
Software News and Update
MIBPB: A Software Package for Electrostatic Analysis

DUAN CHEN,1 ZHAN CHEN,1 CHANGJUN CHEN,1 WEIHUA GENG,1* GUO-WEI WEI1,2

1Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
2Department of Electrical and Computer Engineering, Michigan State University,

East Lansing, Michigan 48824

Received 28 August 2009; Revised 17 January 2010; Accepted 3 July 2010
DOI 10.1002/jcc.21646

Published online in Wiley Online Library (wileyonlinelibrary.com).

Abstract: The Poisson–Boltzmann equation (PBE) is an established model for the electrostatic analysis of biomolecules.
The development of advanced computational techniques for the solution of the PBE has been an important topic in the
past two decades. This article presents a matched interface and boundary (MIB)-based PBE software package, the MIBPB
solver, for electrostatic analysis. The MIBPB has a unique feature that it is the first interface technique-based PBE solver
that rigorously enforces the solution and flux continuity conditions at the dielectric interface between the biomolecule and
the solvent. For protein molecular surfaces, which may possess troublesome geometrical singularities, the MIB scheme
makes the MIBPB by far the only existing PBE solver that is able to deliver the second-order convergence, that is, the
accuracy increases four times when the mesh size is halved. The MIBPB method is also equipped with a Dirichlet-to-
Neumann mapping technique that builds a Green’s function approach to analytically resolve the singular charge distribution
in biomolecules in order to obtain reliable solutions at meshes as coarse as 1 Å — whereas it usually takes other traditional
PB solvers 0.25 Å to reach similar level of reliability. This work further accelerates the rate of convergence of linear
equation systems resulting from the MIBPB by using the Krylov subspace (KS) techniques. Condition numbers of the
MIBPB matrices are significantly reduced by using appropriate KS solver and preconditioner combinations. Both linear
and nonlinear PBE solvers in the MIBPB package are tested by protein–solvent solvation energy calculations and analysis
of salt effects on protein–protein binding energies, respectively.

© 2010 Wiley Periodicals, Inc. J Comput Chem 00: 000–000, 2010

Key words: MIBPB; Poisson — Bottzmann equation; interface method; electrostatics; proteins

Introduction

Under physiological conditions, almost all important biological
processes, for example, signal transduction, DNA specification,
transcription, post-transcription modification, translation, protein
folding, and protein–ligand binding, occur in water, which com-
prises 65–90% of cellular mass. An elementary prerequisite for the
quantitative description and analysis of the above-mentioned pro-
cesses is the understanding of solvation, which involves energetics
of interactions between solute molecules and solvent molecules or
ions in aqueous environment. Solute–solvent interactions are typi-
cally classified as the polar-type and the nonpolar-type. Although
widely used, this classification is arbitrary and has caveats asso-
ciated with the nonunique descriptions, as well as the intrinsic
coupling between these two types of interactions. The polar-type
of solute–solvent interactions is the main interest of this work. It
originates from electrostatic effects, which play important roles in
biophysics, biochemistry, structural biology, electrochemistry, and
electrophoresis. The solvent has a substantial volume and a sig-
nificant contribution to electrostatics via numerous mobile ions.

However, it is the solvated solute molecule that is the focus of
the interest in most research. As such, the solute is described in
atomic or electronic details, whereas atomic details of the solvent
and mobile ions are approximated by a mean-force description
and probability distribution, respectively. This multiscale treat-
ment, denoted as implicit solvent method, can greatly reduce the
computational cost of the traditional explicit solvent methods, in
which a microscopic description of the solvent is retained. Various
implicit solvent models are available to describe polar solvation.1–5

The most widely used methods are currently the generalized Born
method,4, 6–9 polarizable continuum,10–12 and Poisson–Boltzmann

∗Present address: Department of Mathematics, University of Michigan, Ann
Arbor, MI, USA.

Correspondence to: G.-W. Wei; e-mail: wei@math.msu.edu

Contract/grant sponsor: NSF; contract/grant numbers: DMS-0616704, CCF-
0936830

Contract/grant sponsor: NIH; contract/grant numbers: GM-090208, CA-
127189

© 2010 Wiley Periodicals, Inc.

2 Chen et al. • Vol. 00, No. 00 • Journal of Computational Chemistry

equation (PBE)2, 3, 13, 14 models. The use of polarizable continuum
models is mostly restricted to small molecular systems. Generalized
Born methods are very fast but are only heuristic models for esti-
mating polar solvation energies of biomolecular structures. These
methods are often used in high-throughput applications, such as
molecular dynamics simulations.15–17 PBE models can be formally
derived from Maxwell’s equations18 and offer a somewhat slower,
but more accurate way for evaluating polar solvation properties.19–21

Additionally, PBE techniques are often used to parameterize and
assess the accuracy/performance of generalized Born models.20, 22

Finally, unlike most generalized Born methods, PB models pro-
vide a global solution for the electrostatic potential and field within
and around a biomolecule, therefore make them uniquely suited to
visualization and other analysis23, 24 that require global informa-
tion about electrostatic properties. One of the primary quantitative
applications of implicit solvent models in computational biology
and chemistry is the calculation of thermodynamic properties via a
pre-equilibration.1 An example of such pre-equilibration approach
is the MM/PBSA model,25, 26 which combines implicit solvent
models with molecular mechanical approaches to evaluate bind-
ing free energies from an ensemble of biomolecular structures.
Other important applications of implicit solvent models include
the assignment of protein titration states, the calculation of bind-
ing energies, and the estimation of solvation energies.27, 28 One
more application area for implicit solvent methods is the evalu-
ation of biomolecular kinetics where implicit solvent models are
generally used to provide solvation forces for molecular Langevin
dynamics,29, 30 Brownian dynamics,31–33 or continuum diffusion
simulations.34–36 A major qualitative use of implicit solvent methods
in experimental work is the visualization and qualitative analysis of
electrostatic potentials on and around biomolecular surfaces,13, 37, 38

which is now a standard procedure for the analysis of biomolecular
structures.

Although the PBE can be analytically solved for a few sim-
ple cases,39 it relies on numerical approaches to obtain useful
solutions for realistic biological systems. A vast variety of computa-
tional approaches, such as finite difference methods (FDMs),30, 40–42

finite element methods (FEMs),43 and boundary integral methods
(BIMs),44, 45 have been developed in the past few decades. Each of
these methods is subject to certain inherent advantages and limita-
tions due to its associated underlying formulations. In general, FEMs
have advantages in applications that require the rapid adaptation of
grid points to account for the structural variation of biomolecules.
However, the generation of unstructured grids with good quality for
complex biomolecular interfaces is very time-consuming, especially
for large biomolecules. BIMs have several intrinsic advantages, such
as fewer unknowns, exact far-field treatment, and good representa-
tion of surface geometry and charge singularity. In light of these
advantages, BIMs, especially when accelerated with fast methods,
such as treecode and fast multiple methods, can also provide an effi-
cient computational approach. However, BIMs are not very efficient
in dealing with the nonlinear term in the PB model. FDMs have been
the main workhorse for solving the PBE in computational structural
biology for their convenience of using 3D Cartesian coordinates to
save the cost on mesh generation and electrostatic potential map-
ping, as well as its adaptability of existing linear algebraic solvers.
FDMs-based PB solvers, particularly in conjunction with advanced
linear algebraic solvers, can offer the best combination of accuracy

and efficiency, therefore make them the most popular approaches in
structural biology.46

Many computational technologies for the PBE were incorpo-
rated into popular molecular simulation software packages, such as
DelPhi,47 ZAP,29 UHBD,31 MEAD,48 APBS,49 AMBER,30, 50 and
CHARMM.51, 52 These software packages deliver PBE solvers to
users who are interested in the study of electrostatics in solution,
making the PBE model a widely accepted approach in structural
biology. The aim of this article is to introduce an interface technique-
based PBE solver, the matched interface, and boundary method
based-PB solver (MIBPB), with online software sharing informa-
tion. Compared with other existing PB solvers, the MIBPB provides
rigorous mathematical treatment of interface jump conditions, geo-
metric singularities, and charge singularities as described in the
following paragraphs.

The implicit solvent models require an interface definition to
indicate the separation of solute atoms from the surrounding sol-
vent. All of the physical properties of interests, such as electrostatic
free energies, biomolecular surface areas, molecular cavitation vol-
umes, solvation free energies, and pKa values are very sensitive to
the interface definition.53–55 The van der Waals surface, the solvent
accessible surface,56 and the molecular surface (MS)57, 58 are often
used for this purpose. Different dielectric constants of the solvent
and molecular domain lead to discontinuous coefficients in the PBE,
resulting in nonsmoothness of the solution. Additionally, the MS
admits geometric singularities, such as cusps and self-intersecting
surfaces.58, 59 Explicit interface treatment of geometric singularities
has not been considered in the popular PB solvers. It is desirable to
have an interface-based solver that is able to deliver highly accurate
solutions to the PBE in the presence of such solution and geometric
singularities. The third type of singularity comes from the singular
charge terms, that is, the delta functions at the right hand side of the
PBE, often reduce the accuracy of the numerical solution. The treat-
ment of charge singularities is also an important issue in solving the
PBE. Finally, because of the complex matrix structure of the linear
systems resulting from PBE solvers, the choice of appropriate linear
system solvers and the selection of matrix acceleration algorithms
are very important issues as well.

The development of the MIBPB solver focuses on resolving the
above-mentioned difficulties or singularities. The adoption of the
molecular surface, the treatment of discontinuity of coefficients, and
flux jumps require the application of interface methods.60–65 Com-
monly seen interface techniques were not used in the biomolecular
context because of the complexity of the biomolecular bound-
aries. The MIB method66–70 has been developed for solving elliptic
equations with discontinuous interfaces. It is of arbitrarily high-
order accuracy in principle and up to sixth-order accurate MIB
schemes have been constructed.67, 70 The MIB has been successfully
applied to the analysis of mechanical structures,71, 72 waveguides,72

biomedical imaging,73 and electromagnetic waves.74 Three gener-
ations of MIB-based PB solvers, the MIBPB-I,75 the MIBPB-II,76

and the MIBPB-III77 have been developed (http://www.math.msu.
edu/˜wei/MIBPB/). The MIBPB-I is the first PB solver that directly
enforces the flux continuity conditions at the dielectric interface in
the biomolecular context. However, it cannot maintain its designed
order of accuracy in the presence of MS singularities, such as cusps
and self-intersecting surfaces. This problem was addressed in the
MIBPB-II by using an advanced MIB technique developed by Yu
et al.,70 who offered special treatments for geometric singularities.

Journal of Computational Chemistry DOI 10.1002/jcc

MIBPB—Software Package for Electrostatic Analysis 3

However, the MIBPB-II loses its accuracy when the mesh size is
as large as half of the smallest van der Waals radius, because of
the interference of the interface and singular charges. To split the
singular charge part of the solution, a Dirichlet to Neumann map-
ping approach78 was designed in the MIBPB-III, which is by far
the most accurate and reliable PB solver. This new solver remains
accurate at the smallest van der Waals radius, that is, about 1.0 Å
grid resolution for proteins. Comparing with traditional PB solvers,
the MIPPB-III is a few orders of magnitude more accurate at a given
mesh size and about three times faster at a given accuracy.76, 77 The
MIBPB is the first and still the only known second-order conver-
gent PB solver for the singular molecular surfaces of biomolecules,
where the second-order convergence means that the accuracy of the
solution improves four times when the mesh size is halved.

Apart from the accuracy, the efficiency of linear system solvers
is another important issue crucial to many applications. Previ-
ous MIBPB solvers are typically slow in comparing with other
FDMs that do not invoke an interface treatment. In this article,
we have paid special efforts on the strategies for the selection of
most suitable linear system solvers for the resulting MIBPB matri-
ces. Two linear solver libraries, the SLATEC (http://people.sc.fsu.
edu/˜burkardt/f_src/slatec/slatec.html) and the PETSc (http://www.
mcs.anl.gov/petsc/petsc-as/) are considered in the exploration of lin-
ear solvers. Another remaining issue in previous MIBPB solvers is
the treatment of the nonlinearity in the PBE. Although this issue
was tackled in a dissertation,79 no reliable MIBPB nonlinear solver
was produced. This work develops a reliable nonlinear solver for
the PBE with a salt solvent.

The rest of this article is organized as follows. “Theory and
Algorithm” section is devoted to the theoretical formulation and
computational algorithm of the MIBPB solver. Krylov subspace
(KS) technique accelerated MIBPB solvers are constructed in
“Preconditioner Accelerated MIBPB Solvers” Section. Extensive
experimental validation is given to the different combinations of
solvers and preconditioners. “Usage Illustration and Application”
section illustrates the usage of the MIBPB software package with
some example applications, such as calculating the free energy
of solvation of biomolecular systems and salt effect on protein–
protein binding. Concluding remarks are provided in “Conclusion”
section. Finally, a brief introduction to the linear algebraic systems
generated from the MIBPB discretization matrices and theoretical
underpinnings of the KS methods are presented in Appendices.

Theory and Algorithm

Implicit Solvent Model: The PBE

In the implicit solvent model, the solvent is treated as a continu-
ous medium while the description for solute is kept at the atomic
level. The electrostatic potential φ of a solvent–solute system can
be determined by the PBE in a regular domain � whose dimension

usually has the order from 10 Å
3

to 500 Å3 for biomolecular appli-
cations. Figure 1 gives the sketch of the protein–solute system and
the computational domain.

The protein region and the solvent region are denoted as �1

and �2, respectively. Naturally the whole computational domain
is � = �1

⋃
�2, and the molecular surface is labeled as �. For

simplicity, the ion-exclusive layer is ignored in the present model.

Figure 1. The implicit protein–solvent system.

Although mobile ions in the solvent are explicitly indicated in the
figure, the whole solvent region is actually modeled by an implicit
continuum. Under these assumptions, the PBE reads

− ∇ · (ε(x)∇u(x)) + κ2(x) sinh(u(x))

= C
Nm∑
i=1

qiδ(x − xi), x ∈ � ⊂ R
3 (1)

u(x) = C

4πεs

Nm∑
i=1

[
qie

−κ2(x)|x−xi |/√εs

]
/|x − xi|, x ∈ ∂�, (2)

where u = ecφ/kBT is the dimensionless electrostatic potential for
computational simplicity, ec the electron charge, kB is the Boltzmann
constant and T is the temperature, ε and κ are dielectric constant,
and modified Debye-Hückel screening function describing the ion
strength, respectively. Here qi is the charge fraction of the fixed
charge in the protein and xi denotes the position of the fixed charge,
and Nm is the total number of fractional charges. The constant C =
4πe2

c/kBT is resulting from dimensionless procedure and εs is for
the dielectric constant of the solvent.

In principle, the electrostatics u(x) satisfies the boundary condi-
tion at infinity, that is:

u(∞) = 0. (3)

However, the practical computation has to be restricted onto a
bounded domain �. Usually, it is taken as a cuboid that contains
the target protein and ∂� represents the boundary. In this approxi-
mation, proper boundary conditions need to be imposed and various
treatments are used upon different numerical schemes. Equation (2)
describes the Dirichlet boundary condition, which is widely used
in finite difference method. The biological meaning of the rationale
is the (screened) Coulomb potential originating from all the fixed
charges and mapping on the walls of the cuboid �.

The hyperbolic term sinh(u(x)) takes into account the salt effect
with the Boltzmann distribution theory at the equilibrium state.
Therefore, eq. (1) is a nonlinear partial differential equation (PDE) of

Journal of Computational Chemistry DOI 10.1002/jcc

4 Chen et al. • Vol. 00, No. 00 • Journal of Computational Chemistry

elliptic-type. Such a nonlinear term can be linearized under the weak
potential approximation, that is, when u(x) � 1, sinh(u(x)) ∼ u(x).
Thus, the linear approximation of eq. (1) is

−∇ · (ε(x)∇u(x))+κ2(x)u(x) = C
Nm∑
i=1

qiδ(x−xi), x ∈ � ⊂ R
3.

(4)

Typically, for biomolecular systems of given ranges of tem-
perature and ionic strength, the PBE is solved with the following
coefficient bounds80

1 ≤ ε(x) ≤ 80

0 ≤ κ2 ≤ 127

5249 ≤ C ≤ 10500

− 1 ≤ qi ≤ 1.

The molecular surface of the solute (protein) is considered as
an interface. We partition the whole domain into the solute region
and the solvent region, on which the ε(x) takes different values.
Similar situation happens to the parameter κ(x). As it represents
the ionic strength of the solvent, κ(x) is nonzero in the solvent
region but zero in the solute region. In other words, the spatial-
dependent coefficients ε(x) and κ(x) are discontinuous across the
molecular surface. It is a challenge to solve such an elliptic equa-
tion with high accuracy because the regularity of its solution is
reduced due to the interface and geometric singularity. For this class
of problems, numerical accuracy and convergence rate are typically
low without special interface treatments. Another challenge is the
singular source term which contains many Delta functions, which
are infinity at their spatial locations. Accurate approximation to the
point-supported singular functions is an important topic in compu-
tational mathematics. The above two difficulties hinder the accurate
numerical solution to the PB equation. To maintain a given accu-
racy, the grid spacing of the discretization has to be sufficiently
small because of the low regularity of the solution. On the other
hand, a small grid spacing implies millions of variables even for a
middle-size protein. For example, the cube containing a 2800-atom
protein may have a dimension of 50 × 50 × 50 (Å3), which leads
to 1 × 106 variables if the resolution is 0.5 Å. This gives rise to a
major obstacle for PB applications, especially for the calculation
of thermodynamic properties via either the molecular dynamics or
pre-equilibrium approaches. In the following sections, a robust and
efficient mathematical algorithm, the MIB method, is introduced
and applied to the solution of the PBE.

MIB Method for the PBE

Mathematically, the PBE admits at least three types of singularities
that hinder one’s attempt to obtain highly accurate numerical solu-
tions. The first one is the nonsmooth solution singularities. Based
on the statement in the previous section, the potential u(x) is natu-
rally restricted to the two subregions as u1 and u2, respectively. The
solution of the PBE is subject to the interface continuity condition
and flux continuity condition along the interface �

[u]|� = u1|� − u2|� = 0 (5)

[εun]|� = εmu1
n

∣∣
�

− εsu
2
n

∣∣
�

= 0, (6)

where un denotes the normal derivative of the function u(x) and εm

is the dielectric constant of the solute molecule. Interface conditions
(5) and (6) indicate that the continuity of the potential function and
the potential flux across the molecular surface. However, different
dielectric values of εs and εm in (6) imply that the normal derivatives
of the potential function differ from each other across the surface —
in other words, the solution is nonsmooth. The second singularity
comes from the solvent–solute interface �. The interface generated
based on the current molecular surface model inevitably introduces
geometric singularities, such as cusps and self-intersecting surfaces,
especially for large proteins. This singularity has been a challenging
issue to many traditional interface techniques designed for solv-
ing elliptic interface problems. The third singularity is the source
term of the PBE, which includes the summation of Delta functions.
Second-order numerical implementation of Dirac delta functions on
the Cartesian grid points is feasible with appropriate approximation.
However, the overlap of grid points carrying redistributed charges
and those involved in the treatment of geometric interface singular-
ities leads to the accuracy reduction, especially for a coarse mesh.
These singularities pose challenges in the numerical implementa-
tion of the PBE and make it difficult to balance numerical accuracy
and efficiency.

The MIB scheme and the Dirichlet-to-Neumann mapping
(DNM) method are used to deal with the above-mentioned three
singularities and to achieve high accuracy and efficiency. In the
MIB method, the molecular surface is considered as the interface.
Interface jump conditions (5) and (6) are enforced at each intersect-
ing point of the interface and mesh lines. As such, the ingredients
of the MIB scheme also include local coordinates of the interface
to overcome geometric singularity constraints. The necessary infor-
mation of each local coordinate contains the location (x0, y0, z0), and
the normal direction n of the intersecting point where the interface
meets a mesh line of the grid. Here, n is parameterized as

n = (sin ψ cos θ , sin ψ sin θ , cos ψ)T (7)

where θ and ψ are the azimuth and zenith angles with respect to the
normal vector, notation T represents the transpose for a vector. This
information allows us to set up a local coordinate system at every
intersecting point and to define its relation to the global Cartesian
grid.

The basic idea of the MIB scheme is to define sets of regular and
irregular grid points near the interface, according to the desired con-
vergence order. At each regular point, the standard central difference
scheme of a given order is applied, whereas at irregular points, spe-
cial treatments are to be taken. First, the restricted potential function
u1 (and u2) is smoothly extended from one subregion to another on
all of the irregular points. Then artificially introduced function val-
ues, named as fictitious values, are defined on the irregular points.
As smooth extensions of the function, fictitious values are used in
FD schemes at irregular points to guarantee necessary smoothness
conditions.

Journal of Computational Chemistry DOI 10.1002/jcc

MIBPB—Software Package for Electrostatic Analysis 5

Interface condition (5) is further decomposed into two parts to
give flexibility to the calculation of fictitious values

[uτ1] = u1
τ1

∣∣
�

− u2
τ1

∣∣
�

= 0

[uτ2] = u1
τ2

|� − u2
τ2

|� = 0, (8)

where τ1 and τ2 are the two tangential vectors derived from (7)

τ1 = (− sin θ , cos θ , 0)T

τ2 = (− cos ψ cos θ , − cos ψ sin θ , sin ψ)T . (9)

Through jump conditions (5)–(8), fictitious values are deter-
mined as the combinations of the to-be-determined numerical
solutions on grid points. Although a pair of fictitious values are deter-
mined along a mesh at a time, an iterative procedure can be used to
determine all the required fictitious values for higher order schemes
by repeatedly using the lowest order jump conditions. The essential
strategy of the MIB method is to locally reduce a 2D or a 3D interface
problem into 1D-like ones.66–68, 75 The essence of the MIB scheme
is the use of fictitious values, which entirely assemble the interface
conditions, the local geometry of the interface and all the necessary
interface information. Therefore, the MIB scheme is very robust for
different protein surfaces and successfully overcomes the first two
types of singularities.69, 70, 76 Rigorous second-order MIB schemes
have been developed to solve the PBE with geometric singularities
of molecular surfaces.

The source term singularity is removed by the DNM. In ref. 77,
the solution u(x) of the PBE is decomposed into a singular part
and a regular part. The singular part of the solution comes from
singular delta functions, and is obtained analytically as the Green’s
function. As a consequence, this separation generates an extra Neu-
mann jump condition at the interface for the regular part. Therefore,
after the separation, one only needs to solve the remaining homoge-
neous PBE subject to corresponding Neumann jump conditions at
the interface. This procedure is called Dirichlet to Neumann map-
ping. Consequently, truly second-order accurate solution to the PBE
with molecular surfaces and singular charges can be obtained with
a relatively large grid spacing.77

Preconditioner Accelerated MIBPB Solvers

In practice, when one pursues the numerical solution of the PBE,
the discretization of the PBE results in a linear equation system

LhUh = fh (10)

where h is the discretization resolution, Lh and fh represent the matrix
and right hand side generated via the MIB and DNM schemes, Uh is
the solution vector. It is worth pointing out that in standard FDMs,
the matrix Lh only depends on the grid resolution and the dielectric
constants. However, in the MIBPB scheme, the structure of Lh also
depends on the molecular surface of a specific protein. Because
of this reason, we also call Lh the matrix of a protein for sim-
plicity. The MIB and DNM successfully overcome the equation
singularities and promise a high-accuracy convergence order by

taking into account all the local interface information. However,
as a trade-off, the structure of matrix Lh is much more complicated
than that from standard FDMs. Specifically, the matrix loses sym-
metry and may not be positive-definite any more. The lose of these
properties will lead to more computational time and memory. There-
fore, the selection of appropriate linear solvers becomes subtle when
computational efficiency is sought as well.

The review of several basic linear solvers are summarized in
Appendix A. However, the matrices from the MIB and the DNM
scheme can barely take any advantage from the described meth-
ods due to their notoriously complicated structures. Therefore,
we put our emphasis on choosing other methods and accelerat-
ing techniques. In Appendix B, we include a brief description of
KS techniques. Based on the KS theory, proper linear solvers and
acceleration techniques (preconditioners) are chosen and compared
in this section for the numerical efficiency of MIBPB linear systems.
Two KS solvers, the stabilized biconjugate gradient method (BiCG)
and the generalized minimal residual method (GMRES), are poten-
tially effective iterative solvers for matrices with general structures.
Several preconditioning strategies, the Jacobi preconditioner (JAC),
the blocked Jacobi preconditioner (BJAC), and the incomplete LU
factorization preconditioner (ILU) are available to incorporate with
the two solvers to accelerate the solution of the linear system.

Matrices generated from a set of proteins are used to test the per-
formance of various KS solver-preconditioner (PC) combinations.
For each matrix, the condition number, linear system iteration num-
ber, and iteration time are used to characterize numerical efficiency.
All these measurements of matrices are analyzed numerically by
the PETSc (http://www.mcs.anl.gov/petsc/petsc-as/). The grid res-
olution is taken as 1.0 Å in the following tests unless otherwise
specified. The stopping criterion of all KS solvers are taken as
1 × 10−6 to get more accurate solutions, whereas in practical bio-
logical applications the criterion can be relaxed to 1 × 10−3 to save
CPU time but satisfactory results are also achieved.

First of all, the matrix condition numbers are examined. The con-
dition number can predict the level of difficulty in solving the linear
system before it is really solved. The magnitude of a matrix con-
dition number depends on the size and structure of a biomolecule.
More specifically, under the same grid resolution, a molecule, which
has a larger number of atoms, needs a larger computational domain
and a larger matrix size. Meanwhile, a molecule, which has a more
complex surface geometry, leads to more involvement of inter-
face conditions and consequentially less sparse matrix. Both cases
contribute to higher condition numbers. Therefore, the size and com-
plexity of a biomolecule usually affect the numerical efficiency of
the MIBPB solver.

Figure 2(a) presents condition numbers of matrices correspond-
ing to 15 protein structures and indicates the numerical difficulties of
solution without proper acceleration techniques. The horizontal axis
lists proteins. Protein data bank (PDB) identification numbers (IDs)
are listed in the figure. The numbers of atoms of these proteins range
from 500 to 2000. Discretizing the PBE with the MIB scheme, with-
out any PC applied, the condition numbers are usually in the order
of 104, about one order larger than those of the matrices generated
from the standard FD discretization, that is, without the interface
treatment. This is expected because the use of the molecular surface
as the interface and all included local information around the inter-
face, the MIBPB matrices do not maintain the symmetry and are not

Journal of Computational Chemistry DOI 10.1002/jcc

6 Chen et al. • Vol. 00, No. 00 • Journal of Computational Chemistry

Figure 2. Condition numbers over 15 proteins (PDB IDs from protein 1 to protein 15: 1ajj, 1vii, 1cbn,
1bbl, 1fca, 1sh1, 1vjw, 1fxd, 1bpi, 1a2s, 1frd, 1svr, 1a63, 2erl, and 2pde). (a) Condition numbers for
unpreconditioned (unPCed) MIBPB matrices; (b) Comparisons of condition numbers under three settings.

positive definite. The MIB matrices generally have larger condition
numbers and require more CPU time.75–77

By using of PCs, the magnitudes of condition numbers of MIBPB
matrices are significantly reduced to less than one hundred, as shown
in the circle plot of Figure 2(b). The triangle plot in Figure 2(b) gives
the condition number magnitudes of the matrices from standard
FDMs without PC, revealing the huge differences among different
treatments. The circle and dot plots are condition number magni-
tudes for matrices with PC, from both the MIB scheme and the
FDM, respectively. Interestingly, it can be concluded that the con-
dition number magnitudes of two schemes are reduced to almost
the same level by using the PCs. We can safely say that the diffi-
culty of solving the linear system generated from the interface-based
MIBPB scheme is actually comparable with that from standard FD
discretization. Under almost the same numerical efficiency, MIB
scheme and DNM are able to obtain higher accuracy because all the
local geometry information of the molecular surface has been taken
into account.

Quantitatively, for a specific KS solver, such as GMRES, the
iteration numbers, and computing time of linear systems for seven
proteins are listed in Table 1. It is well-known that condition numbers

Table 1. Iteration Numbers and CPU Time for the Discretization Matrices
of Proteins.

Proteins Preconditioned iteration Unpreconditioned iteration

Condition Condition
ID Atoms Number Time number Number Time number

1mbg 903 19 0.3 40 5404 54 118900
1r69 997 18 0.3 40 5400 58 250400
1bor 832 20 0.3 30 2152 23 138850
1vii 596 17 0.2 42 3963 28 4963
1fxd 824 19 0.3 39 7084 80 35637
2erl 573 17 0.2 29 4858 36 14223
1a2s 1272 23 0.6 61 10000 156 24981

can only be mathematically estimated for large matrices, then the
listed condition numbers calculated by PETSc solvers may not be
exact. Despite this fact, we can still have a sense from the numbers
how the PC significantly reduces the difficulties of solving the linear
systems.

As stated earlier, two KS iterative methods, the stabilized BiCG
and the GMRES, are associated with three types of PCs, JAC, BJAC,
and ILU. Table 2 compares the effect of combinations of these KS
solvers and PCs. For different preconditioning strategies, as the ways
of counting iteration numbers are different, only the iteration time
for each combination is listed in the table. Sample proteins of vari-
ous sizes are presented in this table, from small size (less than 1000
atoms), middle size (1000–3000 atoms) to large size (around 8000
atoms). It can be concluded that the GMRES performs slightly better
than the stabilized BiCG does for small-sized proteins but stabilized
BiCG take the lead in middle- and big-sized proteins. Among the
three kinds of PCs, the BJAC and the ILU almost have the same
effects and are slightly better than the JAC. Therefore, the combi-
nation of stabilized BiCG and BJAC is recommended and set as the
default option in the MIBPB package.

As indicated at the beginning, all the mathematical algorithms
and techniques are enforced to maintain the high-order conver-
gence of the MIBPB solver. Table 3 lists the numerical evidence
of the second-order convergence through a set of given protein

Table 2. Iteration Time for Different Combinations of KS Solvers and
Preconditioners.

Protein BiCG GMRES

ID Atom BJAC ILU JAC BJAC ILU JAC

1ajj 519 0.24 0.24 0.26 0.23 0.23 0.38
1vjw 828 0.29 0.29 0.35 0.26 0.26 0.44
1a2s 1272 0.56 0.56 0.51 0.57 0.56 0.84
1a7m 2809 1.69 1.67 1.77 1.93 1.91 2.85
1f6w 8243 3.90 3.88 4.48 4.70 4.65 7.19

Journal of Computational Chemistry DOI 10.1002/jcc

MIBPB—Software Package for Electrostatic Analysis 7

Table 3. Convergence Test of MIBPB Solver with a Set of Proteins.

Proteins Error Error
ID h = 1.0 Å h = 0.5 Å Order h = 0.25 Å Order

1ajj 6.52E–2 1.13E–2 2.52 1.76E–3 2.68
1a23 1.026E1 1.72E–1 2.57 2.74E–2 2.65
1b4l 1.19E–1 1.25E–2 3.25 2.07E–3 2.59
1bbl 1.32E–1 1.86E–2 2.82 1.81E–3 3.36
1bor 9.44E–2 1.31E–2 2.84 1.97E–3 2.73
1fca 1.20E–1 1.20E–2 3.31 1.78E–3 2.76
1frd 7.93E–2 1.24E–2 2.67 2.02E–3 2.61
1fxd 7.66E–2 1.19E–2 2.68 2.00E–3 2.57
1hpt 8.05E–2 1.37E–2 2.50 1.77E–3 2.90
1mbg 1.35E–1 1.08E–2 3.64 1.69E–3 2.67
1neq 8.52E–2 1.27E–2 2.74 1.83E–3 2.79
1r69 7.95E–2 1.15E–2 2.39 1.92E–3 2.96
1svr 7.94E–2 1.17E–2 2.21 1.94E–3 3.13
1uxc 7.55E–2 1.27E–2 2.57 2.02E–3 2.65
1vjw 7.22E–2 1.20E–2 2.58 2.23E–3 2.43
2pde 1.12E–1 1.64E–2 2.77 5.46E–3 1.58

surfaces, atomic coordinates, radii, and charges, where protein
surfaces are generated by MSMS, and the standard CHARMM force
field parameters are used. A special analytical solution was designed
and given in ref. 77 for the convergence order check of all proteins.
In this table, the numerical error is defined as ‖unum

h − uexact‖L∞ ,
where unum

h is the numerical solution of the PBE at grid resolution h,
whereas uexact is the designed exact solution. The numerical exper-
iments are implemented under resolutions h = 1.0 Å, 0.5 Å, and
0.25 Å. The numerical error is supposed to be reduced by four times
as the grid size is halved and this is clearly demonstrated in the
table.

The above-mentioned tests are carried out in conjunction with
the PETSc software package, whose installation may not be so
straightforward. An alternative is to use the SLATEC, which is eas-
ier to implement and also includes tens of linear system solvers
with different PCs. To compare the performance of the PETSc and
the SLATEC, we show the computation time of ten methods in the
SLATEC for five proteins, whose atom number varies from 500
to 8000 in Table 4. All methods are listed in the form: PC/solver.
Here GS, DS, BiGS, and OM represent the Gauss-Seidel, the diag-
onal scaling, the biconjugate gradient squared method, and the
orthomin sparse iterative method, respectively. The combination of
the ILU/BiCG is used in the PETSc. From the table, it can be seen
that the iteration time of the PETSc is slightly shorter than that of
most solvers in the SLATEC for small-sized proteins. The last col-
umn of the table lists the averaged CPU time for the PETSc and
solvers in SLATEC. The averaged time, which in some sense could
reflect the abilities of solvers for proteins in various sizes, is the
sum of the CPU time for each corresponding protein and weighted
by the atom number. By checking the averaged CPU time one can
generally conclude that the ILU/BiCG of the PETSC takes less iter-
ation time than the SLATEC schemes do. Moreover, according to
our experience, the PETSc is more stable than the SLATEC for large
proteins. However, the SLATEC can be easily incorporated in the
MIBPB package. Whereas, the PETSc needs to be preinstalled by
the user as discussed below.

Usage Illustration and Application

Work Flow of the MIBPB Package

The MIBPB solver package incorporates with two packages to
accomplish the electrostatic potential calculation. First, molecular
structures are prepared via Python software package PDB2PQR
(http://pdb2pqr.sourceforge.net/): it accomplishes many common
tasks of preparing structures for continuum electrostatic calcula-
tions, such as adding a limited number of missing heavy atoms
to biomolecular structures, determining side-chain pKas, placing
missing hydrogens, so forth. Users can either submit the protein
PDB index to the online server (http://pdb2pqr.sourceforge.net/) or
download the executable file to prepare the molecular structure.

Once the molecular structure is prepared, the computational
domain � will be automatically generated based on the coordinates
of the protein atoms: first a smallest cuboid that contains the protein
will be calculated and then each length of the cuboid is symmetri-
cally extend at two ends by 5 to 10 Å, depending on the protein size.
This strategy usually used in many FDMs is verified to be reasonable
in practices and also the extension of the cuboid can be customized
easily. The larger size of � is of course closer to real biological
situation. However, the solution of the PBE is not sensitive to this
change while the computational cost will be increased.

Additionally, the geometry of the molecular surface used in
the MIB scheme is generated by the MSMS (http://www.scripps.
edu/ sanner/html/msms_home.html). Given the information of the
coordinates and radius of each atom in the molecule, surfaces are
generated at given water probe radius in a triangulation form. The
intersection of each triangle with the meshing lines and the normal
direction extracted from the surface information are key ingredients
of the MIBPB scheme. For the MSMS parameter, the water molecule
probe radius is recommended as 1.4 and the vertex density is 10.
These parameters are enough to generate the molecular surface with
good quality, various 3D Cartesian grid resolutions in current use
can obtain necessary surface information under this setting.

There are two options for choosing KS solvers and PCs in solv-
ing MIBPB matrices. One is to use the SLATEC, which has been
incorporated in our MIBPB package. The other way is to use the
PETSc. According to our tests, the PETSc is generally more sta-
ble and reliable than the SLATEC, particularly for large proteins. It

Table 4. Comparison of CPU Time for the PETSc and the SLATEC
Schemes.

Protein ID 1ajj 1vjw 1a2s 1a7m 2ade Averaged
Atoms 519 828 1272 2809 8344 CPU time

PETSc 0.235 0.272 0.529 1.729 3.777 2.72
GS/GS 0.866 1.222 2.225 9.512 55.016 35.58
ILU/ILU 0.523 0.883 1.344 5.854 32.479 21.07
DS/BiCG 0.331 0.467 1.041 3.140 14.015 9.27
ILU/BiCG 0.262 0.401 0.701 2.038 7.846 5.27
DS/BiGS 0.243 0.313 0.602 2.900 8.879 6.05
ILU/BiGS 0.187 0.393 0.410 1.433 6.575 4.34
DS/OM 0.206 0.420 0.496 3.338 21.993 14.08
ILU/OM 0.179 0.291 0.389 1.25 5.993 3.95
DS/GMRES 0.417 0.559 0.999 3.856 26.262 16.84
ILU/GMRES 0.198 0.279 0.439 1.615 7.685 5.05

Journal of Computational Chemistry DOI 10.1002/jcc

8 Chen et al. • Vol. 00, No. 00 • Journal of Computational Chemistry

Figure 3. Work flow of the MIBPB package.

needs to be preinstalled by the user if one chooses the PETSc matrix
acceleration option.

The current MIBPB package offers half stand-alone solvers in
which users have to prepare the molecular structures and generate
the surfaces on their own with desired parameters. The package also
has one-step solvers, which have integrated all the steps with default
parameter settings. Either the half stand-alone or one-step solver
is further classified into linear solver and nonlinear solver. There-
fore, there are in total four executable MIBPB files in the package.
Additionally, two other small auxiliary Perl scripts, the pqr2xyzr.pl
and dat2dx.pl are included in the MIBPB package to accomplish
the molecular surface preparation and ultimate data visualization.
Figure (3) is the work flow of the MIBPB package usage. Users
are referred to http://www.math.msu.edu/˜wei/MIBPB/ for detailed
instructions.

For a clearer demonstration, we use one specific protein example
to illustrate the procedure. Protein with ID 1ajj is assumed to have
been downloaded from the PDB and saved as file 1ajj.pdb.

1. Prepare the protein structure
• Input file: 1ajj.pdb
• Command line: python pqd2pqr.py –ff=CHARMM 1ajj.pdb

1ajj_apbs.pqr
• Output file: 1ajj_apbs.pqr.
• Remark: For full usage of pqb2pqr.py, users are referred to

the corresponding link.
2. Molecular surface preparation

• Input file: 1ajj_apbs.pqr
• Command line: pqr2xyzr 1ajj
• Output files: 1ajj.xyzr, 1ajj.pqr
• Remark: 1ajj.xyzr file stores the coordinates and radii of the

atoms in the protein, 1ajj.pqr stores the coordinates and partial
charges. They are necessary files for the MSMS to generate
molecular surfaces.

3. Molecular surface generation
• Input files: 1ajj.xyzr, 1ajj.pqr
• Command line: msms -if 1ajj.xyzr -prob 1.4 -de 10 -of 1ajj

• Output files: 1ajj.vert, 1ajj.face. Now the molecular surface
is generated in the triangulation form. The vertices and normal
direction of each triangle are saved in these files.

• Remark: water probe radius and triangulation density are set
as default values 1.4 and 10, respectively. They are adjustable
parameters.

4. MIBPB implementation
• Linear solver: mibpb4.1.1 1ajj eps1=1 eps2=80 h=0.5
• Nonlinear solver: mibpb4.2.1 1ajj eps1=1 eps2=80

kappa=1.0 h=0.5
• Output file: 1ajj_pbe.dat
• Remark: Above command lines give the standard format.

Parameters are adjustable.

Work Flow for the Display of the Surface Electrostatic Potential

After the electrostatic potential file is obtained by running the
MIBPB solver, we can display it on the molecular surface by
using the VMD (http://www.ks.uiuc.edu/Research/vmd/), a molec-
ular visualization program. We are able to visualize the potential
distribution on the surface by implementing a file transformation
via the Perl script dat2dx.pl. Moreover, by taking the difference of
surface electrostatic potentials under different grid resolutions h, we
are also able to check the convergence of the solutions and there-
fore suggest a proper grid resolution for balancing high numerical
accuracy and efficiency. The procedure is shown as the following.

1. Visualization file preparation.
• MIBPB package generates output file [pdbname]_pbe.dat,

in which the electrostatic potentials on grid points of the
protein–solvent system are stored. Before displaying the
electrostatic potential on the molecular surface, one needs
to use dat2dx.pl script to transform the data file to the
[pdbname].dx file.

• For example, for protein 1ajj, one gets 1ajj_pbe.dat file from
the MIBPB package. Then use the command: dat2dx.pl 1ajj
[dcel] [xleft] [xright] [yleft] [yright] [zleft] [zright] where
[dcel] is the mesh size (we assume a uniform mesh). Here,
[xleft],[xright], [yleft], [yright], and [zleft] and [zright] pre-
scribe the span of computational domain in x, y, and z direc-
tion, respectively. Here, xleft, xright, yleft, yright, zleft, and
zright should be the same as those used in calculating the
potential.

2. Molecular surface drawing
• Load the PDB data file into the VMD
• Set drawing parameters in the Graphical Representation win-

dow: choose the “Volume” option for coloring method and the
“Surf” option for drawing method.

3. Surface electrostatic potential drawing
• Load the [pdbname].dx format potential file into the VMD.

In the molecular file browser window, load [pdbname].dx file
for the same protein as that in molecular surface (instead of
for new molecular).

• Set drawing parameters in the same Graphical Representa-
tion window as that in the second step. Choose the “Volume”
option for coloring method and the “Surf” option for drawing
method. Adjust the Color Scale Data Range to see different
color effects.

Journal of Computational Chemistry DOI 10.1002/jcc

MIBPB—Software Package for Electrostatic Analysis 9

Figure 4. Visualizations of surface electrostatic potentials of protein 1beb. From left to right: (a) Surface
electrostatic potential (I = 0, h = 1.0 Å); (b): Surface electrostatic potential with the ionic strength I = 1
(h = 1.0 Å); (c): The difference of surface electrostatic potentials between in an ionic solvent (I = 1) and
in a water solvent (I = 0); (d): The difference of surface electrostatic potentials in water (I = 0) between
grid meshes h = 1.0 Å and h = 0.5 Å.

Figure 4 illustrates the visualization of electrostatic potential
calculated from the MIBPB package, using protein 1beb as an
example. The potentials calculated via both the linear MIBPB solver
and the nonlinear MIBPB solver are plotted on the molecular sur-
face via the VMD through the above procedure. Figure 4(a) displays
the potential distribution on the surface of protein 1beb when the
solvent is water. In this case, the linear MIBPB solver is imple-
mented because κ̄ is set as zero. Although Figure 4(b) presents the
potential distribution when κ2 = 8.48, in which case the nonlin-
ear MIBPB solver is used. These two calculations are carried out
when grid resolution h is taken as 1.0 Å. Figure 4(c) gives the dif-
ference of electrostatics in (a) and (b), from which the salt effect
on electrostatic distribution may be observed. Figure 4(d) reveals
the potential difference in solvent when the calculations are under
resolutions h = 1.0 Å and 0.5 Å, that is, the error |φh −φh/2|. It can
be found that the error is almost zero around the molecular surface,
this fact indicates that at h = 1.0 Å, the result is accurate enough
so that reducing grid resolution to 0.5 Å does not give too much
improvement. Mathematically speaking, the result is almost conver-
gent between mesh size 1.0 and 0.5 Å, which is the recommended
grid resolution range in the MIBPB package.

Application to Solvation Energy Calculations

One of the most important applications of the PBE model is solvation
energy calculations for the protein–solvent systems. In this section,
solvation energies of 28 proteins are calculated and compared with
popular PBE solvers to examine the feasibility, usefulness, and
robustness of the linear solver in the MIBPB package. These pro-
teins have a wide range of numbers of atoms, from around 500 up
to 10,000. The corresponding spatial dimensions extend from about
30 Å×30 Å×30 Å to almost 100 Å×100 Å×100 Å. Among these

calculations, the dielectric constant is set to 1 for proteins and 80
for the solvent. The ion strength κ is set to zero because no ion is
considered for the moment.

The calculation of electrostatic solvation energy �Gelec is to sum
all the fixed charges {qi} of the solute in the solvent, weighted by
the reaction field potential φrf (x):

�Gelec = 1

2

∑
i

qiφrf (xi) (11)

where xi is the position of each charge. Based on the continuum elec-
trostatics, the reaction field potential is the difference between the
electrostatic potential in the solvent environment φs(x) and the refer-
ence electrostatic potential φref (x), that is, φrf (x) = φs(x)−φref (x).
Here, φrf (x) can be computed by solving the PBE twice with cor-
responding settings. Specifically, φref (x) is calculated by setting
a uniform dielectric constant in the whole computational domain,
whereas φs(x) is calculated by setting the dielectric constants for
solute and solvent differently. Therefore, φref (x) can be obtained by
the standard linear PB equation with the Dirichlet boundary condi-
tion via the standard finite difference or FFT methods but φs(x) is
solved by using the MIBPB algorithm.

The performance of the MIBPB method for calculating solva-
tion energies has already been examined in our previous work.77 It
has been shown that the MIBPB solver has high accuracy and good
convergence order because of the use of interface treatments but has
relatively low numerical efficiency because of the absence of appro-
priate matrix acceleration techniques. The MIBPB matrix requires
longer CPU time to solve. The Krylov theory and associated PCs
discussed in this work make the MIBPB solver more efficient. Here,
the new results are presented for various proteins.

Journal of Computational Chemistry DOI 10.1002/jcc

10 Chen et al. • Vol. 00, No. 00 • Journal of Computational Chemistry

Figure 5. Comparison of solvation energies of proteins (From protein
1 to 19: 1ajj,1bbl,1vii,1cbn,2pde,1sh1,1fca,1fxd,1vjw,1bor,1hpt,1bpi,
1mbg,1r69,1neq,1a2s,1svr,1a63,1a7m) calculated by using the MIBPB
and the APBS methods. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

Figure 5 gives the comparison of the calculated solvation ener-
gies from the MIBPB and the APBS packages. It is seen that the
solvation energies calculated from the MIBPB agree very well with
those from the APBS. The mesh sizes of h = 1 Å is used in the
MIBPB and h = 0.25 Å is used in the APBS methods, respectively.
The reader is referred to ref. 77 for a more detailed comparison
among the MIBPB, the APBS, and the PBEQ methods.

Once the preconditioning techniques are applied, the required
CPU time is significantly reduced. Figure 6 illustrates the differ-
ences of the CPU time needed to calculate solvation energies for
14 moderately large proteins at three different grid resolutions. The
solid lines are the CPU time for preconditioned (PCed) systems and
dashed lines are for unpreconditioned (unPCed) systems. It can be
concluded that at each grid resolution, PCs can save more than half
of the overall CPU time.

Figure 6. Comparison of CPU time of preconditioned (PCed) and un-
preconditioned (unPCed) MIBPB methods for 19 proteins (from protein
1 to 19: 1ajj,1bbl,1vii,1cbn,2pde,1sh1,1fca,1fxd,1vjw,1bor,1hpt,1bpi,
1mbg,1r69,1neq,1a2s,1svr,1a63,1a7m). [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

Table 5. Solvation Energies and CPU Time For Proteins.

Solvation energy (kcal/mol) CPU time (second)

MIBPB+KS MIBPB MIBPB+KS MIBPB

h (Å) 1.0 0.5 0.25 0.25 1.0 0.5 0.25 0.25

1ajj −1141.9 −1136.3 −1136.6 −1137.2 2.3 15 85 273
2pde −826.2 −819.9 −817.2 −820.9 3.4 17 108 283
1vii −914.6 −901.5 −902.8 −901.2 2.8 15 86 221
1cbn −311.1 −303.6 −303.7 −303.8 2.9 16 102 277
1bor −858.8 −854.3 −857.9 −853.7 4.5 24 143 377
1bbl −998.3 −986.9 −988.7 −986.8 2.8 16 106 298
1fca −1215.5 −1199.9 −1200.0 −1200.1 3.5 19 109 292
1uxc −1157.6 −1138.1 −1139.1 −1138.7 4.2 21 127 347
1sh1 −755.7 −728.0 −751.4 −753.3 3.3 12 109 300
1mbg −1368.4 −1349.8 −1352.4 −1346.1 4.8 25 142 378
1ptq −893.5 −871.8 −872.2 −873.1 3.9 22 133 376
1vjw −1250.9 −1236.9 −1236.9 −1237.9 4.1 26 120 315
1fxd −3309.7 −3299.7 −3301.6 −3300.0 4.2 31 138 338
1r69 −1111.0 −1086.5 −1087.9 −1089.5 5.5 32 154 419
1hpt −827.3 −810.9 −812.7 −814.3 4.9 26 141 322
1bpi −1320.8 −1298.9 −1301.3 −1301.9 5.4 50 164 469
1a2s −1928.8 −1913.1 −1913.6 −1913.5 9.6 47 242 780
1frd 2879.8 −2851.4 −2856.3 −2851.9 10.8 51 284 707
1svr −1741.6 −1709.8 −1710.7 −1711.2 11.1 57 301 779
1neq −1765.6 −1729.1 −1732.7 −1730.1 9.1 50 289 804
1a63 −2420.8 −2371.2 −2370.2 −2373.5 22 113 550 1376
2erl −964.2 −948.2 −949.3 −948.8 2.3 15 101 276

Table 5 lists the results for the tested proteins at different grid
resolutions and compares the values with the original MIBPB-III
scheme in terms of solvation energies and CPU time. For each pro-
tein case from different grid resolutions, the CPU time increases
in nonuniform pattern from less than 10 s for h = 1.0 Å, several
tens of seconds for h = 0.5 Å, to a few hundreds of seconds for
h = 0.25 Å. Note that there is an eight-time increase in the number
of unknowns when the mesh size is halved. The increase in the CPU
time is roughly linear with the increase in the number of unknowns.

It is found that at resolution of 0.25 Å, the results from the
MIBPB+KS and from the original MIBPB-III have less than 0.1%
disagreement. This is due to the use of different convergence norms
in the KS solvers and the regular solver. The solvation energy cal-
culations show a correct convergence tendency. The values from

Table 6. Solvation Energies (kcal/mol) and CPU Time (second) for Large
Proteins.

Protein MIBPB (h = 1.0 Å)

ID Atoms Solvation energy CPU time (s)

1cbg 7838 −5659.9 181
1c4k 11439 −9901.9 398
1e24 7776 −9506.4 231
1f6w 8243 −5611.2 225
1po7 7796 −5471.2 206

Journal of Computational Chemistry DOI 10.1002/jcc

MIBPB—Software Package for Electrostatic Analysis 11

resolutions of 0.25 Å and 0.5 Å are pretty close, whereas calcula-
tions at h = 0.25 Å cost much more CPU time. Therefore, we can
conclude that grid resolution between 0.5 Å and 1.0 Å is sufficient
for the calculation and can guarantee the accuracy.

Table 6 shows the robustness and efficiency of the MIBPB pack-
age for calculating solvation energies of large proteins, which exceed
7000 atoms. For time efficiency, all the calculations are carried out
at the grid resolution of h = 1.0 Å. Note that the reliability of these
solvation free energies has been cross-checked with other popular
PB solvers. The reported CPU time can be used as a reference.

Application to Salt Effects on Protein–Protein Binding

In this section, the ability of the MIBPB package to solve the
nonlinear PBE is tested by checking solvent salt effect on protein–
protein binding. The nonlinear PBE has had considerable success in
describing biomelocular electrostatics with salt effects on the bind-
ing of ligands, peptides and proteins to nucleic acids, membranes,
and proteins. The binding free energies reflect the nonspecific salt
dependence of the formation of macromolecular complex and the
measurement is the binding affinity. Some experimental data are
available, and the binding affinity is calculated as the ratio between
salt dependent binding energy ��Gel(I) at a specific salt strength
I , and the natural logarithm of I . In this work, we have implemented
the nonlinear version of the PBE solver in the MIBPB package.
Simulation results are obtained by varying the ionic strengths.

The binding energy (�Gel) has several components, whereas the
one related to electrostatics is the difference of the electrostatic free
energies of the complex and each of its free molecules81

�Gel(I) = GAB
el (I) − GA

el(I) − GB
el(I), (12)

where GAB
el (I), GA

el(I), and GB
el(I) represent the electrostatic free

energies of the complex AB, component A and component B,
respectively, at a given ionic strength I .

The electrostatic free energy can be further split into three
components

Gel(I) = Gcoul + Grxn + Gsalt(I), (13)

where Gcoul is the Coulomb energy calculated in a homogeneous
medium, Grxn is the corrected reaction field energy, and Gsalt(I)
is the electrostatic energy contributed by mobile ions. Among the
three terms in eq. (13), only Gsalt(I) is salt dependent. Thus, the salt
dependence of the binding free energy ��Gel(I) is electrostatic

component of the binding energy in eq. (12) calculated at some salt
strength I minus the one calculated at the zero salt concentration81

��Gel(I) = �Gel(I) − �Gel(I = 0)

= {
GAB

el (I) − GAB
el (I = 0)

}
− {

GA
el(I) − GA

el(I = 0)
}

− {
GB

el(I) − GB
el(I = 0)

}
, (14)

where various energy terms are calculated at different ionic strengths
by using the MIBPB package.

To verify our nonlinear solver, one heterodimeric and one
homodimeric complexes are studied in this work. The experiments
on these two protein complexes can be found in refs. 82, 83 and
biological features (1emv and 1beb) are listed in Table 7. The first
four columns describe the properties of proteins and the last two
columns are the slopes (binding affinity) of the lines in Figure 7.
It can be seen in a quantitative view that the slopes obtained from
experiments and simulations are very close to each other. The cal-
culations were performed assuming that all Arg, Asp, Glu, and Lys
residues are ionized in both free and bound states. The results are
obtained with dielectric constants of 2 and 80 for the solute and the
continuum solvent, respectively. The parameter κ2 is determined by:

κ2 =
(

8π2Nae2
c

1000kBT

)
I (15)

where ec, kBT are the same as those defined in eq. (1), Na is the
Avogadro’s number. After a simple derivation, κ2 is given by

κ2 = 8.486902807 Å
−2

I (16)

for T = 298 K. Here the ion strength I is in the unit of mole.
Figure 7 depicts the experimental and calculated salt dependence

of the binding free energies ��Gel(I) for the two complexes. The
��Gel(I) are plotted against the logarithm of the salt strength I . The
salt dependence is assumed as in a linear pattern; therefore, the least
square fitting line is applied to calculate the binding affinity, which
is the slope of the line. It should be explained that experimental data
dots for ��Gel(I) are read from the graphs in ref. 81, whereas the
fitting line slope is explicitly given based on the experimental data
with error bars. The diamond points and solid line are experimental
data and the corresponding fitting line, respectively. The circle points
and dashed line are numerical stimulations.

Table 7. Binding Affinity.

PDB Complex Surface Charge of the Experimental MIBPB
Complex ID charge area (Å2) free monomers data (h = 1.0 Å)

E9Dnase-Im9 (10)
(B-A) 1emv −3 1465 B = +5; A = −8 2.17 2.42

Lactoglobulin
dimer (57)(A-B) 1beb +26 1167 A = B = +13 −1.62 −1.90

Journal of Computational Chemistry DOI 10.1002/jcc

12 Chen et al. • Vol. 00, No. 00 • Journal of Computational Chemistry

Figure 7. (a) Binding affinity of 1emv; (b) Binding affinity of 1beb. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

In the homo-dimeric complex, the experimentally observed bind-
ing free energies decrease with the increase of ionic strength,
whereas for the hetero-diemric complex, the experimental measure-
ment had detected an increase. Our results obtained from the MIBPB
package reproduced these observations. The calculated magnitudes
of the slopes of the salt dependence are in quite good agreement
with experimental results within the range of errors, as the fitting
lines are almost parallel. The discrepancies between the experimen-
tal data and simulation results are also expected: the PBE, no matter
in linear or full nonlinear form, only gives the ideal situation of the
solute–solvent system but many details, such as the “protein confor-
mation change, pKa shifts upon complexation or possible ionization
states,” are lacking.81 Despite these approximation, the application
of PBE for static protein structures is suggested in general by these
good agreements with experimental data.

Conclusions

This article introduces the MIBPB software package and its work
flow for practical applications in biochemistry, biophysics, and
structural biology. Two applications, the solvation free energy cal-
culation and the salt dependence binding affinity calculation, are
carried out to justify the robustness, accuracy, and efficiency of
solving the linear and nonlinear PBEs. The results of solvation free
energy calculations are compared with those from a traditional PBE
solver and the results of binding affinity are compared with experi-
mental data. The MIBPB solver is verified to be highly accurate —
by far the only existing second-order accurate method for solving
the Poisson–Boltzmann (PB) equation with discontinuous dielec-
tric constants, singular charge sources, and geometric singularities
from the molecular surfaces of biomolecules. More specifically, the
MIBPB has built in advanced interface techniques that are able
to deal with discontinuous solvent–solute interfaces and geomet-
ric singularities of molecular surfaces. The Dirichlet to Neumann
mapping, or Green’s function approach, has been developed in the
MIBPB solver to analytically resolve the singular point charges.
Consequently, the MIBPB solver is able to deliver high accuracy
at relatively coarse meshes. The MIBPB solver provides reliable
electrostatic potentials at the mesh of about 1 Å, whereas traditional

methods have to resort to about 0.25 Å mesh resolution to achieve
a similar level of reliability.

In this work, we further equip the MIBPB solver with advanced
KS techniques to accelerate the speed of the convergence of solving
linear equation systems originated from the MIBPB discretization.
The performances of various solver-PC combinations have been
carefully examined through mathematical analysis and numerical
experiments. Dramatic reductions in condition numbers are found
when appropriate PCs are used. Upon the use of appropriate com-
binations of PCs and solvers, significant reductions in the CPU
time are found in solving the PB equation for large proteins. Both
the PETSc and the SLATEC are employed in the present MIBPB
package to speed up the convergence rate of the iterations of the
linear systems. The PETSc package is found to be more reliable
and efficient. In the present work, the structure preparation of pro-
teins is conducted via the PDB2PQR software package, whereas
the MSMS software package is used for the molecular surface
generation.

Additionally, the nonlinear MIBPB solver has been developed
in this work. This is achieved via the standard inexact Newton
method, assisted by the KS acceleration techniques. The present
nonlinear MIBPB solver has been tested and applied to the salt
dependence analysis of protein–protein binding interactions. Our
results of binding affinities are compared with experimental data.

Appendix A: Linear Equation Systems and
MIBPB Matrix

A system of linear algebraic equations is formed after discretizing
the PB model

Lhuh = fh (A1)

where Lh is a real nonsingular n by n matrix under grid spacing h,
uh is the numerical solution vector and fh is the source term vector.
The matrix Lh is viewed as a linear operator mapping R

n into R
n,

the space R
n being a linear space equipped with an inner-product

(·, ·) inducing a norm ‖ · ‖ defined as follows

Journal of Computational Chemistry DOI 10.1002/jcc

MIBPB—Software Package for Electrostatic Analysis 13

(u, v) =
n∑

i=1

uivi, ‖u‖ = (u, u)1/2, ∀u, v ∈ R
n.

where ui represents the i-th component of the vector u.
Generally, systems of linear algebraic equations are commonly

solved by using direct methods and iterative methods. Direct meth-
ods, such as Gaussian elimination and LU decomposition, work
for general matrices with arbitrary structure but require large com-
puter memory. Therefore, they are not computationally efficient,
and hence unsuitable for solving the 3D PB model of biomolecules,
even for small proteins.

Some of the iterative methods, such as Richardson, Jacobi,
Gauss-Seidel, and SOR iterations, also work well for general struc-
tured matrices but they are barely used due to the reduced robustness
for large protein system. The classic linear iteration methods for
solving eq. (A1) can be viewed as the following form

uj+1
h = uj

h − BLhuj
h + Bfh, (A2)

where B is matrix approximating L−1
h in some sense. Different con-

struction of matrix B results in a different iterative method. The
necessary and sufficient condition for the convergence of algo-
rithm (A2) is that the spectrum ρ of the error propagation operator
must be smaller than 1, that is, E = Ih − BLh and ρ(E) < 1,84

where Ih is the identity operator associated with the grid resolution
h. The smaller value of ρ(E) indicates the better convergence of
the method. The spectra of this family of iteration methods can be
expressed as ρ(E) = 1 − O(h2), which implies that as grid spacing
gets smaller, these methods converge more and more slowly. This
property severely restricts the wide applications of these methods
for large linear systems.

The conjugate gradient (CG) method is a very efficient iterative
method if the matrix is symmetric and positive definite. Actually,
it is the main workhorse of most popular PBE solvers, because the
matrices from the standard FDMs or FEMs satisfy these good prop-
erties. The multigrid (MG) method is an accelerating technique and
can be applied in combination with any of commonly used solvers.
Using a hierarchy of discretizations, MG shifts the computation
between coarser and finer grids by extrapolation and restriction,
and thus accelerates the convergence. It is almost the fastest accel-
erating technique known so far and applied in many popular PB
solvers, such as the APBS.

Unfortunately, the matrix Lh from the MIB can barely take advan-
tages from the described methods due to its notoriously complicated
structure. For the discretization of the Laplace operator in the PBE
by standard FDMs, every grid point except the boundary ones takes
the following form:

−∇ · (ε∇u)|x=xi ,yj ,zk = c0ui,j,k + c1ui−1,j,k + c2ui+1,j,k

+ c3ui,j−1,k + c4ui,j+1,k

+ c5ui,j,k−1 + c6ui,j,k+1 (A3)

where i, j, and k represent the discretization indices along the x, y,
and z directions, respectively. The coefficients cm, m = 0, 1, . . . 6

only depend ε and grid spacing h. The symmetric structure of
eq. (A3) and the facts

∑6
m=0 cm = 0 and c1 = c2 = c3 = c4 =

c5 = c6 make the whole matrix symmetric and positive definite.
However, as the MIB scheme takes into account the interface

treatment and at all the irregular grid points near the interface, dis-
cetizations are modified. For the simplest case, assume that only
one fictitious point is needed and without the loss of generality, the
modification is in the form:

−∇ · (ε∇u)|x=xi ,yj ,zk = c0ui,j,k + c1f ∗ + c2ui+1,j,k

+ c3ui,j−1,k + c4ui,j+1,k

+ c5ui,j,k−1 + c6ui,j,k+1 (A4)

Note that the fictitious value f ∗ is used in eq. (A4) for the smooth
extension of the function. The fictitious value f ∗ can further be
expanded as the linear combination of the unknown function values.

f ∗ =
M∑

m=1

c̃mui′m ,j′m ,k′
m

(A5)

where ui′m ,j′m ,k′
m

is the nearby function values around ui,j,k , c̃m, m =
1, 2, . . . , M are the corresponding coefficients. Usually, M = 10 in
second order MIB scheme for a smooth interface but could be bigger
for interface with singularities. The choice of ui′m ,j′m ,k′

m
and calcula-

tion of c̃m totally depend on the local information of the interface.
The introduction of the fictitious values gives high accuracy for
the interface problems but also ruins the good properties, such as
symmetry and positive-definiteness of the overall matrix.

To solve the matrices generated from the MIB scheme, the direct
methods and regular iterative methods will be ruled out from the
beginning because of the poor convergence for huge systems. The
CG method also does not work because the unpredictably general
matrix structures. Meanwhile, the direct application of the multi-
grid method, which is an important accelerating technique, also has
a potential problem because of the shift of irregular point loca-
tions during grid refinement cycles. Reference 85 showed the poor
behavior of the algebraic multigrid method (AMD) and proposed a
new multigrid scheme based on the local interface problem but the
interpolation operator at the interface will cost much extra work.

Therefore, we put more emphasis on looking for suitable solvers
and accelerating techniques in the KS theory. Stabilized BiCG and
GMRES are two examples in KS methods, which deal with the
general nonsingular matrix that does not have to be symmetric and
positive definite. In the following section, the KS methods and their
analysis are briefly introduced. Different types of PCs are associated
to the KS solvers. These combinations are tested in “Precondi-
tioner Accelerated MIBPB Solvers” section to achieve the optimal
convergence rate for solving the linearized or nonlinear MIBPB
matrices.

Appendix B: KS Method and Preconditioning

Suppose u0 is an initial guess for the solution u in system (A1) and
defines the initial residual r0 = f − Lu0. For notation simplicity,

Journal of Computational Chemistry DOI 10.1002/jcc

14 Chen et al. • Vol. 00, No. 00 • Journal of Computational Chemistry

the subscript h is dropped here. As shown in ref. 86, the KS can
be derived from the following projection method. The mth iteration
um, m = 1, 2, . . . is of the form

um ∈ r0 + Sm, (B1)

where Sm is some m-dimensional space, called the search space.
Strictly speaking, eq. (B1) is an abused notation, it means that um

can be decomposed as the residual r0 and an element in space Sm.
Because of m degrees of freedom, a total of m constraints is required
to make um unique. This is achieved by choosing an m-dimensional
space Cm, called the constraint space, and by requiring that the mth

residual is orthogonal to that space, that is,

rm = f − Lum ∈ r0 + LSm, rm⊥Cm. (B2)

Here, the orthogonality is in the sense of the inner product in the
Euclidean space.

If the space Sm is defined as the KS Km(L, r0), that is,

Sm = Km(L, r0) ≡ span{r0, Lr0, . . . , Lm−1r0}, m = 1, 2, . . . ,
(B3)

then the projection method is the so-called KS method. More specif-
ically, if Cm = Sm, it is the Galerkin method, which includes the
CG method and its generalizations, and if Cm = LSm, it yields the
GMRES. These are the basic idea of KS methods.

For the convergence analysis, note that conditions (B1) and (B2)
imply that the error u − um and the residual rm can be written in the
polynomial form

u − um = pm(L)(u − um), rm = pm(L)r0, (B4)

where pm is a polynomial of degree at most m and with value one at
the origin. Reference 86 gives the error bound for KS methods

‖u − um‖
‖u − u0‖ ≤ min

p∈πm
max

k
|p(λk)|, (B5)

where πm denotes the set of polynomials of degree at most m and
with value one at the origin, λk are the eigenvalues of the matrix L.
It can be concluded from eq. (B5) that the convergence behavior of
the KS methods is completely determined by their spectra.

However, as indicated in ref. 86, it is always difficult to really
evaluate the upper bound. Alternatively, it states that the condition
number of the matrix is a criteria which although, only partially
reveals the practice convergence behavior but is easier to calculate.
For matrix L, the condition number is defined as the ratio of the
extreme eigenvalues or spectra

ς = λmax

λmin
. (B6)

Because the rate of the convergence of Krylov projection meth-
ods for a particular linear system is strongly dependent on its
spectrum, PC is typically used to alter the spectrum and hence accel-
erate the convergence rate of iterative techniques. PC can be applied
to system (A1) by

(
M−1

L LM−1
R

)
(MRu) = M−1

L f , (B7)

where ML and MR denote the left and right precondition matrices.
Usually, if MR = I , the left preconditioned results and the residual
is given by

rL = M−1
L f − M−1

L Lu. (B8)

Properly preconditioned matrix M−1L may significantly reduce the
condition number of L, hence the rate of convergence is acceler-
ated. The commonly used precondition strategies are JAC, block
PC and ILU factorization. However, preconditioning a large sparse
system is an empirical exercise. Different PCs work better for dif-
ferent kinds of problems. In “Preconditioner Accelerated MIBPB
Solvers” section, the combinations of different KS solvers and PCs
are investigated, and the rate of convergence is analyzed via the
spectra of preconditioned and unpreconditioned matrices.

The accelerated Krylov methods are also crucial for solving the
nonlinear PBE. The discretization of the nonlinear PB equation
results in a linear equation system of the form

F(u) = Lu + N(u) − f = 0, (B9)

where the matrix L is still from the MIBPB scheme, the nonlin-
ear term N(·) is diagonal and Ni(u) = Ni(ui) = κ̄2 sinh(ui). The
inexact-Newton method is perhaps one of the most efficient ways
to solve nonlinear system (B9)

F ′(un)vn = −F(un) + rn,
‖rn‖

‖F(un)‖ ≤ ηn (B10)

un+1 = un + vn, (B11)

where F ′ is the Jacobian matrix [∂Fi(u)/∂uj] and takes the form
F ′(u) = L + N ′(u). Here, N ′ is the Jacobian matrix of N(u) and is
also diagonal N ′

i (u) = N ′
i (ui) = κ̄2 cosh(ui).

It is easy to see that the inexact-Newton method is a two-layer
iterative algorithm. The correction term vn in outer iteration (B11) is
considered as a rough solution of inner iteration (B10). The scheme
converges linearly when ηn, the ratio of the residual rn between the
function value F(u), is less than 1, and converges super-linearly as
the sequence ηn has the property that limn→∞ ηn = 0. In the MIBPB
package, accelerated KS methods are applied to inner iteration (B10)
to attain fast convergence.

References

1. Roux, B.; Simonson, T. Biophy Chem 1999, 78, 1.
2. Sharp, K. A.; Honig, B. Annu Rev Biophys Biophys Chem 1990, 19,

301.
3. Davis, M. E.; McCammon, J. A. Chem Rev 1990, 94, 509.

Journal of Computational Chemistry DOI 10.1002/jcc

MIBPB—Software Package for Electrostatic Analysis 15

4. Chen, J.; Brooks, C. L., III. Phys Chem Chem Phys 2008, 10, 471.
5. Baker, N. A.; Bashford, D.; Case, D. A. In Implicit solvent electrostatics

in biomolecular simulation; Leimkuhler, B.; Chipot, C.; Elber, R.; Laak-
sonen, A.; Mark, A.; Schlick, T.; Schutte, C.; Skeel, R.; Eds.; Springer:
Berlin, Heidelberg, New York, 2006.

6. Dominy, B. N.; Brooks, C. L., III.; J Phys Chem B 1999, 103, 3765.
7. Feig, M.; Im, W.; Brooks, C. L., I.; J Chem Phys 2004, 120, 903.
8. Zhu, J.; Alexov, E.; Honig, B. J Phys Chem B 2005, 109, 3008.
9. Mongan, J.; Simmerling, C.; McCammon, J. A.; Case, D. A.; Onufriev,

A. J Chem Theory Comput 2007, 3, 159.
10. Chiba, M.; Fedorov, D. G.; Kitaura, K. J Comput Chem 2008, 29, 2667.
11. Tomasi, J.; Mennucci, B.; Cammi, R. Chem Rev 2005, 105, 2999.
12. Improta, R.; Barone, V.; Scalmani, G.; Frisch, M. J. J Chem Phys 2006,

125, 054103-1.
13. Baker, N. A. Meth Enzymol 2004, 383, 94.
14. Lamm, G. In The Poisson–Boltzmann Equation. Lipkowitz, K. B.;

Larter, R.; Cundari, T. R. Eds.; Wiley: Hoboken, NJ, 2003; pp. 147–366.
15. Tsui, V.; Case, D. A. J Am Chem Soc 2000, 122, 2489.
16. Simonson, T. Cur Opin Struct Biol, 2001, 11, 243.
17. Feig, M.; Brooks, C. L., I.; Curr Opin Struct Biol 2004, 14, 217.
18. Beglov, D.; Roux, B. J Chem Phys 1996, 104, 8678.
19. David, L.; Luo, R.; Gilson, M. K. J Comput Chem 2000, 21, 295.
20. Onufriev, A.; Bashford, D.; Case, D. A. J Phys Chem B 2000, 104, 3712.
21. Bashford, D.; Case, D. A. Annu Rev Phys Chem 2000, 51, 129.
22. Tsui, V.; Case, D. A. J Phys Chem B 2001, 105, 11314.
23. Livesay, D. R.; Jambeck, P.; Rojnuckarin, A.; Subramaniam, S.

Biochemistry 2003, 42, 3464.
24. Blomberg, N.; Gabdoulline, R. R.; Nilges, M.; Wade, R. C. Proteins

1999, 37, 379.
25. Swanson, J. M. J.; Henchman, R. H.; McCammon, J. A. Biophys J 2004,

86, 67.
26. Massova, I.; Kollman, P. A. J Am Chem Soc 1999, 121, 8133.
27. Nielsen, J. E.; Vriend, G. Proteins 2001, 43, 403.
28. Tang, C. L.; Alexov, E.; Pyle, A. M.; Honig, B. J Mol Biol 2007, 366,

1475.
29. Prabhu, N. V.; Panda, M.; Yang, Q. Y.; Sharp, K. A. J Comput Chem

2008, 29, 1113.
30. Luo, R.; David, L.; Gilson, M. K. J Comput Chem 2002, 23, 1244.
31. Madura, J. D.; Briggs, J. M.; Wade, R. C.; Davis, M. E.; Luty, B. A.;

Ilin, A.; Antosiewicz, J.; Gilson, M. K.; Bagheri, B.; Scott, L. R.;
McCammon, J. A. Comput Phys Commun 1995, 91, 57.

32. Gabdoulline, R. R.; Wade, R. C. Methods-a Companion Methods
Enzymol 1998, 14, 329.

33. Sept, D.; Elcock, A. H.; McCammon, J. A. J Mol Biol 1999, 294, 1181.
34. Cheng, Y.; Suen, J. K.; Radi, Z.; Bond, S. D.; Holst, M. J.; McCammon,

J. A. Biophy Chem 2007, 127, 129.
35. Song, Y.; Zhang, Y.; Bajaj, C. L.; Baker, N. A. Biophys J 2004, 87, 1558.
36. Song, Y.; Zhang, Y.; Shen, T.; Bajaj, C. L.; McCammon, J. A.; Baker,

N. A. Biophys J 2004, 86, 2017.
37. Petrey, D.; Honig, B. Methods Enzymol 2003, 374, 492.
38. Baker, N. A.; McCammon, J. A. In Electrostatic interactions. Bourne,

P.; Weissig, H.; Eds.; Wiley: New York, 2003; pp. 427–440.
39. Kirkwood, J. G. J Comput Phys 1934, 7, 351.
40. Honig, B.; Nicholls, A. Science 1995, 268, 1144.
41. Warwicker, J.; Watson, H. C. J Mol Biol 1982, 157, 671.
42. Im, W.; Beglov, D.; Roux, B. Comput Phys Commun 1998, 111, 59.
43. Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A. Proc

Natl Acad Sci USA 2001, 98, 10037.
44. Boschitsch, A. H.; Fenley, M. O. J Comput Chem 2004, 25, 935.

45. Zauhar, R. J.; Morgan, R. S. J Mol Biol 1985, 186, 815.
46. Baker, N. A. Curr Opin Struct Biol 2005, 15, 137.
47. Klapper, I.; Hagstrom, R.; Fine, R.; Sharp, K.; Honig, B. Protein 1986,

1, 47.
48. Engles, M.; Gerwert, K; Bashford, D. Biophys Chem 1995, 56, 95.
49. Holst, M.; Baker, N.; Wang, F. J Comput Chem 2000, 21, 1319.
50. Lu, B. Z.; Chen, W. Z.; Wang, C. X.; Xu, X. J. Proteins 2002, 48,

497.
51. Jo, S; Vargyas, M; Vasko-Szedler, J.; Roux, B.; Im, W. Nucl Acids Res

2008, W270, 36.
52. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D.; Swami-

nathan, S.; Karplus, M. J Comput Chem 1983, 4, 187.
53. Dong, F.; Vijaykumar, M.; Zhou, H. X. Biophys J 2003, 85, 49.
54. Nina, M.; Im, W.; Roux, B. Biophy Chem 1999, 78, 89.
55. Swanson, J. M. J.; Mongan, J.; McCammon, J. A. J Phys Chem B 2005,

109, 14769.
56. Lee, B.; Richards, F. M. J Mol Biol 1971, 55, 379.
57. Richards, F. M. Annu Rev Biophys Bioeng 1977, 6, 151.
58. Connolly, M. L. J Appl Crystallogr 1983, 16, 548.
59. Sanner, M. F.; Olson, A. J.; Spehner, J. C. Biopolymers 1996, 38,

305.
60. Peskin, C. S. J Comput Phys 1977, 25, 220.
61. Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S. J Comput Phys 1999,

152, 457.
62. Bramble, J.; King, J. Adv Comput Math 1996, 6, 109.
63. Li, Z. L.; Lin, T.; Wu, X. H. Numerische Mathematik 2003, 96, 61.
64. Cai, W.; Deng, S. Z. J Comput Phys 2003, 190, 159.
65. LeVeque, R. J.; Li, Z. L. SIAM J Numer Anal 1994, 31, 1019.
66. Zhao, S.; Wei, G. W. J Comput Phys 2004, 200, 60.
67. Zhou, Y. C.; Zhao, S.; Feig, M.; Wei, G. W. J Comput Phys 2006, 213,

1.
68. Zhou, Y. C.; Wei, G. W. J Comput Phys 2006, 219, 228.
69. Yu, S.; Zhou, Y.; Wei, G. W. J Comput Phys 2007, 224, 729.
70. Yu, S.; Wei, G. W. J Comput Phys 2007, 227, 602.
71. Yu, S. N.; Xiang, Y.; Wei, G. W. Commun Numer Methods Eng 2009,

25, 923.
72. Zhao, S.; Wei, G. W. Int J Numer Meth Eng 2009, 77, 1690.
73. Chen, D.; Wei, G. W.; Cong, X.; Wang, G. Commun Numer Methods

Eng 2009, 25, 1137.
74. Zhao, S. IEEE Microwave Wireless Compon Lett 2009, 19, 266.
75. Zhou, Y. C.; Feig, M.; Wei, G. W. J Comput Chem 2008, 29, 87.
76. Yu, S.; Geng, W.; Wei, G. W. J Chem Phys 2007, 126, 244108.
77. Geng, W.; Yu, S.; Wei, G. W. J Phys Chem 2007, 127, 114106.
78. Chern, I.-L.; Liu, J.-G.; Weng, W.-C. Methods Appl Anal 2003, 10, 309.
79. Yu, S. N. Matched interface and boundary (MIB) method for geomet-

ric singularities and its application to molecular biology and structural
analysis. Dissertation of Michigan State University: Michigan State
University, 2007.

80. Holst, M. J. Multilevel Methods for the Poisson-Boltzmann Equa-
tion. University of Illinois, Numerical Computing Group: Urbana-
Champaign, 1993.

81. Bertonati, C.; Honig, B.; Alexov, E. Biophys J 2007, 92, 1891.
82. Sakurai, K.; Oobatake, M.; Goto, Y. Protein Sci 2001, 10, 2325.
83. Wallis, R.; Moore, G. R.; James, R.; Kleanthous, C. Biochemistry 1995,

34, 13743.
84. Ortega, J. M. Numerical Analysis: A Second Course. Academic Press:

NY, 1999.
85. Chen, T.; Strain, J. J Comput Phys 2008, 16, 7503.
86. Liesen, J.; Tichy, P. CGAMM Mitteilungen 2004, 27, 153.

Journal of Computational Chemistry DOI 10.1002/jcc

