energies, surface areas and
volumes are calculated and listed in Table 2. Potential effects similar to the surface generations of the
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diatom and four-atom systems are observed. Moreover, it is interesting to note that the minimal molec-
ular surface (MMS) has the smallest surface area among them so that it indeed minimizes the surface
free energy. This is consistent with the mathematical proof that the mean curvature flow equation leads
to the minimal surface area. Yet, the MMS does not possess the minimal volume. Instead, the attractive
solvent-solute interaction leads to the minimal volume. The repulsive solvent-solute interaction gives rise
to the largest volume. These results might appear to be counterintuitive. However, one has to keep in
mind that proteins are partially charged molecules. The electrostatic free energy plays a dominant role
in the solvent-solute interactions. There is an obvious correlation between the solute volume and the
electrostatic free energy: The larger the solute volume is, the smaller the electrostatic free energy is in
absolute value. Therefore, the repulsive potential interaction leads to the smallest electrostatic solvation
free energy in absolute value, which is an indication of the hydrophobic nature of the repulsive potential
interaction. As expected, the attractive solvent-solute interaction leads to the largest electrostatic solva-
tion free energy, reflecting the hydrophilic nature of the attractive solvent-solute interaction. It is believed
that the results in Table 2 are very helpful to the understanding of the sophistication of solvation.
IV.C Isosurface function value and minimal surfaces

Table 3: Surface areas for different surface definitions

Area (Å2)
PDB-ID No.of atoms OMS MMS

1ajj 519 2201.4 2046.7
1bbl 576 2657.6 2434.1
1bor 832 2946.9 2683.9
1bpi 898 3274.9 3017.4
1cbn 648 2401.4 2212.7
1fca 729 2728.7 2474.1
1frd 1478 4467.2 3994.2
1fxd 824 3037.3 2762.5
1hpt 858 3368.3 3013.8
1mbg 903 3163.2 2831.3
1neq 1187 4829.0 4295.5
1ptq 795 2959.4 2685.8
1r69 997 3124.8 2806.3
1sh1 702 2808.4 2515.4
1svr 1435 4796.4 4247.9
1uxc 809 2916.1 2630.6
1vii 596 2571.2 2269.3
2erl 573 2380.4 2162.9
2pde 667 2782.0 2527.9
451c 1216 4184.7 3688.5
1a2s 1272 4507.5 3968.7
1a63 2065 7184.8 6369.7
1a7m 2809 7939.4 6918.9

The minimal molecular surface (MMS) proposed in our earlier work18 was based entirely on the differ-
ential geometry theory of surfaces. Although the minimal surface theory is mathematical rigorous, the
resulting surface might not be exactly the one with the minimal surface area, when the evolution of the
Laplace-Beltrami operator is carried out in the Eulerian representation. This problem is due to the sur-
face extraction process. There are infinitely many ways to select an isosurface value. Our tests indicate
that the MMS can be obtained if we choose L = S0

2 . Therefore, we set the isosurface function value to
500 in the present solvation free energy calculations rather than a value very close to 1000 which was
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used in our earlier paper.18 The results in Table 2 were obtained in this manner. In this subsection, we
further illustrate that the MMS indeed gives rise to the smallest surface area for a set of 23 proteins.
Moreover, we also study the impact of the pressure to the surface area for a couple of given protein.

We consider a set of 23 proteins in the present study. The detail of preparation and treatment of
protein data is described in Section §V.A.2. Two types of surfaces are generated in the present work.
The first type is the MMS constructed by the mean curvature flow.18 The second type of surfaces is
called optimized molecular surface (OMS) generated by using the present differential geometry based
solvation model. Results are listed in Table 3. As expected, the surface areas from the MMS model are
always smaller that those from the OMS model. Essentially, the minimization of total free energy differ
much from the minimization of the surface free energy.

The possession of the minimal surface area in the MMS can be further demonstrated as follows:
we consider situations where only the constant pressure (p) is added into the mean curvature flow
equation to cause a perturbation of the MMS. For our purpose, two arbitrarily chosen protein sys-
tems (PDB-IDs: 1ajj and 451c) from the set of 23 protein are explored. In our simulation, we set
p = −0.4,−0.3,−0.2,−0.1, 0, 0.2, 0.3, 0.4 and 0.5. The minimal molecular surface is obtained when
p = 0. Fig. 5 illustrates the difference of surface areas (Å2) between various resulting surfaces gen-
erations under different p values and the MMS for these two protein systems. It is clearly seen that a
small perturbation around MMS leads to a larger surface area comparing to that of the MMS. In other
words, the MMS indeed has the minimal surface area.

−0.4 −0.2 0 0.2 0.4 0.6
−50

0

50

100

150

200

250

Pressure

D
iff

e
re

n
ce

 o
f 
su

rf
a
ce

 a
re

a
 

451c
1ajj

Figure 5: Difference of surface area ( Å2) between MMS and various resulting surface generations under different constant
pressure effects.

IV.D Convergence of surface area, volume and energy
In this section, we illustrate numerically the convergence and decreasing pattern of total solvation free
energy during the time integration, which has been shown theoretically in the process of the model
derivation. To this end, a small compound named diethyl propanedioate has been chosen from a set of
17 compounds described in Section V.A.1. The time history of the total solvation free energies along
with the evolution of solvent-solute boundary is recorded. To illustrate the convergence pattern of the
solvation free energy, we compute the total solvation free energies in the intermediate states during the
time evolution. The results are shown in Fig. 6. Here T denotes the time span and N = T

τ represents
the number of computational steps in the generalized geometric flow solver. In order to put surface area,
enclosed volume and total solvation energy together in one evolution picture, we illustrate J(volume),
which is a linear function of volume and shares the same pattern with volume, rather than volume. It is
found that the total solvation free energy decreases with respect to the time evolution, which is consistent
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Figure 6: Decreasing of surface area (×102 Å2),J(volume)=(volume-2) (×102 Å3) and total solvation free energy (kcal/mol) in
diethyl propanedioate

with our theoretical formulation. It is observed that the solution of our model converges to a steady state
in terms of volume (Å3), area (Å2) and total solvation free energy (kcal/mol).
V Application
In this section, we consider the application of the proposed differential geometry model to the calcula-
tions of solvation free energies and salt effects on the protein-protein binding affinity. Previously, we have
developed an optimized smooth surface (OSS) model42 via the Eulerian formulation of the differential
geometry based solvation model. It has been demonstrated that OSS model successfully reproduces
not only the solvation free energy of small molecules but also the electrostatic solvation free energies of
proteins. Although the present optimized molecular surface (OMS) model is derived by using the same
framework of free energy functional minimization, the solvent-solute interfaces are entirely different in
two models. It is important to verify whether their results are consistent with each other. For a compari-
son, we choose the same set of 17 compounds used in the previous study.42 Thus the results from the
OSS model are taken directly from the earlier work. In addition, we also choose a subset of 23 proteins
from 30 proteins studied in our earlier work.42 The protein-protein binding affinity is investigated by using
two protein systems.
V.A Free energy calculations
V.A.1 Solvation energies of 17 compounds
This test set of 17 small compounds was studied by Nicholls et al.148 using a number of approaches,
including quantum mechanical methods, PB theory etc. It is considered as a challenging test set for
computational methods because the existence of polyfunctional or interacting polar groups, which lead
to strong solvent-solute interactions. The nonpolar solvent-solute interaction potential in the present
model provides a potentially efficient means to deal with strong solvent-solute interactions.

In our calculations, we set the initial amplitude S0 = 1000 and isosurface function value L = S0

2 . As in
our previous work,18,42 we set the dielectric constants εm = 1 and εs = 80. We use the surface tension
γ as a fitting parameter, and its initial value is chosen to be γ = 1/15 to compute other γ-dependent
parameters. We choose ρs/γ = 2 by comparing the bulk density 0.033Å−3 and the possible γ value.
For microscopic systems, pressure p can be very small and sometimes is neglected in the literature.43

However, we still take it into account and set p/γ = 0.2. For L-J parameters, σs is chosen to be 0.65Å as
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a good fitting solvent radius and σi is the solute atomic radii.214 Given σs and σi, the value of ε̄i can be

determined by the formula ε̄i

[(
σi+σs
‖r−ri‖

)12

− 2
(
σi+σs
‖r−ri‖

)6
]

= Di which holds if r is on the vdW surface of

the atom. Here the constant Di should have different values for various types of atoms. For simplicity,
we use a uniform constant D = 1. We use the grid spacing h = 0.25Å and time stepping τ = h2/4.5 in
our applications. Here γ (kcal/(molÅ2)) serves as a fitting parameter and will have different values for
different expressions of nonpolar potential. Details are listed in Table 4. Typically, only attractive solvent-
solute interactions contribute to the dispersion effects in the third term of Eq. (11). Here, we have three
choices for the dispersion effect: V att,WCA, V att,6/12 and V LJ. It turns out that the use of full L-J potential
expression can offer the smallest root mean square (RMS) error for the set of 17 compounds. Therefore,
it will be chosen from now on for the further study in this paper except specified.

Table 4: RMS error with different nonpolar potentials.

Potential V att,WCA V att,6/12 V LJ

γ (kcal/(mol Å2)) 0.0077 0.0094 0.0074
RMS (kcal/mol) 1.77 1.83 1.75

Structure and charge information of compounds are adopted from those in Nicholls’s paper,148 which
can be obtained from the supplementary information of the paper. In particular, charges are taken from
the OpenEye-AM1-BCC v1 parameters.104 Atomic coordinates and radii are adopted from their new
parametrization called ZAP-9 in which certain types of radii are adjusted from Bondi radii to improve the
agreement with experimental free energies. Note that with these structures and charges parameters, the
root mean square error (RMS) is 1.71±0.05 kcal/mol even using the explicit solvent model. The smallest
RMS error of their single-conformer Poisson-Boltzmann approach is 1.87±0.03 kcal/mol.148 Such a
large RMS error indicates the challenge of this test set. The results of the present full L-J potential
model are summarized in Table 5. It gives a comparison between the predicted and experimental values
of solvation free energies of 17 compounds. The RMS error of the present model is 1.75 kcal/mol. This
RMS error is competitive with the explicit solvent approach (1.71±0.05 kcal/mol) under the same charge
and structure parameters set.148 Moreover, it is interesting to note that this the RMS is almost the same
as the one obtained from our earlier optimized smooth surface (OSS) model42 using similar γ value
(i.e., 0.0065 kcal/(molÅ2) vs 0.0074 kcal/(molÅ2)). This consistency can also be seen through Figure 7
which shows that the results from the OSS and the present OMS are linearly correlated. The correlation
coefficient is 0.999. It may reveal at least two facts. First, in the framework of free energy minimization,
the calculated results using the Lagrangian representation and the Eulerian representation should be
similar to each other. Additionally, a satisfactory nonpolar term and the enforcement of the potential
driven geometric flow really play a critical role in the analysis of solvation free energies.

A detailed inspection of Table 5 reveals the fact that large errors are due to benzmides which are from
3.5 to 4.0 kcal/mol. The benzamide problem is likely due to radius adjustment for the carbonyl oxygens
and tertiary nitrogens in ZAP 9 under the OpenEye-AM1-BCC v1 charges.148 In fact, earlier calculations
have a similar problem.42,148 As discussed in our earlier work, one possible solution to this problem is
to create a new charge set that is more appropriate for PB approach with the same ZAP radii. This
may be realized by introducing quantum mechanical corrections to our model to take care of charge
density optimization as well. However, this aspect is out of the scope of the present paper and will be
investigated in our future work.
V.A.2 A set of 23 proteins
The set of 17 compounds has already shown the present approach’s ability to predict the total solvation
free energy of small compounds. Tests on proteins are needed to demonstrate the capacity on the
large system of interest. Encouraged by the success in the application to small compounds, we further
consider a set of realistic proteins and compare the results with those from previous optimized smooth
surface (OSS) model and MIBPB-III82 with pre-determined molecular surfaces (MSs), which is defined
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Table 5: Predicted and experimental total solvation free energies for 17 small compounds.

Compound Area Volume Gnp ∆Gp ∆G Exptl Error
(Å2) (Å3) (kcal/mol)

glycerol triacetate 241.34 234.11 2.33 -12.36 -10.03 -8.84 -1.19
benzyl bromide 150.66 136.36 1.39 -4.87 -3.47 -2.38 -1.09
benzyl chloride 148.14 133.84 1.36 -5.06 -3.70 -1.93 -1.77

m-bis(trifluoromethyl)benzene 266.67 306.86 2.22 -3.30 -1.07 1.07 -2.14
N,N-dimethyl-p-methoxybenzamide 209.31 202.02 1.99 -9.22 -7.22 -11.01 3.79

N,N-4-trimethylbenzamide 200.27 193.25 1.91 -7.84 -5.93 -9.76 3.83
bis-2-chloroethyl ether 155.71 130.90 1.44 -4.16 -2.71 -4.23 1.52
1,1-diacetoxyethane 177.82 160.48 1.67 -8.21 -6.53 -4.97 -1.56
1,1-diethoxyethane 163.66 143.73 1.55 -4.63 -3.08 -3.28 0.20

1,4-dioxane 109.56 143.73 1.01 -5.64 -4.62 -5.05 0.43
diethyl propanedioate 195.06 182.22 1.87 -7.75 -5.88 -6.00 0.12

dimethoxymethane 109.17 88.36 1.02 -4.64 -3.62 -2.93 -0.69
ethylene glycol diacetate 168.19 160.95 1.62 -8.40 -6.78 -6.34 0.44

1,2-diethoxyethane 169.25 141.92 1.57 -4.40 -2.83 -3.54 0.71
diethyl sulfide 133.81 116.84 1.22 -2.40 -1.17 -1.43 0.26

phenyl formate 148.14 134.84 1.37 -7.82 -6.45 -4.08 -2.37
imidazole 89.05 68.59 0.80 -11.56 -10.76 -9.81 -0.95

Figure 7: Correlation of solvation free energy between previous optimized smooth surface (OSS) model and the present optimized
molecular surface (OMS) model in 17 compound set.

as the inner surface smoothly traced by a probe sphere as it rolls over the atomic sphere.51,170 Twenty
three proteins, a test set used in previous studies,15,42 are chosen for the present calculations. All
structures and partial charges are obtained in the same way as the 451c system which is described
before. Table 6 shows the results of the present model, and those of the OSS and the MIBPB-III.
Results from the OSS and the MIBPB-III have been proved to be very close to each other and they are
competitive to those from quantum mechanic approaches.42 Like in the set of 17 compounds, results
from the OSS and the OMS also show quite consistency. The correlation coefficient between them are
0.999. This can also be observed in the Fig. 8. Therefore, this observation further convinces us that in
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the framework of differential geometry based free energy minimization, the OSS and the OMS can be
alternative to each other in the aspect of solvation analysis. Since both of them share similar energy
functional expressions and take into account the key feature of total energy minimization at equilibrium.
If we remove the external potential effects in the surface evolution which are derived from the energy
minimization, the present OMS model returns to our previous minimal molecular surface (MMS) model
and the calculated results of solvation energies deviate dramatically. Table 3 and Fig. 9 demonstrate
the difference of electrostatic solvation free energy between the OSS and MMS models, as well as
the difference between the OSS and OMS models. This once again indicates the importance of polar-
nonpolar coupling and solute-solvent interaction in implicit solvent modeling and solvation analysis.

Table 6: Comparison of electrostatic solvation free energies of 23 proteins.

4Gp(kcal/mol)
PDB-ID No. of atoms MIBPB-III OSS OMS MMS

1ajj 519 -1137.2 -1178.5 -1122.3 -921.0
1bbl 576 -986.8 -965.9 -972.0 -792.3
1bor 832 -853.7 -853.7 -836.3 -665.9
1bpi 898 -1301.9 -1281.2 -1295.1 -1060.0
1cbn 648 -303.8 -304.8 -291.0 -181.0
1fca 729 -1200.1 -1200.6 -1184.1 -1040.0
1frd 1478 -2852.2 -2844.8 -2846.7 -2499.5
1fxd 824 -3299.8 -3291.9 -3306.1 -3087.1
1hpt 858 -811.6 -808.2 -815.6 -570.0
1mbg 903 -1346.1 -1328.2 -1346.9 -1148.7
1neq 1187 -1730.1 -1713.9 -1742.9 -1401.6
1ptq 795 -873.1 -866.2 -872.9 -660.2
1r69 997 -1089.5 -1072.7 -1082.7 -824.4
1sh1 702 -753.3 -771.8 -753.9 -532.1
1svr 1435 -1711.2 -1704.6 -1716.7 -1321.3
1uxc 809 -1138.7 -1125.7 -1147.9 -919.3
1vii 596 -901.5 -892.0 -907.0 -724.2
2erl 573 -948.8 -935.8 -944.4 -812.2
2pde 667 -820.9 -843.0 -812.3 -591.3
451c 1216 -1024.6 -1020.6 -1016.8 -718.2
1a2s 1272 -1913.5 -1900.3 -1902.8 -1633.0
1a63 2065 -2373.5 -2380.5 -2382.6 -1851.0
1a7m 2809 -2155.5 -2179.8 -2152.6 -1699.9

V.A.3 Total solvation free energies of proteins
The total solvation free energy of proteins can be computed in the same way as the set of 17 compounds.
It is also interesting to compare the calculated total solvation free energies between the present OMS
model and other models, particularly SPT.164,194 To this end, we use the MSMS to generate molecular
surfaces,173 the MIBPB-III82 to compute electrostatic solvation free energy, and SPT model for the non-
polar solvation free energies. For a comparison, we set the surface tension as γ = 0.0077 kcal/(molÅ−2)
and solvent pressure as p = 0.00385 kcal/(molÅ−3) for both approaches. The bulk solvent density of
ρ0 = 0.033 Å−3 is used for the nonpolar WCA attractive term in the present OMS model. We have picked
up the first ten proteins from our earlier 23 protein set to demonstrate the application of the present
model. As shown in Table 7, the total free energies computed with two models are in very good agree-
ment. In fact, the proposed differential geometry based OMS model offers lower total free energies of
solvation for all proteins examined. However, we should point out that, strictly, the concept of total energy
minimization only applies to the same model. Different models might have different minimal values.
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Figure 8: Correlation of electrostatic solvation free energy between the present optimized molecular surface (OMS) model, and
previous models, such as the optimized smooth surface (OSS), the MIBPB-III and the MMS for 23 proteins.

Figure 9: Difference of electrostatic solvation free energy between the OMS model and previous OSS and MMS models.

V.B Salt effect on protein-protein binding energies
Finally, we consider the application of our differential geometry based solvation model to the calculations
of salt effect on the protein-protein binding. This is the first time that our new model is applied to the
study of the salt effect. The ion concentration plays an important role in the stability and even reactivity
of biomolecules. This application can be further extended to the binding affinity analysis of ligands,
peptide, proteins, nucleic acids, and membrane proteins. To this end, the potential terms caused by
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Table 7: Comparison of total solvation free energies (kcal/mol) for 10 proteins

PDB-ID 1ajj 1bbl 1bor 1bpi 1cbn 1fca 1frd 1fxd 1hpt 1mbg
OMS -1109.4 -960.0 -824.4 -1272.1 -280.7 -1170.8 -2796.5 -3277.8 -788.3 -1319.1
SPT -1102.6 -946.8 -803.9 -1246.2 -263.7 -1153.4 -2766.6 -3247.4 -757.0 -1292.3

mobile ions need to be restored in our calculation.
The full Poisson-Boltzmann (39) is coupled to the geometric flow Eq. (53) to obtain the solvation free

energy for proteins in the salted solvent. The solution procedure for the nonlinear PB equation was
described in our work.36 The coupling of the nonlinear PB equation and potential driven geometric flow
equation is discussed in Section III.B.3. For low salt concentration and weak electrostatic potential, the
linearized Poisson-Boltzmann equation discussed in Section II.C.2 can be applied.

Figure 10: Protein-protein complexes. Left: Protein complex 1emv; Right: Protein complex 1beb.
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Figure 11: The salt dependence of the binding affinities of two protein complexes. Left: Protein lemv; Right: Protein 1beb. Here
OMS data are computed by our optimized molecular surface (OMS) model. NLPB data are taken from Bertonati et al’s paper.23

For the binding free energy, only the electrostatic component and particularly, its salt dependence are
studied. The total binding free energy which includes many other terms that do not depend on the salt
concentration, does not need to be calculated. Then the electrostatic component of the binding energy
(∆Gp) is found as the difference of the electrostatic free energies of the complex and those of the free
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molecules
∆Gp(I) = GAB

p (I)−GA
p (I)−GB

p (I), (77)

whereGAB
p (I),GA

p (I) andGB
p (I) are the electrostatic free energies of the complex AB, and the monomers

A and B, respectively, at a given ionic strength, I. The salt dependence of the binding free energy
∆∆Gp(I) is thus the difference in the electrostatic components of the binding energies, Eq. (77), at-
tained at some salt concentration I and at zero salt concentration

∆∆Gp(I) = ∆Gp(I)−∆Gp(I = 0) (78)
= {GAB

p (I)−GAB
p (I = 0)}

−{GA
p (I)−GA

p (I = 0)}
−{GB

p (I)−GB
p (I = 0)},

where each energy term at different ionic strengths can be calculated via Eq. (70). In general, the
nonlinear PB equation should be used for the evaluation of salt effects on protein-protein binding. How-
ever, as shown by Bertonati et al.,23 both the linearized PB (LPB) and the nonlinear PB (NLPB) can
be applied to calculate salt effects when ionic strength of the salt is weak and the net charges of the
binding complex and individual molecules are relatively small. The results obtained with the LPB were
very close to those obtained with the NLPB. This encourages us to use LPB in this section to reduce the
computational complexity.

Table 8: Comparison of binding affinities of two proteins complexes from current simulations and those from Bertonati et al’s paper.

Complex PDB Complex Surface Charge of the Bertonati23 OMS
code charge Area (Å2) free monomers LPB NLPB

E9Dnase-Im9
(10) 1emv -3 1465 B=+5; A=-8 1.29 1.31 2.40

Lactoglobulin
Dimer (57) (A-B) 1beb +26 1167 A=B=+13 -2.48 -1.53 -2.02

To test the utility of our new model in the calculation of salt effects on protein-protein binding, a
hetro-dimeric and a homo-dimeric complex are selected for our study. These cases were considered
by Bertonati et al.23 In the experiment, NaCl is used for the salt with a pH value of 3. As shown in
Fig. 10, each protein complex encompasses two separated pieces. The structures and charges of
them are attained in the same way as earlier 23 proteins, so are the needed parameters in the potential
driven geometric flow equation. The salt dependence of the binding free energy from NLPB simulation
by Bertonati et al. as well as our OMS model is shown in Fig. 11, where the binding free energy
∆∆Gp(I) is plotted as a function of the logarithm of the salt strength I. Additionally, binding affinities
are summarized in Table 8, in which the first four columns describe the properties of proteins and the
last two columns are the binding affinities extracted from the slope of the lines in Fig. 11. Note that the
calculation is performed by assuming that all Arg, Asp, Glu and Lys residues are ionized in both free
and bound states. It is seen that our model clearly reproduces the experimental observation, i.e., for
the hetero-dimeric complex, the binding free energies increase with the increasing ionic strength; while
for the homo-diemric complex, the affinity is negative. Moreover, as shown in the table the quantities of
the binding affinity obtained from simulations with the present OMS model are in good agreement with
those obtained by LPB and NLPB methods in Bertonati et al’s paper in which NaCl is used for salt with
a pH value of 3. Note that in the case of Lactoglobulin dimer, the results obtained with all acidic groups
neutral are shown.
VI Concluding remarks
This work is a part of our recent effort in the construction of differential geometry based multiscale
models for chemical and biomolecular systems.42,221 The introduction of differential geometry based
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multiscale models is a natural extension of our geometric partial differential equation (PDE) based im-
age analysis195,220,222 and biomolecular surface generation.15–18,223 Our previous models make use of
a characteristic function so that the description domain is divided into discrete and continuum ones in
the Eulerian representation. A smooth domain boundary arises from our previous multiscale models.
The objective of the present work is to explore an alternative formulation, the Lagrangian formulation of
differential geometry based multiscale solvation models. The Lagrangian representation of biomolec-
ular surfaces is suitable for visualization, surface electrostatic potential map and visual perception of
biomolecules. It is can be directly employed in the implicit solvent models and existing software pack-
ages. Finally, the Lagrangian representation has an advantage that it avoids artificially enlarging van der
Waals radii as often required by smooth surface models.42,214

In the present approach, the discrete and continuum domains are separated by a sharp solvent-solute
interface, which naturally constitutes a smooth and differentiable manifold enclosing the biomolecule of
interest. The time evolution of the manifold is governed by the potential driven geometry flow, a mathe-
matical framework introduced in our previous work.15,220,221 The specific potential driven geometry flow
equation used in the present work is derived via the first variation of the total free energy functional of
solvation in the Lagrangian representation. Such a derivation differs much from our earlier derivation
using the Eulerian representation and geometric measure theory.42,221 The total free energy functional
of solvation encompasses not only the electrostatic energy, or the polar part, but also the nonpolar sol-
vation energy. The latter includes contributions from surface tension and mechanical work of immersing
a molecule into the solvent, which is described as a dielectric continuum in the present model, with a
Boltzmann distribution for its ion species. Additionally, another nonpolar term is included to address
the issue of solvent-solute interaction and possible solvent density variation in response to the solute
effect. The minimization of the total free energy functional gives rise to coupled potential driven geom-
etry flow and Poisson-Boltzmann equations. The resulting potential driven geometry flow equation in
the Lagrangian representation is embedded in the Eulerian representation to avoid the geometric sin-
gularity development in the Lagrangian dynamics during the time evolution. We show the equivalence
of the Laplace-Beltrami operator in two representations. Computational techniques for the interconver-
sion between Lagrangian and Eulerian representations are described in detail. Solution strategies are
given to the coupled Poisson-Boltzmann and geometric flow equations. All computational methods and
algorithms are carefully validated. The proposed solvation model is applied to the solvation free energy
calculations of a set of 17 small compounds and a set of 23 proteins. Results are compared with experi-
mental data or other computational ones. Additionally, we have also demonstrated the usefulness of the
present method for the protein-protein binding affinity analysis. Two protein complexes are employed for
this analysis and results compare well with experimental measurement.

The spirit of the present free energy minimization approach is similar to that of Sharp and Honig,183

Gilson et al.,86 Dzubiella et al.66,67 and our own work;16–18 however, there are important differences in
the formulation of the nonpolar free energy and computational implementation. The present approach
is based on the differential geometry theory of surfaces and it minimizes the surface area and thus,
surface free energy in the absence of all other effects, which gives rise to our minimal molecular surface
(MMS) first introduced in 2006.16,18 In contrast, the Dzubiella approach does not minimize surface area
and surface free energy at the absence of other effects and instead provides an approach that is more
closely tied to the minimization of the combination of Gaussian and mean curvatures, i.e., the Canham-
Helfrich curvature type of energy functionals.31,93 For many years, the Canham-Helfrich curvature en-
ergy functional has been providing an important phenomenological model for cell membranes.102,159

In this model, the bending effect or potential interactions are described macroscopically by high-order
curvatures. The Canham-Helfrich curvature energy functional is an extension of the Willmore energy
functional225 which minimizes the difference of the square of the mean curvature and the Gauss curva-
ture. Due to the Gauss-Bonnet theorem, the total curvature is a constant for a given surface topology
and the total energy functional becomes non-smooth if there is a topological change (surface breaking
and merging) during the surface evolution. Another class of high-order geometric flow models were also
proposed in our earlier work15,220 and used for molecular surface generation.15 However, unlike the
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mean curvature operator that clearly minimizes the surface area as well as the surface free energy of
macromolecules, the exact physical role of various high-order curvature models in solvation modeling is
yet to be carefully analyzed and explored. In implicit solvent models, since an atomistic description has
been given to various interactions in the solute, as well as most of solvent-solute interactions, accord-
ing to the fundamental laws of physics, the role of phenomenological high-order curvatures can easily
become redundant and will be unlikely as important as that in the original Canham-Helfrich model for
membrane bending.31,93

Although there are some similarities in expressions of coupled PB equation and geometry flow equa-
tion between our previous optimized surface (OSS) model42 and the present optimized molecular surface
(OMS) model, there are important differences to be spelled out. First of all, the solute-solvent interface
definitions in two models are fundamentally different. In the OSS model, the solute and solvent region is
described by a continuous characteristic function denoted by 0 ≤ S ≤ 1. In contrast, in the present OMS
model, solute and solvent regions are strictly separated by a 2D differentiable manifold. The function
S in Eq. (53) only serves as a hypersurface function for geometric surface evolution. This difference
has a dramatic computational implication. The generalized Poisson-Boltzmann equation with an OSS is
much easier to solve than the OMS is. However, a formal comparison of this computational aspect is
beyond the scope of the present work. Moreover, in the potential driven geometry flow equation (53),
∇φ+ 6= ∇φ− because of the discontinuity of ∇φ inside and outside the solute-solvent interface. How-
ever,∇φ+ = ∇φ− in the overlap region of the OSS model due to continuous dielectric definition. Further,
dielectric constant ε(x) in the PB equation is defined in a totally different way: ε(S) is a function of S in
the OSS model, and there exists a smooth transition region from the low dielectric to the high dielectric.
In contrast, ε(x) is piecewise constant in the present model. In other words, here ε = εs in solvent and
ε = εm in solute, respectively. Further, a generalized Poisson-Boltzmann equation was derived in the
OSS model. Whereas, we formally end up with the classical Poisson-Boltzmann equation in the present
theory, although it is coupled to the potential driven geometric flow equation. Yet, the present OMS brings
up a number of mathematical issues, including the singularity formation on the manifold, and Eulerian
embedding of Lagrangian dynamics. Finally, there are many computational problems associated with the
Lagrangian formulation of our differential geometry based solvation model too. For instant, the current
discontinuous definition of ε leads to dramatic accuracy reduction in the standard numerical schemes
for the elliptic equations with discontinuous coefficients and singular sources.231,232,236,238,239 To over-
come this difficulty, we have incorporated the highly accurate MIB scheme into our PB solver.82,230,237 In
addition, many other computational issues, such as hybrid Lagrangian and Eulerian dynamics, level set
methods, isosurface extraction, surface integration, and Dirichlet to Neumann mapping,82 are relevant
in the present Lagrangian representation.

The present formulation allows the solvent density ρs to reflect the density variation near the solvent-
solute interface. In principle, such a variation be computed by integral equation approaches of solu-
tions.20,77,210 Many existing integral equation approaches, including (molecular) density functional the-
ory, hyper-netted chain (HNC) and Percus-Yevick (PY) equations can be used in the present framework
to better predict the solvent density profile near the biomolecule. However, the detailed incorporation
of the integral equation theory in the solvation calculation is beyond the scope of the present work. As
in our previous work,42 a simple homogeneous solvent density is employed in the present work. The
implementation of solvent variation will be considered in the future.

Another important extension of the present work is the implementation of the implicit solvation model
based molecular dynamics (MD). Currently, Poisson-Boltzmann (PB) based molecular dynamics algo-
rithms have not been commonly used in the practical simulation of macromolecules. Major hurdles to
this development include limits in accuracy, stability, speed and reliability. Typically, low accuracy is due
to the lack of the enforcement of interface conditions in solving the Poisson-Boltzmann equation. The
stability problem originates from the discontinuous dielectric constants across the solvent-solute inter-
face. The relative low speed is due to the cost of the PB solver and sometimes, the surface generation.
All of these problems contribute to the reliability limitation. The multiscale models proposed in this paper
and in our recent work221 have given rise to a new promise for the development of PB based molecular
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dynamics algorithms. The accuracy and stability problems in the previous PB based MD methods will
not appear in our new model because of the free of dielectric interface.42 Moreover, in all differential
geometric based models, the force expressions differ much from those in the classic Poisson-Boltzmann
based MD algorithm as analyzed in our earlier work.221 The remaining problem is the speed — we must
solve an additional geometric flow equation. This challenge will be further investigated in our future
work.
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