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Abstract Large chemical and biological systems such as fuel cells, ion channels, mole-
cular motors, and viruses are of great importance to the scientific community and pub-
lic health. Typically, these complex systems in conjunction with their aquatic environ-
ment pose a fabulous challenge to theoretical description, simulation, and prediction. In
this work, we propose a differential geometry based multiscale paradigm to model com-
plex macromolecular systems, and to put macroscopic and microscopic descriptions on an
equal footing. In our approach, the differential geometry theory of surfaces and geometric
measure theory are employed as a natural means to couple the macroscopic continuum
mechanical description of the aquatic environment with the microscopic discrete atom-
istic description of the macromolecule. Multiscale free energy functionals, or multiscale
action functionals are constructed as a unified framework to derive the governing equa-
tions for the dynamics of different scales and different descriptions. Two types of aqueous
macromolecular complexes, ones that are near equilibrium and others that are far from
equilibrium, are considered in our formulations. We show that generalized Navier–Stokes
equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–
Boltzmann equations for electrostatic interactions, and Newton’s equation for the mole-
cular dynamics can be derived by the least action principle. These equations are coupled
through the continuum-discrete interface whose dynamics is governed by potential driven
geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic
interactions without geometric flow based micro-macro interfaces. The detailed balance of
forces is emphasized in the present work. We further extend the proposed multiscale par-
adigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and
ion channels. We derive generalized Poisson–Nernst–Planck equations that are coupled to
generalized Navier–Stokes equations for fluid dynamics, Newton’s equation for molecular
dynamics, and potential and surface driving geometric flows for the micro-macro inter-
face. For excessively large aqueous macromolecular complexes in chemistry and biology,
we further develop differential geometry based multiscale fluid-electro-elastic models to
replace the expensive molecular dynamics description with an alternative elasticity for-
mulation.
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1. Introduction

Recently, multiscale modeling and multiscale simulation have emerged as powerful ap-
proaches in physical, biological, mathematical, and engineering sciences (Abraham et al.,
1998; Knap and Ortiz, 2001; Tadmor et al., 1996; Tang et al., 2006; Engquist et al., 2007;
Wang and Shu, 2009). The popularity of these approaches is driven by the human curiosity
and desire to understand the behavior of complex systems, such as complex fluids, turbu-
lent flows, micro-fluidics (Zheng et al., 2003; Chen and Conlisk, 2008), solids, interface
problems, structure and fluid interactions, wave propagation in random media, stochastic
processes, and statistically self-similar problems, to name only a few. In general, multi-
scale models and methods allow efficient descriptions of key elements in a physical phe-
nomenon such that the subsequent simulations are feasible with the current computational
capability, and the simulation results offer insights to the understanding of the phenom-
enon. A variety of multiscale models and computational methods has been developed.
One class of multiscale models addresses multiphysics involved in the problem at hand
with multiple governing equations, such as microscopic laws for atoms and molecules
at microscopic settings, and transport equations for the conservation of mass, momen-
tum, and energy at macroscopic settings. Computationally, bridging scales and bridging
domains may be used to couple macro-micro scales or domains (Tang et al., 2006). An-
other class of multiscale models is originated from earlier multigrid methods or wavelet
multiresolution analysis. These models emphasize the extraction and utilization of infor-
mation at different time or spatial scales described by one set of governing equations that
are of similar nature in mathematics. A typical example is the homogenization problem
governed by an elliptic equation. The other class of multiscale models is heterogeneous
approaches.

Yet perhaps the oldest and the most elegant multiscale model is the Boltzmann equa-
tion, particularly the quantum Boltzmann equation known as the Waldmann–Snider equa-
tion (Waldmann, 1957; Snider, 1960) which is derived from the BBGKY hierarchy with
appropriate scattering closure and stosszahl ansatz for the two-body density operator. The
Boltzmann equation and the Waldmann–Snider equation describe the time evolution of a
one-particle statistical distribution or density operator, influenced by the interaction of an-
other particle which represents the effect of all other particles in the system (Alavi et al.,
1997). The Boltzmann equation is one of the most important equations of nonequilibrium
statistical mechanics. The Boltzmann equation and the Waldmann–Snider equation incor-
porate three time scales, i.e., the collision time, the mean free time, and the relaxation time
(or hydrodynamic time); as well as three spatial scales, i.e., the microscopic description
of the dynamics of particles (atoms, electrons, phonons, and molecules), the mesoscopic
description of the local density, the local velocity, and the local temperature that are out of
equilibrium, and the macroscopic description of the transport quantities, such as the con-
servation laws of mass, momentum, and energy (Snider et al., 1996a, 1996b). However,
the Boltzmann theory is limited to the systems that are essentially homogeneous, such as
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gases, fluid, and electrons in solids, etc. More general multiscale analysis is required for
heterogeneous systems.

The most intriguing and fascinating phenomenon on Earth is life. Amazingly, life en-
compasses over more than twenty orders of magnitude in time scales from electron trans-
fer, proton dislocation, on the scale of femtoseconds to organism lifetimes on the scale
of years; and over ten orders of magnitude in spatial scales from electrons to organisms.
Since life has so many scales in space and time, biology is subdivided into molecular
biology, cellular biology, development biology, evolutionary biology, organismic biology,
population biology, etc., not to mention emerging fields such as systems biology, ecology,
and bioinformatics. Biology at each scale and level collects enormous amount information
which can easily outrace the theory needed to understand it. Quantitative understanding
and theoretical prediction have emerged as a key discipline in the contemporary biology.
Therefore, the complexity of life and the need for its understanding present an extraordi-
nary opportunity for multiscale modeling and simulation.

Due to their extraordinary spatiotemporal extension, biological scales are difficult to
integrate. An interesting development in theoretical biology is the scale relativity the-
ory approach to integrative systems biology (Auffray and Nottale, 2008; Nottale and
Auffray, 2008). The scale relativity theory is an extension of Einstein’s theories of
relativity, formulated by applying the principle of relativity to both motion and scale
transformations of the reference system. This approach has the potential of overcom-
ing the fundamental hurdles of multiscale integration in systems biology. The interested
reader is referred to two recent review papers for detail (Auffray and Nottale, 2008;
Nottale and Auffray, 2008).

Under physiological conditions, most biological processes, such as ion channel, signal
transduction, deoxyribonucleic acid (DNA) specification, transcription, post transcription
modification, translation, protein folding, and protein-protein interaction, occur in water,
which consists of 65–90% human cell weight. A prerequisite to quantitative descriptions
of the above mentioned biological processes is the understanding of solvation—the sta-
tic and dynamical behavior of macromolecules in the aquatic environment and the syn-
ergy of solvent-solute interactions. Solvation models can be roughly divided into two
classes: explicit solvent models that treat the solvent in molecular or atomic detail, and
implicit solvent models that generally replace the explicit solvent with a dielectric con-
tinuum while keeping the atomic detail of the biomolecule (Roux and Simonson, 1999;
Warshel and Papazyan, 1998; Simonson, 2001; Sharp and Honig, 1990; Tully-Smith
and Reiss, 1970; Fries and Patey, 1985; Beglov and Roux, 1997). Each method has its
strengths and weaknesses. While explicit solvent models offer some of the highest lev-
els of detail, they generally require extensive sampling to extract thermodynamic or ki-
netic properties of interest. This approach becomes intractable for large biomolecules,
such as large proteins, molecular motors, and viruses. On the other hand, implicit sol-
vent models focus on the biomolecule of interest, and provide only a mean-field descrip-
tion of the solvent. Because of their fewer degrees of freedom, implicit solvent mod-
els have become popular for many applications in molecular simulations (Holst, 1993;
Baker, 2004, 2005; Feig and Brooks III, 2004; Dong et al., 2008; Boschitsch and Fenley,
2004, 2007).

Implicit solvent models require a separation of macroscopic and microscopic domains
at the solvent-solute boundary. Commonly used boundaries are van der Waals surfaces and
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molecular surfaces (Richards, 1977). However, these surfaces may admit geometric singu-
larities, such as cusps and self-intersection surfaces, which devastate their computational
applications in structural modeling and simulation (Connolly, 1983; Sanner et al., 1996).
Image smoothing techniques, including Gaussian kernel and anisotropic diffusion (Xu et
al., 2006; Zhang et al., 2006), are applied to improve the regularities of Connolly surfaces.
The first partial differential equation (PDE) based molecular surface was constructed in
2005 (Wei et al., 2005). Unlike PDE based surface smoothing techniques which start with
a given surface, this approach embeds the atomic information, instead of a surface, in
the Eulerian representation or formulation, and generate biomolecular surfaces by gradi-
ent driven diffusion and subsequent level-set extraction (Wei et al., 2005). An important
question in molecular/structural biology is that “what is the physical boundary of a bio-
molecule in solvent.” Therefore, in general, the biomolecular surface morphology should
be determined by the optimization of the free energy of the macromolecule in the aquatic
environment. Recently, we have addressed this issue by considering a mean curvature flow
model of bimolecular surfaces, the minimal molecular surface (MMS) that minimizes the
surface free energy functional (Bates et al., 2006, 2008). More recently, we have presented
a general procedure for the formation and evolution of biomolecular surfaces by balancing
the geometric curvature effects and potential effects (Bates et al., 2009). The mathematical
structure of this approach was prototyped in 1999 (Wei, 1999). In our approach, stochas-
tic geometric flows have also been introduced to account for the random fluctuation and
dissipation in density and forces near the surface (Bates et al., 2009). Physical properties,
such as free energy optimization (area decreasing) and incompressibility (volume preserv-
ing), were realized in our potential driven geometric flow equations (Bates et al., 2009).
An important issue in implicit solvent models is the lack of sufficient descriptions of ion
correlation, polar–nonpolar coupling and solvent-solute interactions (Ashbaugh, 2000;
Bostrom et al., 2005; Cerutti et al., 2007; Chorny et al., 2005; Dzubiella et al., 2006a;
Fixman, 1979; Forsman, 2004). This problem was considered by Dzubiella et al. (2006a)
who proposed an interesting free energy optimization procedure for coupling polar–
nonpolar interactions. Their model includes contributions from pressure, Gauss and mean
curvatures, short-range repulsion, dispersion and electrostatic effects. Biomolecular sur-
faces were generated from this model via the level set approach (Cheng et al., 2007) which
is similar to our Eulerian geometric flow approaches of biomolecular surfaces (Wei et al.,
2005; Bates et al., 2006, 2008, 2009).

Geometric flows (Willmore, 1997) or geometric evolution equations, have been exten-
sively studied in the mathematical context in the past two decades (Evans and Spruck,
1991; Gomes and Faugeras, 2001; Mikula and Sevcovic, 2004). Computational tech-
niques based on level sets were devised by Osher and Sethian (Osher and Sethian, 1988;
Rudin and Osher, 1992; Sethian, 2001) and have been developed and applied by
many others in geometric flow analysis (Cecil, 2005; Chopp, 1993; Smereka, 2003;
Sarti et al., 2002; Sbert and Solé, 2003; Sethian, 2001; Sochen et al., 1998; Du et
al., 2004). An alternative approach is to minimize energy functional in the frame-
work of the Mumford–Shah variational functional (Mumford and Shah, 1989) and
the Euler–Lagrange formulation of surfaces developed by Chan and coworkers (Blom-
gren and Chan, 1998), and others (Carstensen et al., 1997; Li and Santosa, 1996;
Osher and Rudin, 1990; Rudin and Osher, 1992; Sapiro and Ringach, 1996). We in-
troduced some of the first high-order geometric evolution equations for image analysis
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(Wei, 1999). Our approach was based on the kinetic theory and generalized conserva-
tion principles. Our high-order geometric flow equations have led to many interesting
applications (Wei, 1999; Wei and Jia, 2002; Sun et al., 2006a; Lysaker et al., 2003;
Gilboa et al., 2004). Recently, Bertozzi and Greer have carried out mathematical analy-
sis of these high order equations in Sobolev space H 1 norm (Bertozzi and Greer, 2004;
Greer and Bertozzi, 2004a, 2004b), which proved the existence and uniqueness of the
solution to a case with H 1 initial data and a regularized operator. We also introduced
coupled geometric flow equations for image edge detection (Wei and Jia, 2002). Re-
cently, we have proposed an evolution operator based single-step method for image de-
noising and enhancement (Sun et al., 2006a). Surface gradient flows derived from the
optimization of certain functionals defined on the surface are commonly used for ap-
plications ranging from surface diffusion (Taubin, 1995), denoising of acquired surface
data from 3D scanners (Desbrun et al., 1999), harmonic analysis and structure definition
of data (Coifman et al., 2005), shape optimization and surface design (Kobbelt, 2000;
Bobenko and Schröder, 2005), minimal surfaces (Pinkall and Polthier, 1993), texture
transfer (Dinh et al., 2005), to dynamic evolution of surfaces (Grinspun et al., 2003).
Such flows can be either extrinsic, where the embedding of the surface itself changes, as
in the mean curvature flow; or intrinsic, where properties such as metric tensor defined
on the surface evolve, as in the Ricci flow. The former is the method of choice for the
purposes of visualization and most other applications. The latter, however, may provide
the necessary supplement for classification, analysis and simplification of large surface
datasets.

An unsolved problem in implicit solvent models is how the macroscopic description
is coupled to the microscopic description. So far, most attention has been paid to the cal-
culation of the electrostatic energy or the solvation energy. To our best knowledge, there
is no complete description of both the macroscopic system and the microscopic system
on an equal footing in the literature. Without carefully spelling out the detail of macro-
micro coupling, implicit solvent models cannot be formally regarded as multiscale models
per se. Additionally, an important while essentially neglected issue is how the forces of
solvation models generated from microscopic and macroscopic domains are balanced.
This issue is particularly important whenever the forces computed from solvation mod-
els are either to be utilized for molecular dynamics in any manner (Gilson et al., 1993;
Im et al., 1998; Lu et al., 2002; Lu and Luo, 2003; Luo et al., 2002; Prabhu et al., 2004),
or to be used in a comparison with those from explicit methods (Swanson et al., 2007)
or experimental data. A throughout understanding of force balance and macro-micro cou-
pling requires again a complete description of both the macroscopic subsystem and the
microscopic subsystem on an equal footing. Moreover, while the nonequilibrium property
of the microscopic subsystem has been studied by implicit-solvent molecular dynamics
(Gilson et al., 1993; Im et al., 1998; Lu et al., 2002; Lu and Luo, 2003; Luo et al., 2002;
Prabhu et al., 2004), the nonequilibrium property of the macroscopic subsystem has rarely
been considered in implicit solvent models. In fact, the nonequilibrium property of the
macroscopic subsystem is crucial to the protein hydrophobic collapse and RNA folding
transition time in solution observed with microfluidic techniques (Lapidus et al., 2007). It
is high time to develop a multiscale paradigm that unifies the macroscopic description of
the aquatic environment and the microscopic description of the macromolecule.

Recently, researchers have developed multiscale hybrid simulations of fluid dynam-
ics and molecular dynamics to study a wide range of physical phenomena, including
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micro/nano-scale nozzle structure of inkjet head or electrospray devices (Budiono et al.,
2008) and the structure of normal shock waves in dilute argon (Valentini and Schwartzen-
truber, 2009). This approach typically resorts to the Lennard–Jones potential for describ-
ing molecular interactions. The domain boundary between the fluid dynamics and the
molecular dynamics is able to feature the hydrophilic and the hydrophobic surfaces for
a jetting system (Budiono et al., 2008). However, similar models for macromolecules in
fluid flows are yet to be developed.

Another class of challenging problems concerns complex chemical systems, such as
fuel cells (Franco et al., 2006; Gurau and Mann, 2009; Promislow and Wetton, 2009), and
complex biological systems, such as ion channels (Cheng et al., 2009; Hwang et al., 2006;
Gordon et al., 2009) and adenosine-5′-triphosphate (ATP) synthase motors. One particu-
lar challenge of these problems is that they may involve excessively large aqueous macro-
molecular complexes. An interesting example is DNA packing and unpacking (Grigoryev
et al., 2009). DNA contains the basic genetic information for all modern living things to
function, grow, and reproduce. A single human DNA molecule can have billions of atoms.
Another challenge is that these systems encompass a wide range of physical phenomena,
including electrophoresis, electroosmosis (Zheng et al., 2003; Chen and Conlisk, 2008),
electrohydrodynamics, and molecular dynamics. The underlying chemical and biologi-
cal systems can be far from equilibrium, and thus the Boltzmann distribution used in the
Poisson–Boltzmann theory may be no longer valid. The density distributions of charged
species have to be accounted by alternative approaches. Usually, these systems are de-
scribed by the Nernst–Planck equation in conjunction with the Poisson equation and the
Navier–Stokes equation (Chen et al., 1995; Chu and Bazant, 2006; Vlassiouk et al., 2008;
Abaid et al., 2008; Zhou et al., 2008c). Very often, Brownian dynamics, as well as molecu-
lar dynamics is also employed to study these complex chemical/biological systems. A uni-
fied multiscale theory that includes Poisson–Nernst–Planck equations, the Navier–Stokes
equation and the implicit-solvent molecular dynamics will provide a new approach for
the description of these systems. It will also enhance our understanding of the advantage
and the limitation of the Navier–Stokes Poisson–Nernst–Planck theory, and the molecu-
lar dynamics. Such an understanding is crucial for detailed comparison and the choice of
simulation parameters. Additionally, the origin of the drift and the diffusion of individual
components in the continuum theory is also needed to be clarified. Therefore, it is imper-
ative to develop a multiscale paradigm that can effectively utilize current computational
capabilities to advance our understanding of the complexity of chemical and biological
systems, including their equilibrium and nonequilibrium properties.

The objective of this work is to create a fundamental paradigm, i.e., a differential
geometry based multiscale variational framework, to address the aforementioned chal-
lenges in implicit solvent models and Poisson–Nernst–Planck (PNP) theories. Though
these challenges originate from a large number of atoms and a variety of interactions in
macromolecular systems including the aquatic environment, the lack of multiscale models
to provide an appropriate description of the solvent has led to the current inadequacy in
understanding. Utilizing the differential geometry theory of surfaces, we formulate a mul-
tiscale paradigm that puts the macroscopic description of the solvent and the microscopic
description of solute on an equal footing. We describe the biomolecule in the atomistic
detail and describe the transport properties of the solvent with mechanical variables. The
interface of the macroscopic and microscopic subsystems is naturally described by the dif-
ferential geometry theory of surfaces. We set up new free energy functionals for equilib-
rium analysis and action functionals for non-equilibrium studies of the solvation process.
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The free energy functionals and action functionals are optimized by the first variation and
the least action principle, respectively. Such optimization processes generate the desirable
governing equations for both the macroscopic and the microscopic subsystems. While
equilibrium properties are determined by the generalized Poisson–Boltzmann equation
and potential driven geometric evolution equations, the nonequilibrium properties of the
macroscopic and microscopic subsystems are described by generalized Navier–Stokes
equations for fluid dynamics and the Newton’s equation for molecular dynamics, respec-
tively. Finally, we analyze a class of problems that are far from equilibrium by using
our multiscale approach. We formulate generalized geometric, Poisson–Nernst–Planck,
Navier–Stokes and Newton’s equations for describing chemical reactions, electrohydro-
dynamics, electroosmosis, and electrophoresis in ion channels, ATP synthase motors and
fuel cells.

The rest of this paper is organized as the following. We first give a brief review of the
differential geometry theory of curvatures and surfaces in Section 2. The construction of
potential-curvature driven geometric flows is also discussed. Section 3 is devoted to the
differential geometry based multiscale models for aqueous macromolecular complexes
near equilibrium. Here, aqueous macromolecular complexes mean macromolecules and
their aquatic environment, and near equilibrium means the system may be nonequilibrium
but the Boltzmann distribution for charged species is still valid to a good approximation.
To make it easily understood, we have gradually built up our full differential geometry
based multiscale models by considering a family of models, starting from a simple elec-
trostatic system, then adding a nonpolar solvation component, followed by a further in-
clusion of fluid dynamics, and finally considering the addition of the molecular dynamics.
In this manner, the advantages and drawbacks of each model can be clearly demonstrated
step by step. In Section 4, existing problems, including some apparent inconsistence, in
the current Poisson–Boltzmann based implicit solvent models are analyzed. New multi-
scale solvation models that are without the differential geometry based surface description
are also provided so that two classes of formulations, either with or without the differen-
tial geometry based surface description, can be compared to enhance the understanding.
Section 5 provides a differential geometry based multiscale framework to the electrohy-
drodynamics and eletrophoresis in fuel cells and ion channels. The origin of the drift and
diffusion in the PNP theory is analyzed. Two new multiscale models are presented to
allow a unified description of self-consistently coupled fluid dynamics, charge drift and
diffusion, surface formation and evolution, and the molecular dynamics of macromole-
cules. Section 6 deals with a class of challenging problems that involve excessively large
aqueous macromolecular complexes. For this type of systems, we develop alternative dif-
ferential geometry based fluid-electro-elastic models in which the expensive molecular
dynamics description is replaced with an elastic representation. This paper ends with some
concluding remarks.

2. Review of curvatures, surfaces and geometric flows

In this section, the differential geometry theory of surfaces (Willmore, 1997; Wolfgang,
2002) and potential driven geometric flows (Bates et al., 2009; Wei, 1999) are briefly
reviewed to establish notations and to facilitate further development.
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2.1. Curvature and surface preliminary

We consider a C2 immersion I : U → R
n+1, where U ⊂ R

n is an open set (a chart for
an n-manifold). Here, I(u) = (I1(u), I2(u), . . . , In+1(u)) is a position vector labeled by
x = I(u) for a point on a hypersurface, and u = (u1, u2, . . . , un) ∈ U . We define tangent
vectors (or directional vectors) as Xi = ∂I

∂ui
∈ TxR

n+1. The Jacobian matrix of the mapping
I is then given by DI = (X1,X2, . . . ,Xn). We denote 〈, 〉 as the Euclidean inner product in
R

n+1, i, j = 1,2, . . . , n. An important quantity is the first fundamental form I of a surface
element given by I (Xi,Xj ) := 〈Xi,Xj 〉 for every two tangent vectors Xi,Xj ∈ TuI, the
tangent hyperplane at I(u). In the coordinate I(u) = (I1(u), I2(u), . . . , In+1(u)), the first
fundamental form is a symmetric, positive definite matrix (gij ) = (I (Xi,Xj )). Let N(u)

be the unit normal vector given by the Gauss map N : U → Sn ⊂ R
n+1,

N(u1, u2, . . . , un) := ±(X1 × X2 × · · · × Xn)/‖X1 × X2 × · · · × Xn‖ ∈ ⊥uI, (1)

where × is the cross product (i.e., wedge product) in R
n+1 and ⊥uI is the normal space of

I at point x = I(u). The vector N is perpendicular to the tangent hyperplane TuI at I(u).
Note that TuI ⊕ ⊥uI = TI(u)R

n+1, the tangent space at x. By means of the normal vector
N and tangent vectors Xi , the second fundamental form is given by

II(Xi,Xj ) = (hij )i,j=1,...,n =
(〈

− ∂N
∂ui

,Xj

〉)
ij

. (2)

With this form, the mean curvature can be calculated from H = hijg
ji , where we have

used the Einstein summation convention of repeated indexes, and (gij ) = (gij )
−1. The

shape operator L of I is the Weingarten map: L := −DN ◦ (DI)−1 defined pointwise by

Lu = −(DN|u) ◦ (DI|u)−1 : TuI → TuI, (3)

where DN|u : Tu U → TuI, is the Jacobian of the Gauss map, and the map DI|u : Tu U →
TuI is a linear isomorphism with well defined inverse mapping (DI|u)−1. Note that L is
self-adjoint in the basis ∂I

∂ui
and has the property of L ∂I

∂ui
= − ∂N

∂ui
. With these notations,

we can make the connection between the first and second fundamental forms

I (LXi,Xj ) =
(〈

− ∂N
∂ui

,Xj

〉)
ij

=
(〈

N,
∂2I

∂ui∂uj

〉)
ij

= II(Xi,Xj )

= (hij )i,j=1,...,n, (4)

where II is a symmetric bilinear form on TuI for every u ∈ U .
In general, given an n-dimensional manifold � embedded in R

n+1 and a vector field
b defined in �, the divergence of b with respect to � is given by ∇� · b = 1√

g
∂

∂ui
(
√

gbi ),

where g = Det(gij ) is the Gram determinant of I. The surface is described locally by a
mapping I : U ⊂ R

n to R
n+1. The gradient of a scalar field b on the manifold is given by

(∇�b)i = gij ∂
∂uj

b. The Laplace–Beltrami operator is given by

��b = ∇� · ∇�b = 1√
g

∂

∂ui

(√
ggij ∂

∂uj

b

)
. (5)
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We apply the Laplace–Beltrami operator to the position vector x and obtain

��x = HN, (6)

where N is the normal vector at x and H is the mean curvature. High-order curvatures have
been extensively studied in the context of membrane bending analysis (Canham, 1970;
Helfrich, 1973; Ou-Yang and Helfrich, 1989; Iwamoto et al., 2006).

Another important operation is the manifold integration. The integral of a function b

on the manifold is given by
∫

�

b dσ =
∫

U

b
√

g du1 du2 · · ·dun. (7)

This expression gives the surface area when b = 1.

2.2. Lagrangian formulation of geometric flows

The formation of biomolecular surfaces can be described via either the Lagrangian for-
mulation or the Eulerian formulation. In the Lagrangian formalism, surface elements are
evolved directly under various driven forces. In the Eulerian formalism, the surface is
embedded in a hypersurface and the latter is evolved under prescribed driving forces ac-
cording to physical and/or biological principles. A sharp surface is obtained from an iso-
surface extraction procedure, such as the level set approach. The Lagrangian formalism is
straightforward for force prescription and is computationally efficient, but has difficulties
in handling geometric singularities, such as surface breaking up or surface merging. The
Eulerian formalism can easily handle geometric singularities, but is more time consum-
ing and may have difficulty in prescribing driven forces. However, this difficulty can be
overcome by an appropriate construction of the total energy functional or the total action
functional, as shown in this work.

In the Lagrangian formulation, the surface deformation or evolution of biomolecules
can be postulated as a time-dependent process for a family of smooth surfaces, which are
defined as an immersion of two-dimensional manifolds �(t) in R

3. Here, �(t) are para-
meterized by t , {�(t) : t ≥ 0,�(0) = �0}, where �0 is the initial manifold determined by
the input configuration of the molecule with appropriate selections of atomic radii, such
as expanded van der Waals radii. Assuming a biomolecule in a solvent, the equation of
motion for a position vector x(t) ∈ �(t) on the surface is given by

∂x
∂t

= ��x = HN. (8)

This is the mean curvature flow and it has been used for the generation of the minimal
molecular surface (MMS) in the Eulerian formulation (Bates et al., 2008). Desired MMSs
are generated with appropriate geometric constraints originating from molecular bound-
aries as explained in detail in Bates et al. (2008). Specifically, the van der Waals surface
of the molecule is protected during the evolution.

More general geometric flows can be cast in the form of

∂x
∂t

= VgN, �(0) = �0, (9)
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where Vg is the amplitude of the velocity V induced by geometric and potential forces.
The surface diffusion flow, Willmore flow (Willmore, 1997) and generalized surface dif-
fusion flows are constructed respectively by Vg = −��H , Vg = −��H − 2H(H 2 −K),
and Vg = (−1)k�k

�H , where K is the Gauss curvature (Bates et al., 2009). Willmore
flow is a special case of the Canham–Helfrich flow (Canham, 1970; Helfrich, 1973) and
preserves the sphericity of the geometry. It has been used in cellular membrane model-
ing. Surfaces with volume preserving and area decreasing properties were constructed in
our earlier work (Bates et al., 2009). The volume preserving property is important for
computations in microcanonical, canonical, and grand canonical ensembles. Stochastic
geometric flows were introduced (Bates et al., 2009). Such a formulation is necessary for
the introduction of Brownian dynamics and Langevin dynamics.

2.3. Eulerian formulation of potential driven geometric flows

Similarly, the Eulerian formulation can be obtained via an appropriate choice of the im-
mersion I. Previously, we have chosen I = (x, y, z, S) which maps U ⊂ R

3 to R
4 (Bates

et al., 2008). It is quite easy to show that

��S = 〈N,S〉H = H√
g

= 1√
g

∇ ·
(∇S√

g

)
(10)

where N = (−Sx ,−Sy ,−Sz,1)√
g

is the normal vector in R
4, S = (0,0,0,1), and � is the graph

of S. It is noted that N is the normal vector for the surface immersion I, rather than for the
hypersurface function S. For a given surface, it is easy to show that its normal vector does
not depend on whether its description is based on an implicit function or an explicit one.
In our earlier work, potential driven geometric flows (Bates et al., 2009) were constructed
as

∂S

∂t
= √

g

[
∇ ·

(∇S√
g

)
+ V

]
, (11)

where
√

g∇ · (∇S√
g
) = ��S

〈N,S〉2 , and V is a microscopic interaction potential, such as the
Lennard–Jones potential. This approach allows the balance between intrinsic geometric
effects and potential interactions. In fact, the basic structure of Eq. (11) was introduced
in our earlier high-order geometric evolution equations (Wei, 1999). The computational
procedure for the surface formation and evolution of biomolecules was described in detail
(Bates et al., 2009). Different numerical methods for biomolecular surface constructions
were constructed, analyzed, and compared (Bates et al., 2009). To illustrate the concept,
a surface generated by using the potential driven geometric flows is depicted in Fig. 1.

Additionally, higher-order geometric flows, including ones similar to our earlier for-
mulations (Wei, 1999), were constructed for the formation and evolution of biomolecular
surfaces (Bates et al., 2009). The performance of the higher-order geometric flows was
examined (Bates et al., 2009). Typically, higher-order geometric flows produce distin-
guished molecular morphologies.

In Sect. 3.2, we show that the connection between Eulerian and Lagrangian formu-
lations can be made by the geometric measure theory. From the point of view of com-
putation, it is necessary to express all quantities in either the Eulerian or the Lagrangian
formulation.
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Fig. 1 A C60 surface generated by geometric and potential driven geometric flows.

3. Multiscale models for aqueous macromolecular complexes near equilibrium

The concept of interface often comes along with the separation of different phases of the
same matter, such as solid, liquid, and gaseous phases of water molecules. In thermody-
namics, phase transitions are associated with a latent heat (first-order) or a divergence in
other physical properties, such susceptibility or correlation length (second order). Inter-
face is also used to describe the separation of different materials, such as oil and water,
and solvent and solute. These materials may have similar physical properties, such as in
the same type of phases, but they differ in chemical and/or other physical properties. In
general, the concept of material interface can be used if there is a significant measurable
spatial difference in either a chemical property or a physical property. A material interface
can be either very sharp or blurred, depending on the nature of the interfacial interactions.
In this work, we use the word “boundary” to describe a relatively blurred interface—there
is a considerable overlap in the wavefunctions over different spatial regions due to strong
interactions. One of our goals is to determine interfacial morphology, i.e., interface or
boundary, by means of the fundamental laws of physics. The ability to make the afore-
mentioned spatial discrimination gives us a leverage to select different descriptions for
different regions (subdomains) of the spatial domain, according to our needs and compu-
tational capability.

In this section, we formulate differential geometry based multiscale models for macro-
molecules and their aquatic environment that are near equilibrium. As such, the density
of charged particles in the continuum domain can be approximated by the Boltzmann dis-
tribution and no additional equation is needed to describe the density profile of charged
species. We start with a simple model for electrostatic interactions and propose a new
generalized Poisson–Boltzmann equation. Then, many modifications to the electrostatic
model are made, including the consideration of a nonpolar solvation free energy, and
models for hydrodynamics and molecular dynamics.

In our multidomain setting, we take a discrete atomistic description for the macro-
molecule, and a continuum macroscopic description for the aqueous solvent. We consider
the domain � ⊂ R

3, which is essentially divided into two (types of) regions, �m and �s ,
i.e., � = �s ∪ �m. Here, �m and �s are domains for macromolecules and aqueous sol-
vents, respectively. An illustration of macromolecular and solvent domains is depicted in
Fig. 2. However, at the atomic scale, �m and �s may overlap each other as the boundary
of biomolecules and solvent cannot be perfectly sharp, because of the overlapping distrib-
ution of electron densities. Therefore, the solvent-solute boundary is �b = �s ∩�m �= �.
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Fig. 2 An illustration of the macromolecule and its aquatic environment. The macromolecular domain
(�m) and its hypersurface function value S = 1 are indicated on protein 451c. Similarly, the aqueous
domain (�s ) and its hypersurface function value S = 0 are indicated on the background.

For the discrete description of macromolecules, we consider a total of Na atoms. We set
x ∈ R

3 as the macroscopic variable and z = (z1, z2, . . . , zNa ) ∈ R
3Na as the microscopic

variable of Na atoms. We use the hypersurface function S : R
3 → R to characterize the

boundary of the solvent and molecular domains (Bates et al., 2008, 2009). As such, S(x)

is essentially a characteristic function of the biomolecular domain, i.e., it is one (S = 1)
inside the biomolecule and zero (S = 0) in the aquatic media as indicated in Fig. 2. Con-
sequently, (1 − S) is essentially a characteristic function of the solvent domain. Neither
does S nor does (1−S) behave like a Heaviside function. Instead, it takes a value between
zero and one (0 ≤ S ≤ 1) near the boundary of the macromolecule. Such a profile charac-
terizes the boundary between the biomolecule and the aquatic environment. In terms of S

and (1 − S), we can also define the molecular subdomain and the aquatic subdomain as
�m : {x | S(x) �= 0} and �s : {x | (1 − S(x)) �= 0}, respectively.

3.1. Electrostatic modeling

Among various components of molecular interactions, electrostatic interactions are of
special importance because of their long range and influence on polar or charged
molecules—including water, aqueous ions, and amino or nucleic acids (Warshel et al.,
2006; Davis and McCammon, 1990; Dong et al., 2008; Grochowski and Trylska, 2007;
Sharp and Honig, 1990; Warshel and Papazyan, 1998; Simonson, 2001; Fogolari et al.,
2002; Simonson, 2003; Baker, 2004, 2005; Feig and Brooks III, 2004). Electrostatic inter-
actions are ubiquitous for any system of charged or polar molecules, such as biomolecules
(proteins, nucleic acids, lipid bilayers, sugars, etc.) in their aquatic environment. For ex-
ample, proteins in living cells are made up of 20 types of amino acids, 11 of them are
either charged or polar in neutral solution. Moreover, nucleic acids contain long stretches
of negatively charged groups in addition to the polar phosphate groups in nucleotides.
Electrostatic steering is an essential effect in molecular motors which convert chemical
free energy from the hydrolysis of ATP into mechanical movement or work in living or-
ganisms. Therefore, electrostatic interactions are some of the most important aspects that
determine the physical and chemical properties of biomolecules, such as protein folding,
protein-DNA binding, transcription, translation, gene expression, and regulation, etc. As
most biological processes occur in aquatic environments, electrostatic solute-solvent in-
teractions are of paramount importance in the exploration of biological mechanism, the
analysis of macromolecular behavior, and the modeling of the intramolecular and inter-
molecular interactions of biological complexes.
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Biomolecular systems are polarizable materials. Therefore, both electric field E and
electric displacement D are important quantities. However, in the biophysical community,
it is a convention to only deal with the electric field. As such, the polarization effects of
neutral biomolecules are treated as explicit partial charges. This approach is simple and
reasonable for a system without rapidly changing electric current and magnetic field. In
fact, the effects of magnetic field H, magnetic displacement B and magnetic displacement
are normally neglected in biomolecular systems.

3.1.1. Free energy functional of the electrostatic discrete-continuum system
The free energy functional of the electrostatic system was given by Sharp and Honig
(1990), and Gilson et al. (1993). In this work, we consider a different free energy func-
tional of electrostatic interactions of the form

GElect[S,φ,x] =
∫ {

S

[
ρmφ − εm

2
|∇φ|2

]

+ (1 − S)

[
−εs

2
|∇φ|2 − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)]}
dx, (12)

where φ is the electrostatic potential, kB is the Boltzmann constant, T is the temperature,
cj is the bulk concentration of j th ionic species, Nc is the number of ionic species, and
ρm(x, z) = ∑

j Qjδ(x − zj ) is the canonical density of molecular free charges, with Qj

being partial charges on (discrete) atoms. Here, εm = ε0εm and εs = ε0εs are the permit-
tivities of the macromolecule and the solvent, respectively, where ε0 is the permittivity of
vacuum and εα (α = m,s) are relative permittivities. We treat εα as constants. Electro-
static potential is of long-range in nature and cannot be simply restricted to subdomains.
Note that variables in the bracket [·] of expression GElect[S,φ,x] are the ones we wish to
keep track of, instead of being the unique set of variables for variations.

The present free energy functional given in Eq. (12) differs much from that given by
Sharp and Honig (1990), and by Gilson et al. (1993). It is inherently multidomain and
multiscale in nature. The domain is divided into the macromolecular subdomain charac-
terized by S, and the solvent subdomain characterized by 1 − S. Unlike in the previous
set-up, these subdomains do not have to be mutually exclusive. Similar to the previous
treatment, a discrete description of the macromolecule and a continuum description of
the solvent are employed in Eq. (12). It is necessary to demonstrate that the present free
energy functional reproduces the classical Poisson–Boltzmann equation and proper elec-
trostatic forces densities at certain limits.

It is important to note that the sign convention used in Eq. (12) is the same as that used
by Sharp and Honig (1990), and by Gilson et al. (1993). The square terms in Eq. (12)
are always negative and admit the zero upper bound. Consequently, we need to optimize
the electrostatic free energy functional, instead of minimizing it. This sign convention
will impact all the sign conventions in the rest of this paper. Off course, the physics and
mathematics will not be impaired if another convention is chosen.
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3.1.2. Generalized Poisson–Boltzmann equation for the electrostatic discrete-continuum
system

By optimizing GElect[S,φ,x] with respect to φ via the Euler–Lagrange equation while
keeping S unchanged, we have

δGElect

δφ
=

∫ {
Sρm + ∇ · εmS∇φ + ∇ · εs(1 − S)∇φ

+ (1 − S)

Nc∑
j

qj cj e−qj φ/kBT

}
dx. (13)

By setting Eq. (13) to zero, we have

−∇ · ε(S)∇φ = Sρm + (1 − S)

Nc∑
j

qj cj e−qj φ/kBT , (14)

where

ε(S) = Sεm + (1 − S)εs (15)

provides in general a smooth dielectric profile near the interface. Equation (14) is a new
generalized Poisson–Boltzmann equation for smooth dielectric profiles in overlapping
domains. It is important to show that the classic Poisson–Boltzmann equation is a special
case of Eq. (14) at the sharp interface limit. For a sharp solvent-solution interface, i.e.,
�m ∩ �s =Ø, S becomes a Heaviside function and we define

φ(x) =
{

φm(x) ∀x ∈ �m,

φs(x) ∀x ∈ �s.
(16)

At the sharp interface limit, Eq. (14) reduces to the standard Poisson–Boltzmann equation
(Sharp and Honig, 1990; Gilson et al., 1993; Holst, 1993; Yu et al., 2007a; Geng et al.,
2007; Zhou et al., 2008a)

−εm∇2φm = ρm, ∀x ∈ �m

−εs∇2φs =
Nc∑
j

qj cj e−qj φs/kBT , ∀x ∈ �s

(17)

and appropriate interface conditions

φs = φm, and εm∇φm · n = εs∇φs · n, ∀x on , (18)

where  is the sharp interface and n is the norm vector of the surface. Recently, we
have developed the matched interface and boundary (MIB) method (Zhao and Wei, 2004;
Zhou et al., 2006; Zhou and Wei, 2006; Yu et al., 2007b; Yu and Wei, 2007) for solving el-
liptic equations with discontinuous interfaces. Three generations of MIB based Poisson–
Boltzmann (PB) solvers, the MIBPB-I (Zhou et al., 2008a), the MIBPB-II (Yu et al.,
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2007a) and the MIBPB-III (Geng et al., 2007) have been constructed. The MIBPB has
a unique feature that it was the first interface technique based PB solver that rigorously
enforces the solution and flux continuity conditions (18) at the dielectric interface in bio-
molecular context. It is so far the only known existing second-order PB solver for the
electrostatic analysis of macromolecules.

Because the solvent-solute boundary is essentially smooth and free of sharp geomet-
ric singularities, it is expected that the numerical solution of the generalized Poisson–
Boltzmann equation is easier than that of the standard Poisson–Boltzmann equation (Chen
et al., 2010). This will enhance the wider application of the Poisson–Boltzmann approach
and particularly, provide a new promise for Poisson–Boltzmann based molecular dynam-
ics simulations.

3.1.3. Electrostatic forces
It remains to investigate whether the proposed new free energy functional reproduces
appropriate electrostatic forces. To this end, we carry out the variation of the electrostatic
free energy functional, Eq. (12)

δGElect[S,φ,x]

=
∫ {[

∇ · ε(S)∇φ + Sρm + (1 − S)

Nc∑
j

qj cj e−qj φ/kBT

]
δφ

+
[
ρmφ − εm

2
|∇φ|2 + εs

2
|∇φ|2 + kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)]
δS

+ Sφ∇ρm · δx

}
dx, (19)

where the terms associated with δφ vanished by the generalized Poisson–Boltzmann equa-
tion (14). It is important to note that − εm

2 |∇φ|2 + εs

2 |∇φ|2 �= −εm+εs

2 |∇φ|2 because two
|∇φ|2 terms are associated with different domains. By using integration by parts, the last
term in Eq. (19) can be written as

−
∫

[ρmS∇φ + ρmφ∇S] · δxdx. (20)

By further writing δS = ∇S · δx, we have

δGElect[S,φ,x] =
∫ {[

−εm

2
|∇φ|2 + εs

2
|∇φ|2 + kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)]∇S

− ρmS∇φ

}
· δxdx,

= −
∫

[fDB + fID + fRF] · δxdx, (21)
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where fDB, fID, and fRF are force densities of dielectric boundary (DB), ionic boundary
(IB) and reaction field (RF), respectively,

fDB =
(

εm

2
|∇φ|2 − εs

2
|∇φ|2

)
∇S, (22)

fIB = −kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)∇S, (23)

fRF = ρmS∇φ. (24)

These are force density expressions for smooth solvent-solute interfaces. Except for a mi-
nor difference in the DB force, there expressions are consistent with those in the literature
(Gilson et al., 1993).

3.2. Solvation modeling

3.2.1. Free energy functional of the discrete-continuum solvation system
The solvation process of macromolecules involves a number of interactions. Typically,
the free energy of solvation models includes polar and nonpolar contributions (Levy et
al., 2003; Dzubiella et al., 2006b; Gallicchio and Levy, 2004; Wagoner and Baker, 2006;
Huang et al., 2001). For a system near equilibrium, the polar part is standardly represented
by the free energy functional of Sharp and Honig (1990). In this work, we use Eq. (12) for
describing the polar solvation energy. For the nonpolar solvation energy, we first consider
the interface energies of surface curvature and the mechanical work

GInter[S,g] =
∫

U

γ
√

g du1 du2 +
∫

Sp dx, (25)

where γ is the surface tension and p(x) is the hydrodynamic pressure. The first term is
the surface energy and the second team is the mechanical work of creating the vacuum
of a biomolecular size in the fluid (Sitkoff et al., 1996). The surface energy measures
the disruption of intermolecular and/or intramolecular bonds that occurs when a surface
is created. Energetically, the surface creation must be intrinsically unfavorable otherwise
the macromolecule would be unstable and fail to exist in the folded form in the solvent.
Therefore, the interface energy is hydrophobic in nature for most biomolecules.

Note that the first term in Eq. (25) is given in terms of a surface integration over
the manifold as discussed in Sect. 2.1 (see Eq. (7)). To optimize the energy, it is neces-
sary to change this integral into a volume one. To this end, we make use of the coarea
formula (Federer, 1959) in geometric measure theory. When reduced to the case of 3D
(Euclidean) space, this formula states that for a scalar field B with C1 continuity con-
ditions, integrating a function b over each of its isolevels c in a region � can be done
directly by a volume integral over � through (Federer, 1959)

∫
R

∫
B−1(c)∩�

b(x) dAdc =
∫

�

b(x)‖∇B‖dx, (26)

where c denotes an isovalue of B , B−1(c) represents the c-isosurface (i.e., the set of 3D
points {xc} such that B(xc) = c), and B(·) is an arbitrary function of space. In other words,
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the term ‖∇B‖ measures a local “density of isosurface area.” Consequently, if we think
of the foliation consisting of all B−1(c) as the representation of a “blurred interface,” the
coarea formula elucidates the relationship between the sum of area integrals and a global
volume integral. In our case, the hypersurface function S is essentially a characteristic
function of the biomolecule and takes all the isosurface values from 0 to 1. Therefore,
the volume integral

∫
�

‖∇S‖dx gives the mean surface area of a family of isosurfaces.
Consequently, we approximate the interface mechanical energy by

GInter[S,x] =
∫ [

γ ‖∇S‖ + Sp
]
dx. (27)

Wagoner and Baker (2006) have shown that the attractive dispersion effects near the
solvent-solute interface described by the Weeks–Chandler–Andersen (WCA) potential
(Weeks et al., 1971) play a crucial role in the solvation analysis. A similar solvent-solute
interaction term was considered by Dzubiella et al. (2006b) with the Lennard–Jones po-
tential. In this work, we use a general potential term in the nonpolar contribution to obtain
the following nonpolar solvation free energy functional:

Gnonpolar[S,x] =
∫ [

γ ‖∇S‖ + Sp + (1 − S)ρsu
]
dx, (28)

where ρs is the solvent density and u(x, z) is a general solvent-solute interaction (SSI)
potential which involves those atoms in the molecule that are near the solvent-solute inter-
face. The integration of the potential term is over the solvent domain and the contribution
from atoms is given by a summation.

The total free energy functional of solvation is given by

Gtotal[S,φ,x] =
∫ {[

γ ‖∇S‖ + Sp + (1 − S)ρsu
] + S

[
ρmφ − εm

2
|∇φ|2

]

+ (1 − S)

[
−εs

2
|∇φ|2 − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)]}
dx. (29)

This total free energy functional can be used to derive governing equations for the solva-
tion system.

3.2.2. Surface evolution equation of the discrete-continuum solvation system
First, it is easy to show that by optimizing Gtotal[S,φ,x] with respect to φ, we ob-
tain the desirable generalized Poisson–Boltzmann equation (14) again. In this work, we
are interested in the derivation of potential driven geometric flows (Bates et al., 2009)
from the discrete-continuum solvation system. To this end, we carry out the variation of
Gtotal[S,φ,x] with respect to the hypersurface function, S

δGtotal[S,φ,x]
δS

=
∫ {[

−∇ · γ∇S

‖∇S‖ + p − ρsu

]
+

[
ρmφ − εm

2
|∇φ|2

]

−
[
−εs

2
|∇φ|2 − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)]}
dx = 0, (30)
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where ∇ · γ∇S

‖∇S‖ is a generalized Laplace–Beltrami operator. It is related to the mean cur-
vature and minimizes the surface area of the macromolecule.

An efficient approach for the optimization of the total action and the generation of the
solvent-solute boundary profile is to construct potential driven geometric flows by using
the steepest descent scheme as proposed in our earlier work for solvation analysis (Bates
et al., 2009). By examining the structure of Eq. (11), we have

∂S

∂t
= ‖∇S‖

[
∇ · γ∇S

‖∇S‖ − p + ρsu − ρmφ + εm

2
|∇φ|2 − εs

2
|∇φ|2

− kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)]
. (31)

The steady-state solution to Eq. (31) balances the hydrophobic surface energy, hydrostatic
pressures, and electrostatic energies. From the point of the view of differential geometry,
Eq. (31) is a potential driven geometric flow in a Riemannian space with a new conformal
metric. Clearly, if we rewrite Eq. (31) as

∂S

∂t
= ‖∇S‖

[
∇ ·

(
γ

‖∇S‖∇S

)
+ V

]
, (32)

with V being appropriate non-curvature terms, we essentially recover the potential driven
geometric flow introduced in our previous studies (Bates et al., 2009). An important fea-
ture of these potential driven geometric flows is that they are multiscale in nature, and
mix macroscopic and microscopic descriptions. We can solve Eq. (31) and extract a sharp
solvent-solute interface using the same procedures and similar initial/boundary conditions
as discussed in our previous work (Bates et al., 2006, 2008, 2009). However, in the present
work, we do not assume a sharp solvent-solute boundary.

3.2.3. Solvation forces
Solvation forces are often evaluated to check the consistence of different solvation theo-
ries (Wagoner and Baker, 2006). The derivation of solvation forces is the same as that of
electrostatic forces

δGtotal[S,φ,x] =
∫ {[

∇ · ε(S)∇φ + Sρm + (1 − S)

Nc∑
j

qj cj e−qj φ/kBT

]
δφ

+
[(

−∇ · γ∇S

‖∇S‖ + p − ρsu

)
+

(
ρmφ − εm

2
|∇φ|2

)

−
(

−εs

2
|∇φ|2 − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

))]
δS

+ [
S∇p + (1 − S)∇(ρsu) + Sφ∇ρm

] · δx

}
dx. (33)
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Here, terms associated with the variation of the electrostatic potential, δφ, vanish because
of the enforcement of the generalized Poisson–Boltzmann equation (14). Similarly, terms
associated with the variation of the hypersurface function, δS, vanish because of the en-
forcement of the potential driven geometric flow equation (31). Integrating by parts, we
have

∫
Sφ∇ρm · δxdx =

∫
−ρm∇(Sφ) · δxdx.

Finally, terms associated with the variation of the spatial variable, δx, can be written as

∫ [
S∇p + (1 − S)∇(ρsu) − ρm∇(Sφ)

] · δxdx

= −
∫

S[fP + fSSI + fRF] · δxdx (34)

= −
∫

Sf · δxdx, (35)

where fP, fSSI, and fRF are force densities of pressure gradient, solvent-solute interaction
and reaction field (RF), respectively,

fP = −∇p (36)

fSSI = − (1 − S)

S
∇(ρsu) (37)

fRF = ρm

S
∇(Sφ). (38)

A few remarks are in order. First, these force expressions differ much from those of the
electrostatic system given in Eq. (22) because of the present consideration of nonpolar
solvation energies. Additionally, a very interesting point is that the dielectric boundary
force and ionic boundary force do not appear now because of the enforcement of the
potential driven geometric flow equation (31). This means that forces can be balanced in
different manners according to settings. If the molecular surface is used instead of the
surface generated by using the potential driven geometric flow, the dielectric boundary
force and the ionic boundary force will present as shown in Section 3.1.3. Moreover, the
energy functional considered in this section can be regarded as a system in equilibrium.
As such, the equilibrium pressure is homogeneous in space and the pressure gradient force
vanishes fP = 0. Furthermore, the force due to solvent-solute interaction is important only
near the interface. The solvent density, ρs , may be regarded as a constant at equilibrium for
a dilute solution. Of course, the densities of charged components of the solvent satisfy the
Boltzmann distribution. Note that the effect of solvent orientations (Fries and Patey, 1985;
Cerutti et al., 2007) and the density distortion near the solvent-solute boundary as that
described in the integral equation theory (Tully-Smith and Reiss, 1970; Beglov and Roux,
1997) are not concerned in the present work. Finally, as atomic centers are away from the
interface, the hypersurface function is near unity, i.e., S ∼ 1, at atomic centers. One has
fRF = ρm∇φ, which is the same as the reaction field force derived in the last section.
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3.3. Fluid and static solute interactions

A major problem in the preceding two subsections is that there is no mechanism to elim-
inate all forces. Stated differently, the forces in the system are unbalanced. This is an
indication that something may have gone wrong in the model because the action func-
tional cannot be minimized (or optimized). In this subsection, we consider a system of
fluid and static solute interaction. We keep in mind that the macromolecule is placed in
the solvent in this system. The atoms in the biomolecule are partially charged. Ions in
the solvent are not described as discrete particles but as a continuous distribution. Ad-
ditionally, there are interactions between the macromolecule and the solvent that lead to
forces. We assume that these forces are balanced by fluid motion, which is also subject
to appropriate initial and boundary conditions. We also assume that the atoms in the bio-
molecule are essentially at their equilibrium positions, and densities of ionic species can
be approximated by their equilibrium Boltzmann distributions.

3.3.1. Action functional for fluid and static solute interactions
For inviscid flows, the fluid energy can be accurately classified as kinetic energy (ρs

v2

2 )

and potential energy (� + p), where ρs is the density of the fluid, v is the fluid velocity
vector, � is the potential energy mostly due to the gravitation, and p is the hydrodynamic
pressure. Such a total energy is constant everywhere in the fluid

ρs

v2

2
+ � + p = constant, (39)

according to Bernoulli’s principle. However, for viscous flows, the sum of the kinetic en-
ergy and the potential energy is no longer a conservative quantity. The fluid may lose
energy to the shear stress and/or extensional stress. From the kinetic theory point of view
(Snider et al., 1996a, 1996b), the nature of the stress tensor involves microscopic many-
body interactions in the fluid, which are absent from macroscopic models. Such unac-
counted interactions normally lead to irreversible dissipation. Therefore, the exact form
of the stress tensor is generally difficult to determine. In practical, the form of the stress
tensor depends on the level of the approximation. Phenomenologically, many expressions,
including those under the assumptions of Newtonian fluid and non-Newtonian fluid, have
been used for the stress tensor. In an earlier work, we simplified stress tensors by their
symmetry properties and analyzed their connection to the quantum kinetic theory (Wei,
2002). The selection of the stress tensor for biological systems is an active area of re-
search.

In the present work, we consider a simple fluid model, a Newtonian fluid, and its stress
tensor is given by

T = μf

[
1

2

(
∂vi

∂xj

+ ∂vj

∂xi

)
− 1

3
δij

∂vi

∂xj

]
= μf

[
1

2

[∇v + (∇v)T
] − I

3
∇ · v

]
(40)

where μf is the viscosity of the fluid, symbol T denotes the transpose, I is the identity
tensor and the Einstein summation convention is used. The stress tensor is a symmetric
Tij = Tj i and traceless second rank tensor. In the present work, we restrict our discussion
to incompressible fluid flows

∇ · v = 0, (41)
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which is a good approximation for most aquatic chemical and biological systems at ordi-
nary (or physiological) conditions. Therefore, we have

T = μf

2

(
∂vi

∂xj

+ ∂vj

∂xi

)
= μf

2

[∇v + (∇v)T
]
. (42)

Due to its dissipative nature, the stress energy depends on the fluid history. Therefore, we
denote the stress energy density as a semidefinite integral

Estress = 1

2μf

∫ t

T
2 dt ′ = μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′, (43)

where the velocity v is considered as a function of time t ′. Here, the unspecified lower
time limit refers to a time when the fluid is at rest, and thus the stress energy is zero. The
Lagrangian of an incompressible viscous flow is given by

LMacro[S,x]

=
∫

(1 − S)

[
ρs

v2

2
−

(
� + p + ρsu − μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
)]

dx, (44)

where u is the potential interaction between the fluid and the atoms in the biomolecule,
i.e., the solvent-solute interaction (SSI). The stress term takes a negative sign because it
costs the dissipation of the fluid energy.

The total action functional of the system includes contributions from the solvation
energy discussed in the preceding subsection, and the Lagrangian of the fluid

Stotal[S,φ,x] =
∫ ∫ {[

γ ‖∇S‖ + Sp + (1 − S)ρsu
] + S

[
ρmφ − εm

2
|∇φ|2

]

+ (1 − S)

[
−εs

2
|∇φ|2 − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)]

− (1 − S)

[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]}

dxdt, (45)

where the Einstein summation convention is used only for tensorial quantities. Similarly,
we make use of the Einstein notation only for stress and strain tensors in the rest of
this paper. Here, we have chosen a negative sign for the fluid Lagrangian (LMacro) so
that the signs for potential energies are consistent with their signs used in the preceding
analysis. Since the solvent-solute interaction has been considered as a part of the interface
energy, it is omitted from the fluid Lagrangian to avoid double counting. The gravitation
potential energy (�) has also been omitted due to the small length scale of the problem
under consideration. Nonetheless, keeping this term does affect much of the following
discussion.
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3.3.2. Surface evolution equation for fluid and static solute interactions
We are interested in the governing equations for fluid-electrostatic interactions. First, the
generalized Poisson–Boltzmann equation (14) can be derived by optimizing the total ac-
tion functional (Stotal[S,φ,x]) in Eq. (45) with respect to φ. As the generalized Poisson–
Boltzmann equation depends in the hypersurface function S, to solve the generalized
Poisson–Boltzmann equation, one needs to determine S. To derive an appropriate equa-
tion for S, we use the same procedure discussed earlier, i.e., optimizing the total action
functional (Stotal[S,φ,x]) in Eq. (45) with respect to S, following by the use of the steep-
est descent scheme as proposed in our earlier work (Bates et al., 2008, 2009). We have
the following governing equation for the time evolution of the hypersurface function:

∂S

∂t
= ‖∇S‖

{
∇ · γ∇S

‖∇S‖ − p + ρsu − ρmφ + εm

2
|∇φ|2 − εs

2
|∇φ|2

− kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)

−
[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]}

. (46)

Note that two pressure terms in Eq. (46) do not cancel each other because they are in
different domains. Equation (46) can be solved by using a similar procedure developed in
our earlier work (Bates et al., 2008, 2009).

3.3.3. Generalized Navier–Stokes equation of fluid and static solute interactions
It is well known that the fluid velocity in a simple setting is governed by the Navier–Stokes
equation

ρs

[
∂v
∂t

+ v · ∇v
]

= −∇p + ∇ · T + F, (47)

∇ · v = 0, (48)

where T is the (deviatoric) stress tensor, and F represents body forces per unit volume.
The divergence condition ∇ · v = 0 is for the incompressibility of the fluid. The force
term, F may have many different origins and is balanced with forces on the macromole-
cular boundary (Geng and Wei, 2009). In real fluid, the exact form of the stress tensor
is unknown. In fluid mechanical modeling, the selection of the stress tensor usually de-
pends on the level of approximation, such as, Newtonian fluid or non-Newtonian fluid,
etc. The Navier–Stokes equation has been applied to an extremely wide variety of situa-
tions, ranging from ocean flows, weather prediction, aerodynamics, chemical reactors to
blood circulations. When biomolecular systems are subject to unsteady solvent environ-
ments, the consideration of the Navier–Stokes equation for the solvent motion becomes a
reasonable alternative to more expensive full atom description.

As the governing equation for the momentum conservation of the fluid, usually, the
Navier–Stokes equation is derived either from a kinetic equation, e.g., the Boltzmann
equation (Snider et al., 1996a, 1996b), or from a formal analysis of conservation laws. An
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explicit variational derivation of the Navier–Stokes equation was given by Sciubba (2004)
with a brief discussion of historical perspective. In general, the derivation of the Navier–
Stokes from the Euler–Lagrange equation or from the least action principle has not been
well accepted, despite that the derivation of the ideal fluid is well known (Sciubba, 2004).
An important goal of the present work is to derive the Navier–Stokes equation (47) by the
least action principle in our multiscale framework. To this end, we apply the principle of
the least action to the total action functional (45)

δStotal[S,φ,x]

=
∫ ∫ {[

∇ · ε(S)∇φ + Sρm + (1 − S)

Nc∑
j

qj cj e−qj φ/kBT

]
δφ

+
{[

−∇ · γ∇S

‖∇S‖ + p − ρsu

]
+

[
ρmφ − εm

2
|∇φ|2

]

−
[
−εs

2
|∇φ|2 − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)]

+
[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]}

δS

+ [
S∇p + (1 − S)∇ρsu + Sφ∇ρm

] · δx

− (1 − S)δ

[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]}

dxdt = 0, (49)

where the variation of the fluid part has not been carried out yet. Clearly, Eq. (49) consists
of coupled fluid dynamics and hypersurface dynamics. First, terms associated with δφ

vanish because of the generalized Poisson–Boltzmann equation (14). Additionally, terms
associated with δS vanish because of the hypersurface evolution equation (46).

Before we discuss terms associated with δx, we further carry out the variation of the
fluid Lagrangian. Since the fluid is assumed to be incompressible, the variation is re-
stricted by the condition that the mass should not be varied, i.e.,

δ(ρsdx) = 0. (50)

In the Lagrangian formulation, we have

∫ ∫
(1 − S)δρs

v2

2
dxdt =

∫ ∫
(1 − S)ρsv · d

dt
δxdxdt

= −
∫ ∫

(1 − S)ρs

dv
dt

· δxdxdt, (51)

where we have used the relation v = dx
dt

. We could have distinguished the general macro-
scopic position variable x and the position of the fluid particle by denoting the latter with a
different symbol. However, since the Jacobian connecting these two vectors is an identity
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matrix, this more rigorous treatment does not lead to anything new. Here, S is considered
as time independent. Note that the time dependence of S is created by the steepest decant
procedure, which is devised to efficiently minimize the term associated with dS. Similar
to the geometric flows discussed in Sect. 2, the fluid equations can be expressed in either
the Eulerian formulation or the Lagrangian formulation. In the Lagrangian formulation,
one tracks a fluid particle as it moves from some initial point to a neighboring point. The
motion and acceleration of the fluid particle are described directly by hydrodynamic equa-
tions. In the Eulerian formulation, we consider a rectangular reference system which is
at rest. All field quantities, such as density, velocity, pressure, etc. are considered as at a
fixed point in space. We use operator dv/dt to describe two consecutive positions of the
same fluid particle in the Lagrangian formulation. However, unlike geometric flows, the
fluid flow is moving with the stream velocity v. Consequently, the Lagrangian description
of the rate of change (dv/dt ) is related to the Eulerian description ( ∂v

∂t
) by

dv
dt

= ∂v
∂t

+ v · ∇v. (52)

This equation is used to switch the Lagrangian formulation in Eq. (51) into the Eulerian
formulation.

The variation over the pressure term gives − ∫∫
(1 − S)∇p · δxdxdt . For the stress

term, we have

∫ ∫
(1 − S)

μf

8

∫ t

δ

[
∂vi

∂xj

+ ∂vj

∂xi

]2

dt ′ dxdt

= −
∫ ∫

μf

2

∫ t ∂

∂x j
(1 − S)

[
∂vi

∂xj

+ ∂vj

∂xi

]
d

dt ′
δxidt ′ dxdt

=
∫ ∫

∇ · (1 − S)(T − T0) · δxdxdt,

where T0 is the stress at an unspecified time. It is reasonable to assume that the fluid at
some unspecified time is static, then T0 vanishes. We therefore drop the T0 for simplicity.
Alternatively, one may just keep it and define the difference as a new stress tensor.

Finally, we collect all terms associated with δx
∫ ∫ [

−Sf + (1 − S)ρs

(
∂v
∂t

+ v · ∇v
)

+ (1 − S)∇p − ∇ · (1 − S)T

]
· δxdxdt

=
∫ ∫

(1 − S)

[
ρs

(
∂v
∂t

+ v · ∇v
)

+ ∇p − 1

1 − S
∇ · (1 − S)T

− S

1 − S
f
]

· δxdxdt = 0, (53)

where force f is defined in Eqs. (34)–(38). Equation (53) describes the coupling of the fluid
dynamics to the hypersurface dynamics and electrostatic interactions. To understand the
relative separation of these two parts, one needs to recall that the hypersurface function
S is essentially a characteristic function of the biomolecular subsystem, and similarly,
(1−S) is essentially a characteristic function of the fluid subsystem. The S and the (1−S)
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regions are essentially independent to each other except that the force associated with the
biomolecule in the S region is balanced by the pressure gradient and fluid acceleration in
the (1 − S) region.

It is easy to show that for (1 − S) �= 0, the quantity in the integrand of Eq. (53) is the
desirable generalized Navier–Stokes equation

ρs

(
∂v
∂t

+ v · ∇v
)

= −∇p + 1

1 − S
∇ · (1 − S)T + F, (54)

where the force is given by

F = S

1 − S
f. (55)

Note that the molecular force F impacts the fluid motion only at the interface region. For
the fluid region away from the macromolecule, i.e., S = 0, the form of our generalized
Navier–Stokes equation (54) becomes identical to the original Navier–Stokes equation
(47). Additionally, when S → 0, the stress term reduces to μf ∇2v and we arrive at the
celebrated Navier–Stokes equation

ρs

(
∂v
∂t

+ v · ∇v
)

= −∇p + μf ∇2v + f̄, (56)

where f̄ = limS→0 F.
In the present multiscale framework, we have derived three governing equations.

The electrostatic interactions are described by the generalized Poisson–Boltzmann equa-
tion (14). While the surface formation and evolution are determined by the hypersur-
face equation (46). Then the fluid dynamics is governed by the generalized Navier–
Stokes equation (54). These equation are coupled via the discrete-continuum inter-
face and by three variables (φ,S,v). Their solutions are to be constructed by ap-
propriate iterations that take care of the nature of strong nonlinear couplings. Com-
putational aspects of Eq. (56), including appropriate initial and boundary conditions,
are extensively studied (Liu and Shu, 2000; Wan et al., 2002; Zhou and Wei, 2003;
Sun et al., 2006b).

In many biological systems, fluid velocities are very slow, the length-scales of the flow
are very small, and/or the viscosities are very large. Consequently, the Reynolds number
becomes low and is much smaller than 1. As a result, the advective inertial forces of the
flow are very small compared with viscous stress forces. The fluid flow for this class of
problems is the generalized Stokes flow

∇p = 1

1 − S
∇ · (1 − S)T + F,

∇ · v = 0.

(57)

Obviously, this flow is a special case in our multiscale framework.

3.4. Molecular dynamics in static solvent

A fundamental issue in biological modeling and computation is how to deal with a tremen-
dously large number of degrees of freedom resulting from various interactions. Under
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physiological condition, a biomolecular complex, such as a virus or an ion channel, and
its interacting environment may involve millions of atoms and water molecules. In prin-
ciple, the solvent-solute complex can be described entirely at the microscopic scale, i.e.,
atomistic description or a more detailed description of electrons and nuclei. However, such
an approach cannot be productive and does not provide proper theoretical predictions of
physical properties of interest. It is impossible at present, and formidably expensive in the
near future, to describe in full-atomic detail of the biomolecular complex. On the other
hand, a simple-minded macroscopic description of the complex system might be inca-
pable of revealing the molecular and atomic information of the macromolecule and its
dynamics. We therefore reduce the number of degrees of freedom of this problem by a
multiscale variational framework. In our multiscale models, we describe the aquatic en-
vironment by a hydro-continuum, i.e., a macroscopic description. As such, we are able
to dramatically reduce the number of degrees of freedom associated with millions of sur-
rounding water molecules. However, since the biomolecule is the objective of interest,
we describe the macromolecule in atomic detail, i.e., a microscopic, discrete description.
We assume that the aquatic environment is essentially static, and ionic densities are near
equilibrium.

3.4.1. Energy functional for molecular dynamics in static solvent
The microscopic energy contributions include the kinetic energy of each individual atom
and the potential energy due to various atomic interactions. The Lagrangian of the micro-
scopic part is given by

LMicro[S,x, z] =
∫ ∫

S
∑

j

[
ρj

ż2
j

2
− U(z)

]
dxdz (58)

where ρj = mjδ(zj − xj ) is the mass density of the j th atom, mj and xj are the mass and

the macroscopic position of the j th atom, respectively. Here, ρj

ż2
j

2 and U(z) are respec-

tively the kinetic and the potential energies of the j th atom with żj = dzj

dt
. Most impor-

tant potential interactions among atoms include the van der Waals type described by the
Lennard–Jones potential and the charge-charge interactions described by the Coulomb po-
tential. Other interactions, such as dispersion, dipolar, quadrupolar, and Pauli’s exclusion
principle effects can be included for more accurate description in the present formulation.

The total action functional consists of the total energy of the solvation (29) and the
Lagrangian of the microscopic molecular dynamics. We therefore have the total action
functional of the form

Stotal[S,φ,x, z] =
∫ ∫ ∫ {[

γ ‖∇S‖ + Sp + (1 − S)ρsu
] + S

[
ρmφ − εm

2
|∇φ|2

]

+ (1 − S)

[
−εs

2
|∇φ|2 − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)]

− S
∑

j

[
ρj

ż2
j

2
− U(z)

]}
dxdzdt. (59)
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Note that there is an issue of sign convention in the expression of the total action. We
choose a negative sign for the atomic part LMicro so that the forces from the present cal-
culations will be consistent with those in the last section.

Here, the choice of the atomic interaction potential, U , is quite subtle because the
electrostatic interactions could be doubly counted, i.e., once in U and the other in electro-
static energy, S[ρmφ − εm

2 |∇φ|2]. Therefore, there are two alternative ways to select U .
One way is to exclude the electrostatic interactions in U and leave the interaction to be
accounted by the generalized Poisson–Boltzmann system as discussed above. The other
way is to include the atomic electrostatic interactions in U . As such, one has to com-
pute the reaction field force twice, once with appropriate dielectric constants in both S

and (1 − S) regions, and the other with a uniform dielectric constant. The difference of
these two calculations is used to account for the effect of the solvent that is not explicitly
included in the molecular dynamics (Gilson et al., 1993).

3.4.2. Surface evolution equation of molecular dynamics in static solvent
As discussed earlier, the optimization of Stotal[S,φ,x, z] with respect to φ leads to the
desirable generalized Poisson–Boltzmann equation (14) again. In solving the generalized
Poisson–Boltzmann equation, we also need to update the equation for the evolution of the
hypersurface function S. In a procedure similar to that used in the derivation of Eqs. (30)
and (31), we arrive at the following governing equation for the hypersurface function

∂S

∂t
= ‖∇S‖

{
∇ · γ∇S

‖∇S‖ − p + ρsu − ρmφ + εm

2
|∇φ|2 − εs

2
|∇φ|2

− kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

) +
∑

j

[
ρj

ż2
j

2
− U(z)

]}
. (60)

Equation (60) describes the balances of the hydrophobic surface energy, static pressures,
electrostatic energy, and atomic energies. Similarly, Eq. (60) can also be cast into the
form of Eq. (32), i.e., the form of potential driven geometric flows proposed in our earlier
work (Bates et al., 2009). Note that the evolution of the hypersurface function S depends
not only on macroscopic variable x, but also the macroscopic positions xj due to the
microscopic variables zj and the role of the mass density ρj .

3.4.3. Newton’s equations of molecular dynamics in static solvent
An interesting issue is how to balance forces derived from the action functional. To un-
derstand this aspect, we carry out the variation of the action functional (59)

δStotal[S,φ,x, z] =
∫ ∫ ∫ {[

∇ · ε(S)∇φ + Sρm + (1 − S)

Nc∑
j

qj cj e−qj φ/kBT

]
δφ

+
{[

−∇ · γ∇S

‖∇S‖ + p − ρsu

]
+

[
ρmφ − εm

2
|∇φ|2

]

−
[
−εs

2
|∇φ|2 − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)]
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−
∑

j

[
ρj

ż2
j

2
− U(z)

]}
δS

+
∑

j

[
(1 − S)∇j ρsu + Sφ∇j ρm + Sρj z̈j + S∇jU(z)

] · δzj

+ [
S∇p + (1 − S)∇ρsu + Sφ∇ρm

] · δx

}
dxdzdt, (61)

where ∇j = ∂
∂zj

. As in the earlier treatment, the variation is restricted by the condition

that the mass should not be varied, i.e., δ(ρjdzj ) = 0. Terms associated with δφ vanish
because of the generalized Poisson–Boltzmann equation (14). Similarly, terms associated
with δS vanish because of the hypersurface evolution equation (60). Therefore, we still
have two terms that are associated with δzj and δx, respectively,

∫ ∫ ∫ {
S

∑
j

[
ρj z̈j − fj

] · δzj − Sf · δx
}

dxdzdt, (62)

where the macroscopic force f has been defined in Eq. (35). Here, the microscopic force
associated with the j th atom is fj = fjSSI + fjRF + fjPI with the components defined as

fjSSI = − (1 − S)

S
∇j (ρsu), (63)

fjRF = ρm

S
∇j (Sφ), (64)

fjPI = −∇jU(z), (65)

where fjSSI, fjRF, and fjPI are respectively, solvent-solute interaction force, reaction field
force, and potential interaction force. Note that since S ∼ 0 in the molecular domain, the
force contribution from the interaction between the solvent and solute (fjSSI) is very small
except that the j th atom is very close to the interface. Whereas the reaction field force
(fjRF) is of the same scale as those from the other potential interaction effects (fjPI).

The least action in Eq. (62) requires the vanishing of the integration, which means
the vanishing of the integrand. As δx and δzj vary independently and are nonzero, the
only way for the integrand to vanish is for terms associated with δx and δzj to be zero,
respectively. Therefore, for S �= 0, we arrive at the desirable Newton’s equation for the
molecular dynamics (MD)

ρj z̈j = fj . (66)

It is seen from Eq. (63) that the driven forces of this molecular dynamics have a term as-
sociated with solvent-solute interaction near the interface (fjSSI), in addition to the normal
electrostatic potential effect (fjRF) and other potential effects (fjPI).

It is pointed out that we do not have a complete force balance in the present model.
This problem will be resolved in the next model. The system considered in the present
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subsection can be regarded as macroscopically at equilibrium, while microscopic sub-
system is out of equilibrium and its motion is governed by the Newton’s equation. This
may be reasonable because the microscopic system has much smaller time and spatial
scales.

3.5. Coupled fluid dynamics and molecular dynamics

Similar to the solvation system, the system described in the last subsection has a prob-
lem of lacking a mechanism to balance macroscopic forces f. This problem is addressed
in the present subsection. Here, we consider a force-balanced multiscale system that in-
cludes not only the electrostatic interaction, surface dynamics, and fluid dynamics, but
also molecular dynamics. As such, both the macroscopic subsystem and the microscopic
subsystem are out of equilibrium. Nevertheless, we assume that densities of ionic species
are near equilibrium and can be approximated by their equilibrium Boltzmann distrib-
utions. To describe this multiscale system, we need a Lagrangian for the macroscopic
subsystem of the hydrodynamic continuum. Furthermore, the total action functional also
includes the free energies due to the surface tension or curvature effect and the mechan-
ical work of immersing the macromolecule into the solvent. This system is suitable for
the description of the dynamics of macromolecules in microchannel and nano-channel
flows.

3.5.1. Action functional for coupled fluid dynamics and molecular dynamics
The electrostatic free energy functional is given in Eq. (12). The nonpolar energy is pre-
scribed in Eq. (28). The Lagrangian of the fluid subsystem is presented in Eq. (44), and
finally, the Lagrangian of the molecular subsystem is provided in (58). Therefore, we have
the total action functional for a system of fluid-molecular interactions

Stotal[S,φ,x, z] =
∫ ∫ ∫ {[

γ ‖∇S‖ + Sp + (1 − S)ρsu
] + S

[
ρmφ − εm

2
|∇φ|2

]

+ (1 − S)

[
−εs

2
|∇φ|2 − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)]

− (1 − S)

[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]

− S
∑

j

[
ρj

ż2
j

2
− U(z)

]}
dxdzdt. (67)

As discussed in an earlier case, we have chosen negative signs for the atomic Lagrangian
(LMicro) and the fluid Lagrangian (LMacro) so that the potential energies have positive signs.
The solvent-solute interaction u is considered as a part of the nonpolar energy.

3.5.2. Governing equations for coupled fluid dynamics and molecular dynamics
In this system, we derive four governing equations by employing the principle of the least
action to the total action functional (Stotal[S,φ,x, z]) in Eq. (67)
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δStotal[S,φ,x, z]

=
∫ ∫ ∫ {[

∇ · ε(S)∇φ + Sρm + (1 − S)

Nc∑
j

qj cj e−qj φ/kBT

]
δφ

+
{[

−∇ · γ∇S

‖∇S‖ + p − ρsu

]
+

[
ρmφ − εm

2
|∇φ|2

]

−
[
−εs

2
|∇φ|2 − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)]

−
∑

j

[
ρj

ż2
j

2
− U(z)

]
+

[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]}

δS

+
[
S∇p + (1 − S)∇ρsu + Sφ∇ρm + (1 − S)ρs

(
∂v
∂t

+ v · ∇v
)

+ (1 − S)∇p − ∇ · (1 − S)T

]
· δx

+
∑

j

[
(1 − S)∇j ρsu + Sφ∇j ρm + Sρj z̈j + S∇jU(z)

] · δzj

}
dxdzdt = 0.

(68)

Here, δS, δφ, δx, and δz are four infinitesimally small but nonzero perturbations. In or-
der for the first variation to vanish, the terms associated δS, δφ, δx, and δz have to van-
ish independently. First, terms associated with δφ give rise to the generalized Poisson–
Boltzmann equation (14).

Additionally, the surface evolution equation can be constructed by requiring terms
associated with δS in Eq. (68) to vanish, following by the use of the steepest descent
scheme

∂S

∂t
= ‖∇S‖

{
∇ · γ∇S

‖∇S‖ − p + ρsu − ρmφ + εm

2
|∇φ|2 − εs

2
|∇φ|2

− kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)

−
[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]

+
∑

j

[
ρj

ż2
j

2
− U(z)

]}
. (69)

This is very similar to the surface evolution equation for the fluid-electrostatic interac-

tions, except there is an extra term
∑

j [ρj

ż2
j

2 − U(z)] for the molecular energy.
Moreover, it is easy to see that the vanishing of terms associated with δx gives rise

to the generalized Navier–Stokes equation of continuum fluid dynamics presented in Eq.
(54), with the stress tensor (42) and interaction force (55).
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Finally, the Newton’s equation for molecular dynamics (66) is derived from terms
associated with δzj , with appropriate force expressions given in Eqs. (63)–(65).

In this system, all forces are balanced. The fluid dynamics, the molecular dynamics,
the electrostatic subsystem, and the hypersurface function are all coupled.

4. Multiscale models without the differential geometry based solvent-solute
interface

The differential geometry based multiscale approach proposed in this work provides an
efficient paradigm to minimize or optimize the surface free energy, together with other
energies. The present approach utilizes the hypersurface function in the Eulerian formula-
tion. A somewhat equivalent differential geometry based multiscale approach is to make
use of the Lagrangian formulation, which will be presented elsewhere. Certainly, one can
also carry out multiscale variational modelings without the use of differential geometry
based surfaces. As such, the surface free energy and mechanical work will not be mini-
mized and their effects in the model depend on the choice of the surface model, such as
solvent excluded surfaces or solvent accessible surfaces. In this section, we demonstrate
one of such multiscale approaches. A comparison of two different multiscale formula-
tions, i.e., multiscale models with and without the differential geometry based solvent-
solute boundary, is given.

The foundation of electrostatic forces associated with the generalized Poisson–
Boltzmann equation was due to Gilson et al. (1993) based on the free energy expression
given by Sharp and Honig (1990). In this section, we also analyze the force balance in the
earlier electrostatic formulation. We show that although the classical electrostatic force
theory is incomplete, there are some consistencies between the theory of Gilson et al. and
the present differential geometry based multiscale formalism.

4.1. Force paradox in the classical Poisson–Boltzmann system

Gilson et al. formulated the theory of electrostatic forces associated with the Poisson–
Boltzmann equation (Gilson et al., 1993) and their force expressions have been imple-
mented in implicit solvent based molecular dynamics (Gilson et al., 1993; Im et al., 1998;
Lu et al., 2002; Lu and Luo, 2003; Luo et al., 2002; Prabhu et al., 2004). We are interested
in the understanding of how well electrostatic forces couple to the molecular dynamics
in the implicit molecular dynamics theory of Gilson et al. (1993). To this end, we add a
molecular dynamic term to the free energy functional of the electrostatic system proposed
by Sharp and Honig (1990), and by Gilson et al. (1993)

SElect[φ,x, z] =
∫ ∫ ∫ {[

ρmφ − ε

2
|∇φ|2 − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)
λ

]

−
∑

j

[
ρj

ż2
j

2
− U(z)

]}
dxdzdt, (70)

where ε(x) = ε0ε(x) is the permittivities, λ(x) is characteristic function for the solvent,
and other quantities have been defined in preceding sections.



Differential geometry based multiscale models 1593

By taking the least action for the above total action functional, Eq. (70), one has

δSElect[φ,x, z] =
∫ ∫ ∫ {[

∇ · ε∇φ + ρm + λ

Nc∑
j

qj cj e−qj φ/kBT

]
δφ

+
[
φ∇ρm − 1

2
|∇φ|2∇ε − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)∇λ

]
· δx

+
∑

j

[
ρj z̈j + ∇jU(z)

] · δzj

}
dxdzdt

=
∫ ∫ ∫ {[

∇ · ε∇φ + ρm + λ

Nc∑
j

qj cj e−qj φ/kBT

]
δφ

− [f ′
RF + f ′

DB + f ′
ID] · δx +

∑
j

[
ρj z̈j − fjPI

] · δzj

}
dxdzdt = 0,

(71)

where the terms associated with δφ vanish by the standard Poisson–Boltzmann equation

−∇ · ε∇φ − λ

Nc∑
j

qj cj e−qj φ/kBT = ρm. (72)

In Eq. (71), fDB, fID, fRF, and fjPI are force densities of dielectric boundary (DB), ionic
boundary (IB), reaction field (RF), and potential interaction (PI), respectively,

f ′
RF = ρm∇φ (73)

f ′
DB = 1

2
|∇φ|2∇ε (74)

f ′
IB = kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)∇λ (75)

fjPI = −∇jU(z). (76)

The first three terms are exactly the force density expressions given in the literature
(Gilson et al., 1993). Since Eq. (71) vanishes by the least action principle, terms asso-
ciated with δx and those associated with δzj have to vanish independently. As such, we
have

[f ′
RF + f ′

DB + f ′
ID] · δx = 0

and

[
ρj z̈j − fjPI

] · δzj = 0.
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Since δx and δzj are nonzero infinitesimal perturbations, we have |f ′
RF + f ′

DB + f ′
ID| = 0

and the Newton’s law for molecular dynamics ρj z̈j = fjPI. Consequently, the macroscopic
forces associated with δx cannot be balanced by atomic motions governed by the New-
ton’s equation associated with δzj . An implication of this result is that the dielectric
boundary force and ionic boundary force derived in the theory of Gilson et al. (1993)
may not be applied to atoms. On the other hand, Im et al. (1998) have shown that the total
force computed with the theory of Gilson et al. is consistent with that computed from
the force definition, i.e., the negative gradient of the free energy functional. Apparently,
there is an interesting force paradox associated with the classical Poisson–Boltzmann sys-
tem.

4.2. Direct coupling between fluid dynamics and molecular dynamics

In this work, we resolve the above apparent force paradox by a multiscale description
of the electrostatic and molecular dynamic system. We show that if the fluid dynam-
ics is included in the description, all the forces in the system can be balanced. An
important observation which is crucial to the understanding is that the solvent-solute
interface, such as the van der Waals surface or the molecular surface, is determined
directly by atomic positions of the biomolecule described by the microscopic vari-
able z; and is indirectly affected by the electrostatic interaction. However, the solvent-
solute interface is referenced in the Poisson–Boltzmann equation described in the macro-
scopic variable, x. As such, we assume that the permittivity is a dependent function
of x and z, i.e., ε = ε(x, z). Similar, the characteristic function depends also on x
and z, i.e., λ = λ(x, z). We will discuss the consequence of an alternative assump-
tion that ε = ε(z) and λ = λ(z) after the derivation of the full set of governing equa-
tions.

We therefore consider the following total action functional

Stotal[S,φ,x, z] =
∫ ∫ ∫ {[

ρmφ − ε

2
|∇φ|2 − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)
λ

]

−
[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]

−
∑

j

[
ρj

ż2
j

2
− U(z)

]}
dxdzdt. (77)

Here, the electrostatic interaction is balanced by the fluid action functional and molecular
action functional.

Note that surface free energy and the mechanical work of immersing a macromole-
cule into the solvent are not presented in the above action functional because this model
admits a priorly fixed surface model, such as a van der Waals surface, or a molecular sur-
face. However, in the evaluation of the total solvation energy, one should still include the
contribution from the surface area and mechanical work.

The governing equations are obtained by the principle of the least action
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δStotal[S,φ,x, z]

=
∫ ∫ ∫ {[

∇ · ε∇φ + ρm + λ

Nc∑
j

qj cj e−qj φ/kBT

]
δφ

+
[
φ∇ρm − 1

2
|∇φ|2∇ε − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)∇λ

+ ρs

(
∂v
∂t

+ v · ∇v
)

+ ∇p − ∇ · T

]
· δx

+
∑

j

[
φ∇j ρm − 1

2
|∇φ|2∇j ε − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)∇jλ

+ ρj z̈j + ∇jU(z)

]
· δzj

}
dxdzdt. (78)

According to the principle of least action, terms associated with each independent varia-
tion have to vanish. Here, terms associated with δφ give rise to the classical the Poisson–
Boltzmann equation (72). Terms associated with δx lead to the desirable form of the
Navier–Stokes equation

ρs

(
∂v
∂t

+ v · ∇v
)

= −∇p + ∇ · T + f ′, (79)

where the force is given by

f ′ = f ′
RF + f ′

DB + f ′
ID

as defined in Eqs. (73)–(75).
Similarly, from terms in Eq. (78) associated with δzj , we have

ρj z̈j = fj = fjRF + fjDB + fjID + fjPI, (80)

where the potential interaction force fjPI is defined in Eq. (76), and

fjRF = ρm∇jφ (81)

fjDB = 1

2
|∇φ|2∇j ε (82)

fjIB = kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)∇jλ. (83)

A few comments are in order. First, it is clear that the dielectric boundary force and the
ionic boundary force indeed couple to atoms and molecular dynamics, along with forces
from other potential interactions. The above mentioned apparent force paradox is due



1596 Wei

to the incomplete description of the complex multiscale system of discrete and contin-
uum interactions. A sufficient description of the system must use two sets of independent
variables, the macroscopic variable x and the microscopic variable z. This is physically
sound because interface indeed depends on the atomic position and motion, the solvent
and solvent-solute interaction.

Additionally, the Poisson–Boltzmann equation requires ε and λ to be functions of
macroscopic variables x. Therefore, the present treatment ε = ε(x, z) and λ = λ(x, z)
appears to be a unique option to couple macroscopic with microscopic without resorting
to an additional interaction potential describing the solvent-solute interaction as discussed
in preceding sections.

Moreover, since we treat ε and λ as functions of x, the interface induced forces have to
be balanced by the fluid motion governed by the Navier–Stokes equation. The inclusion
of a term describing the solvent-solute interaction in the fluid action functional can be
easily done, i.e.

[
ρs

v2

2
− p − ρsu + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]
.

Such an extra term (ρsu) will generate forces near the interface that impact both the atomic
and fluid motions.

Finally, the reaction field force in Eq. (81) may look strange, as the electrostatic poten-
tial φ does not depend on the microscopic variable zj . However, this term is fine because
the charge density ρm is a set of Dirac delta functions.

4.3. Comparison between multiscale models with and without differential geometry based
interfaces

An interesting issue is that what happens if we set the hypersurface as a function of x and
z, i.e., S = S(x, z). This arrangement will slightly change the formulation in some earlier
sections where microscopic variable z was not included. However, it has no impact to
Sections 3.4 and 3.5. Note that in Eqs. (60) and (69), the surface evolution is already under
the influence of atomic kinetic energies described in terms of the microscopic variable z,
although such variables are forced into macroscopic positions by the associated mass
densities ρj .

In practical computations, atomic coordinates are used as a set of boundary conditions
for our hypersurface evolution equations (Bates et al., 2008, 2009). Additionally, the po-
tential driven evolution operator of the hypersurface function in our recent work (Bates
et al., 2009) depends on atomic interactions. Therefore, the hypersurface function has
always been a function of the microscopic variable.

A main difference of the multiscale models of Sections 4.2 and 3.5 is that without
appropriate interface terms, the total energy of the system is incomplete and energy opti-
mization does not lead to a physical minimum. Therefore, the current description of the
interface energy is an important element of the solvation system.

Another main difference of the multiscale models of Sections 4.2 and 3.5 is that in
differential geometry based multiscale models, one does not need to compute dielectric
boundary force and ionic boundary force. However, we have to solve a surface evolution
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equation as shown in Eqs. (60) and (69). The computational efficiency of these two ap-
proaches is to be examined in the future. The result of comparing these two approaches
may also depend on computational algorithms employed.

There is yet another way to see the consistency of the approaches in Sections 4.2
and 3.5. In Eq. (68), we have a hypersurface related term

{[
−∇ · γ∇S

‖∇S‖ + p − ρsu

]
+

[
ρmφ − εm

2
|∇φ|2

]

−
[
−εs

2
|∇φ|2 − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)]

−
∑

j

[
ρj

ż2
j

2
− U(z)

]
+

[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]}

δS.

If we assume that S = S(x, z), we have δS = ∇S ·δx+∑
j ∇j S ·δzj . We therefore recover

the dielectric boundary force and ionic boundary force, in addition to many other force
terms. However, we will not explicitly list these expressions in the present work.

It is clear that there is a flexibility in the selection of a set of independent variables
in the total variation. One can make use of this flexibility to choose an appropriate set
of equations to be solved. Sometimes, different selections may lead to different physical
interpretations and the use of different computational techniques. We will not elaborate
these interesting aspects any further in the present work.

Finally, we comment on the similarities in multiscale models with and without dif-
ferential geometry based interfaces. These similarities are some of the most interesting
aspects in our multiscale models that do not make use of differential geometry based sur-
faces. First, we still set up a total energy functional or a total action functional for a given
system of interest. Therefore, energies from differential scales are put in an equal footing.
Although the surface energy is fixed a priori. Additionally, as an energy approach, it is
convenient to utilize the variational principle to derive governing equations for the sys-
tem. These governing equations are normally coupled to each other. Moreover, we also
seek the balance of the forces in the governing equations. In our view, this balance is not
only necessary to make the multiscale description complete, but also offers the technical
means for the system to reach its optimal state.

5. Multiscale models for aqueous macromolecular complexes far from equilibrium

Electrophoresis and charge diffusion and migration in solution or solid play an important
role in a wide range of science and technology, from the transport of electrons and holes
in nano electronic transistors and integrated circuits, chemical and physical processes of
fuel cells, to ion channels in the plasma membrane of living cells. These systems are far
from equilibrium and often involve many physical phenomena, such as electro-osmotic
flows, electrophoresis, and polarization in electrolytes (Zheng et al., 2003; Chen and Con-
lisk, 2008). These phenomena are usually described by the Poisson–Nernst–Planck (PNP)
equations, or the coupled Poisson–Nernst–Planck (PNP) and Navier–Stokes equations
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(Chen et al., 1995; Chu and Bazant, 2006; Hwang et al., 2006; Vlassiouk et al., 2008;
Abaid et al., 2008; Zhou et al., 2008c). In this work, we present differential geometry
based multiscale models to describe these phenomena. We invoke the differential geome-
try description so that the formation and evolution of the discrete-continuum boundary are
included in the total energy optimization. The interface description is important in poly-
mer electrolyte membrane (PEM) fuel cells, where a hydrophobic polymer membrane,
functionalized by acidic side chains, is used as the electrode separator (Franco et al., 2006;
Gurau and Mann, 2009; Promislow and Wetton, 2009). The working conditions of PEM
fuel cells are far from equilibrium and demand detailed description of chemical reactions,
charge transport, and the atomic level understanding of the polymer activity.

In this section, we consider a kinematics which is similar to that described in Sec-
tion 3.1. The macromolecule is described in atomic detail and its domain is characterized
by hypersurface function S. The atomic positions are obtained either from experimental
data or from theoretical calculations, such as molecular dynamics or in principle, quan-
tum dynamics, also. Molecular motion is coupled to the aquatic environment which is
described by continuum mechanics, i.e., hydrodynamics. The aquatic environment may
have multiple species, which may undergo chemical reactions. The macroscopic domain
is characterized by (1−S). The boundary between microscopic and macroscopic domains
is coupled with the static and/or dynamical interactions between the macromolecule and
the aquatic environment. The electrostatic interactions are described by the Poisson type
of equations, with both discrete charges in the macromolecular domain and continuum
charge distributions in the aquatic environment. As the continuum system is far from
equilibrium due to the fluid and charge transport, we must abandon the Boltzmann dis-
tribution of charged particles and allow the density of each species to be determined by
the mass conservation law. The atomistic interactions among the atoms, and interactions
between atoms near the micro-macro interface and the solvent are also a part of our de-
scription. The state and dynamics of the whole system are determined by the optimization
of the total free energy functional or the total action functional. We call it an optimization
when we deal with a “minimum-maximum” problem.

5.1. The origin of drift and diffusion in the Nernst–Planck equation

We consider an aqueous phase of multiple components, including the water. The mass
density of the αth component is denoted as ρα . The mass conservation gives rise to

∂ρα

∂t
+ ∇ · ραvα =

∑
j

ναj J
j (84)

where vα is the velocity of component α and ναjJ
j is the production of α per unit volume

in the j th chemical reaction. The inclusion of chemical reactions is pertinent to the PEM
fuel cells where most chemical reactions take place at the solid-liquid interface. Since
mass is conserved in each chemical reaction, we have

∑
α

ναj = 0.

Assuming the absence of chemical reactions, all the production terms vanish, i.e., J j = 0.
Clearly, the mass of each species is conserved, and there is no drift or diffusion in the
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mass conservation equation (84) for component α. Then an interesting question is where
does the drift and diffusion in the Nernst–Planck equation come from.

To understand the origin of the drift and the diffusion in the Poisson–Nernst–Planck
theory, we first note that Eq. (84) describes the fluid from the individual component point
of view. To solve Eq. (84), we need to know vα , which may be obtained either from an
equation or from experimental measurements. However, we do not have an equation for
vα , and usually, the velocity of an individual component is not measured in a homoge-
neous fluid. Instead, the fluid barycenter velocity v is mostly observed in fluid mechanical
experiments. Therefore, we need an alternative description of the fluid that is consistent
with experiment observations. To this end, we consider a collective description of the
fluid. The law of mass conservation requires

∂ρs

∂t
+ ∇ · ρsv = 0, (85)

where the total solvent density ρs and barycenter velocity v are defined as

ρs =
∑

α

ρα (86)

ρsv =
∑

α

ραvα. (87)

Equation (85) means that in a fluid, the rate of change of the total density is due to the
motion along the barycentric velocity, in addition to a possible volume compression or
extension

∂ρs

∂t
+ ∇ · ρsv = ∂ρs

∂t
+ v · ∇ρs + ρs∇ · v (88)

= dρs

dt
+ ρs∇ · v = 0. (89)

For incompressible fluid (∇ · v = 0), we have dρs

dt
= 0, i.e., the total mass is conserved.

However, it is important to note that the rate of change of the density of an individual
component is much more complicated. To illustrate this point, we rewrite Eq. (84), the
mass conservation equation of component α, in terms of the collective variable, i.e., the
fluid barycenter velocity v

∂ρα

∂t
+ v · ∇ρα = −ρα∇ · v − ∇ · (vα − v)ρα +

∑
j

ναj J
j (90)

where the second term on the left-hand side describes the motion of the mass density ρα

moving along with the fluid barycentric velocity. Here, the first term on the right-hand
side vanishes for incompressible fluids. The second term (∇ · (vα − v)ρα = ∇ · Jα) is
commonly regarded as the “diffusion flow” of component α defined with respect to the
barycentric motion. In a homogeneous fluid, the component velocity vα is not directly
described by a governing equation and thus has to be eliminated.

First, we analyze the drift-flux contribution to the diffusion flow due to the elec-
trophoresis effect. For a particle of charge qα , its velocity (vα) is proportional to the local
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electric field E, i.e., vα ∼ E. The electric field can be expressed in terms of the gradient
of the electrostatic potential as E = −∇φ. This expression is also valid when there is
a static external electric field, which can be incorporated in the boundary conditions of
the Poisson equation or the Poisson–Boltzmann equation. We therefore make use of the
Nernst–Einstein equation for the electrophoresis flux

Je
α = −Dαqαρα

kBT
∇φ, (91)

where qα = −|qα| for negative ions and Dα is the diffusion coefficient of component α.
Next, it is convenient to assume that the diffusion flux (vα − v)ρα also has a contribution
from the gradient of ρα

Jd
α = −Dα∇ρα. (92)

This gives rise to the desirable diffusion flux due to the material gradient. Thus, the total
diffusion flux for component α is set to

Jα = (vα − v)ρα = Jd
α + Je

α. (93)

Consequently, the mass conservation equation for each component can be written as

∂ρα

∂t
+ v · ∇ρα = −∇ · Jα +

∑
j

ναj J
j

= ∇ · Dα

[
∇ρα + qαρα

kBT
∇φ

]
+

∑
j

ναj J
j , (94)

where we have assumed that the fluid is incompressible (∇ · v = 0). Equation (94) is the
desired form of the Nernst–Planck equation for the mass conservation of component α.
Here, an important feature is that the component velocity (vα) is not a variable. Clearly,
the origin of both the drift and the diffusion of component α in a homogeneous fluid is
due to the relative motion of such an individual component with respect to the barycentric
motion of the fluid.

Equation (94) describes two possible steady states that have often been used in prac-
tical simulations. First, if we set ∂ρα

∂t
= 0, we have the stationary motion of component α

along with the stream velocity v. Additionally, if we set ∂ρα

∂t
= |v| = ∇ · Jα = 0, we have

the local balance between the drift-diffusion and the reactive production

∇ · Dα

[
∇ρα + qαρα

kBT
∇φ

]
+

∑
j

ναj J
j = 0. (95)

This form of the Nernst–Planck equation is often solved in practical applications, in
particular, in the ion channel problems for ion density distributions and current-voltage
curves.

The total charge current density Ic can be expressed as

Ic =
∑

α

ραqαvα = ρsqv + ic (96)
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where ρsqv is the charge current due to convection and ic = ∑
α qαJα is charge conduc-

tion current. Here, the total charge per unit mass is defined as ρsq = ∑
α ραqα . For ion

channels, it is important to observe and analyze the current density map, which should
be consistent with the electrostatic potential map. Both the current density map and the
electrostatic potential map reflect the channel molecular structure and gating mechanism.
Finally, the conservation law for total charge is

ρs

[
∂q

∂t
+ v · ∇q

]
= −∇ · ic. (97)

5.2. Coupled geometric, Navier–Stokes, Poisson–Nernst–Planck equations

In ion channels, the ionic selectivity and gating effect are partially due to the elec-
trostatic interaction of the ion and the channel in a close vicinity. However, in many
practical simulations, the “close vicinity” depends on the surface model used for the
channel. The solvent accessible surface and the van der Waals surface of a given ion
channel exhibit very different profiles of the vicinity. In this work, we develop dif-
ferential geometry based approaches so that the surface formation is coupled to the
Navier–Stokes equation and Poisson–Nernst–Planck equations. We slightly modify the
formulation developed in Section 3.3. Here, we consider the following total action func-
tional:

Stotal[S,φ,x] =
∫ ∫ {[

γ ‖∇S‖ + Sp + (1 − S)ρsu
] + S

[
ρmφ − εm

2
|∇φ|2

]

+ (1 − S)

[∑
α

qαραφ − εs

2
|∇φ|2

]

− (1 − S)

[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]}

dxdt, (98)

where qα takes a positive sign if component α is positively charged, e.g., a cation,
and takes a negative sign if component α is negatively charged, e.g., an anion. Here,
we assume that the fluid encompasses multiple ionic species and water molecules. It
is important to note that since the system may be far from equilibrium, the Boltz-
mann distribution of the ionic density is not assumed. Instead, the mass density
of each component satisfies the drift-diffusion equation (94). This is a crucial as-
pect in systems far from equilibrium, such as those in PEM fuel cells, which are
described by the drift-diffusion equation (94), the Navier–Stokes equation and the
Poisson equation. Note that ρm is the charge density, while ρα is the mass den-
sity.

By optimizing the total action functional (Stotal[S,φ,x]) in Eq. (98) with respect to φ,
we have a generalized Poisson equation

−∇ · ε(S)∇φ = Sρm + (1 − S)
∑

α

qαρα, (99)

where ε(S) is defined in Section 3.1.2. This new Poisson equation includes free discrete
charge contributions (ρm) from atoms in the macromolecular domain S and free contin-
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uum charge contributions (
∑

α qαρα) from the solvent domain (1 − S). This equation is
coupled to the mass density equation (94) and the equation for the hypersurface function.

In order to derive an appropriate governing equation for the hypersurface (S), we min-
imize the total action functional (Stotal[S,φ,x]) in Eq. (98) with respect to S, following
by the use of the steepest descent scheme to construct

∂S

∂t
= ‖∇S‖

{
∇ · γ∇S

‖∇S‖ − p + ρsu − ρmφ + εm

2
|∇φ|2 − εs

2
|∇φ|2

+
∑

α

qαραφ −
[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]}

. (100)

This equation has a similar structure as the curvature and potential driven geometric flows
(Bates et al., 2009). It couples to the mass density equation (94), the generalized Poisson
equation (99) and the generalized Navier–Stokes equation describing the velocity field v.

The derivation procedure for the generalized Navier–Stokes equation from the multi-
scale total action functional (98) is the same as that described in preceding sections. To
this end, we make use the least action principle

δStotal[S,φ,x] =
∫ ∫ {[

∇ · ε(S)∇φ + Sρm + (1 − S)
∑

α

qαρα

]
δφ

+
{[

−∇ · γ∇S

‖∇S‖ + p − ρsu

]
+

[
ρmφ − εm

2
|∇φ|2

]

−
[∑

α

qαραφ − εs

2
|∇φ|2

]

+
[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]}

δS

+
[
S∇p + (1 − S)∇ρsu + Sφ∇ρm + (1 − S)φ∇

∑
α

qαρα

+ (1 − S)ρs

(
∂v
∂t

+ v · ∇v
)

+ (1 − S)∇p

− ∇ · (1 − S)T

]
· δx

}
dxdt = 0, (101)

where δS, δφ and δx are infinitesimally small but non-zero perturbations. Because each
independent variation vanishes, for (1 − S) �= 0, we have the following generalized
Navier–Stokes equation:

ρs

(
∂v
∂t

+ v · ∇v
)

= −∇p + 1

1 − S
∇ · (1 − S)T + FE. (102)
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The form of the new generalized Navier–Stokes equation (102) is identical to the original
Navier–Stokes equation (47) when S = 0. However, in Eq. (102), the force is given by

FE = fE + S

1 − S
f, (103)

where f is defined in Eqs. (34)–(38) and

fE = 1

1 − S

∑
α

qαρα∇(1 − S)φ (104)

is a generalized reaction field force. Note that without the present hypersurface descrip-
tion, we would result in a normal electric force term of the form

fE =
∑

α

qαρα∇φ = −
∑

α

qαραE,

where E = −∇φ is the electric field vector. This force term is exactly the same as the
force in the usual Navier–Stokes equation for electrohydrodynamics. It is to point out
that the generalized electric field force fE vanishes if all fluid components are uniformly
charged, i.e.,

∑
α qαρα = qρs where q is the uniform charge. To see this, we need to realize

that this force term is originated from the variation δ(
∑

α qαρα dx) = qδ(ρs dx) = 0. This
result may appear to be inconsistent with electroosmotic flows. However, note that the
uniform charge effect has already been accounted for in the hypersurface motion (100) and
the generalized Poisson equation (99) in the present multiscale framework. On the other
hand, the foundation of the present theory needs to be reexamined if fluid components
are uniformly charged. Some assumptions may no longer be valid and the full set of the
Maxwell’s equations should be used for such a highly charged fluid. We will not further
elaborate on this aspect as it does not usually occur in our aqueous chemical and biological
systems.

In the present multiscale framework, we have derived three governing equations for the
discrete-continuum electrostatic-fluid system. The generalized Poisson equation (99), the
hypersurface evolution equation (100), and the generalized Navier–Stokes equation (102)
are coupled among themselves and to the mass conservation equation (94). These equa-
tions form a new set of governing equations for describing ion channels and other fluid-
electrostatic systems.

For many applications in biology, such as many ion channels, the barycentric motion
of the fluid may be absent, i.e., v ∼ 0. As such, the present description simplifies accord-
ingly. One just needs to solve the mass conservation equation (94), the generalized Pois-
son equation (99), the hypersurface evolution equation (100), and a generalized Stokes
equation

∇p = 1

1 − S
∇ · (1 − S)T + FE. (105)

5.3. Coupled geometric, Newton, Navier–Stokes, and Poisson–Nernst–Planck equations

It is important to understand that for complex systems at nonequilibrium, the Boltzmann
distribution of the electrostatic energy for the ion concentration is not valid. The alterna-
tive description presented above is useful for such cases. However, a full description of
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these systems should include the molecular dynamics for the macromolecule. Therefore,
we consider the total action functional for a system of fluid-molecular interactions

Stotal[S,φ,x, z] =
∫ ∫ ∫ {[

γ ‖∇S‖ + Sp + (1 − S)ρsu
]

+ S

[
ρmφ − εm

2
|∇φ|2

]
+ (1 − S)

[∑
α

qαραφ − εs

2
|∇φ|2

]

− (1 − S)

[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]

− S
∑

j

[
ρj

ż2
j

2
− U(z)

]}
dxdzdt. (106)

Here, on the right-hand side of the first row is the nonpolar solvation free energy density,
the second row is electrostatic solvation free energy density, and the third row contains
Lagrangians of both the fluid part and the molecular dynamics part. This system requires
the input of ρα from Eq. (94) or Eq. (95).

To derive other governing equations, we apply the principle of the least action to the
total action functional (Stotal[S,φ,x, z]) in Eq. (106)

δStotal[S,φ,x, z]

=
∫ ∫ ∫ {[

∇ · ε(S)∇φ + Sρm + (1 − S)
∑

α

qαρα

]
δφ

+
{[

−∇ · γ∇S

‖∇S‖ + p − ρsu

]
+

[
ρmφ − εm

2
|∇φ|2

]

−
[∑

α

qαραφ − εs

2
|∇φ|2

]
−

∑
j

[
ρj

ż2
j

2
− U(z)

]

+
[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]}

δS

+
[
S∇p + (1 − S)∇ρsu + Sφ∇ρm + (1 − S)φ∇

∑
α

qαρα

+ (1 − S)ρs

(
∂v
∂t

+ v · ∇v
)

+ (1 − S)∇p − ∇ · (1 − S)T

]
· δx

+
∑

j

[
(1 − S)∇j ρsu + Sφ∇j ρm + Sρj z̈j + S∇jU(z)

] · δzj

}
dxdzdt = 0,

(107)

where, δS, δφ, δx, and δz are nonzero perturbations. Therefore, the terms associated
δS, δφ, δx, and δz vanish independently.
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As such, we recover the generalized Poisson equation (99) from the δφ term. Addi-
tionally, from the δS term, we construct a geometric flow equation for surface formation
and evolution by using the steepest descent scheme

∂S

∂t
= ‖∇S‖

{
∇ · γ∇S

‖∇S‖ − p + ρsu − ρmφ + εm

2
|∇φ|2 − εs

2
|∇φ|2

+
∑

α

qαραφ −
[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]

+
∑

j

[
ρj

ż2
j

2
− U(z)

]}
. (108)

This is very similar to the geometric flow equation for the fluid-electrostatic interactions,
except for a change in the electrostatic energy.

Moreover, the vanishing of terms associated with δx gives rise to the generalized
Navier–Stokes equation presented in Eq. (102), with the stress tensor given in Eq. (42),
and interaction force prescribed in Eqs. (103)–(104).

Likewise, from terms associated with δzj , we recover the Newton’s equation for
molecular dynamics given in Eq. (66), with appropriate force expressions given in
Eqs. (63)–(65). It is easy to understand that a change in the macroscopic description of
the continuum charge distribution has no direct effect in the microscopic forces.

Furthermore, it is emphasized that these four equations are coupled to the mass con-
servation equation for each component (94). We therefore have to solve multiple govern-
ing equations in our multiscale models. Simplifications are possible for given situations.
However, a detailed discussion of the simplifications is beyond the scope of the present
work.

Finally, the inclusion of the molecular dynamics is crucial for the situation where
biomolecules may undergo significant configuration changes during a nonequilibrium
process. Gated ion channels are typical examples. A channel can open or close by chem-
ical, or electrical, or photonic, or temperature signals, depending on the variety of cir-
cumstances. The molecular dynamics description provides a unique means to capture the
configuration change during the channel transport process.

6. Multiscale models for excessively large aqueous macromolecular complexes

There are chemical and biological systems that are excessively large. Their atomic de-
scription, particularly the detailed molecular dynamics, involves excessively large num-
bers of degrees of freedom and is intractable with current computer capability. There-
fore, these systems pose a fabulous challenge to theoretical description and prediction.
Deoxyribonucleic acid (DNA) and the membrane of PEM fuel cells are examples of ex-
cessively large aqueous macromolecular complexes. The challenges from these systems
demand different tactics in modeling and simulation.

DNA is a long polymer made from nucleotides and contains the genetic information
used in the development and functioning of all known living organisms and some viruses.
The largest human DNA polymer has about 220 million base pairs (bp) and is about
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67,000 µm in length. However, human DNA polymers are highly packed in chromo-
somes which are only about a few µm long. Each 146 DNA pb is wrapped around an
octamer of small basic proteins called histones. Wrapped histones, together with about
54 DNA bp to form a nucleosome. Nucleosomes are further wrapped around to form
chromatins, which are organized in loops, scaffolds, and domains in the chromosomes
(Grigoryev et al., 2009). A quantitative description of this DNA packing process is cru-
cial to the in-depth understanding of the protein specification, gene regulation, and gene
expression.

Another interesting system is the PEM fuel cell, which is a prime candidate for com-
pact power devices in mobile and other applications. The PEM serves as a conductor
for protons and an insulator for electrons, anions, and gases. The membrane is usually
made of synthetic polymers, such as Nafion, which relies on liquid water humidifica-
tion to transport protons. The hydrophobic polymer backbone provides good mechan-
ical stability, while the sulfonic acid functional groups self-organize into hydrophilic
water channels of about a few nano-meter diameter to allow the transport of protons.
The mechanical properties of the membrane depend on the water management and are
crucial to the membrane performance. The membrane is often manufactured at a wide
variety of sizes, from nano-scale to macroscopic dimensions (Gurau and Mann, 2009;
Promislow and Wetton, 2009).

One common feature of the above two systems is that electrostatic interactions play
an essential role in their static and dynamic properties. DNA is highly charged. The in-
teraction of DNA and histone is electrostatic in nature. DNA packing is also driven by
electrostatic interactions (Grigoryev et al., 2009). The membrane in the PEM fuel cells
is highly charged too. The sulfonate ion clusters of Nafion determine the function of the
membrane. Another common feature is that both systems are so excessively large that
their description in full atomic detail is beyond the current capability of computers. To
construct quantitative models for DNA polymers and PEM fuel cells, we must change
our strategies. Coarse-grained models may be utilized and are useful. These models of-
ten involve an appropriate reparameterization of the force field. However, the underlying
mathematical and theoretical formulations are the same as those given in the preceding
sections. In this work, we introduce alternative multiscale models for the fluid, electro-
static, and elastic interactions of the DNA polymers and PEM fuel cells. We refer this
model as to a fluid-electro-elastic model because the expensive molecular dynamics of
the macromolecule is replaced by a simplified elastic dynamics. A similar treatment was
considered by Zhou et al. in a model without the fluid and hypersurface aspects (Zhou et
al., 2008b). Some pioneer work on fluid-structure interactions was due to Peskin (1977).
A phase field approach of the elastic bending energy for vesicle membranes was also
considered by Du et al. (2004). In our approach, the system may still maintain a mi-
croscopic description of charges when it is necessary. Appropriate coarse-grained charge
assignment or distribution may be implemented in our models, also. These aspects can be
both involving and empirical. A more detailed elaboration of the coarse-grained charge
distribution is beyond the scope of the present work.

6.1. Lagrangian of elasticity

We assume that the macromolecule behaves as a deformable body under the stress, which
is a measure of the internal distribution or intensity (per unit area of a surface) of the
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total internal forces. For a given stress, the deformation, i.e., the relative displacement
between particles in the macromolecule, is geometrically measured by strain. We assume
that strain is linearly proportional to the stress and the coefficient of the proportion is the
Young’s modulus. It is convenient to assume the macromolecule behaves elastically so
that it returns to its undeformed state when an applied stress is removed.

Consider a point x in R
3 that is deformed to x̄ due to a displacement w, i.e.,

x̄ = x + w. (109)

The infinitesimal distance between x̄ and x is

dx̄2 − dx2 =
[(

∂wi

∂xj

+ ∂wj

∂xi

)
+ ∂wk

∂xi

∂wk

∂xj

]
dwi dwj , (110)

where the Einstein notation is used for tensorial quantities. The strain tensor describes the
distance of the points between before and after the elastic deformation

σij = 1

2

[(
∂wi

∂xj

+ ∂wj

∂xi

)
+ ∂wk

∂xi

∂wk

∂xj

]
. (111)

For relatively small deformations, the term that is nonlinear in w is usually small and can
be omitted for simplicity,

σij = 1

2

[
∂wi

∂xj

+ ∂wj

∂xi

]
. (112)

It is convenient to define the stress tensor of the elastic macromolecule as

T
e
ij = λeσiiδij + 2μeσij , (113)

where λe is the elastic modulus or stress/strain ratio, and μe is the shear modulus. This
linear stress-strain relation has been widely used in elasticity analysis. Obviously, the
stress tensor is symmetric

T
e
ij = T

e
j i . (114)

For isotropic system, the elastic potential energy density in the Einstein notation takes
the form

Eelastic = 1

2

[
λeσ

2
ii + μe(σij )

2
]
. (115)

Additionally, the Lagrangian of the elastic system is defined as the combination of kinetic
and potential energies

LElastic[S,w,x] =
∫

S

[
ρe

2
ẇ2 − 1

2

(
λeσ

2
ii + μe(σij )

2
)]

dx, (116)

where ρe is the mass density of the elastic macromolecule and ẇ is the velocity of the
displacement. Note the sign convention for the elastic potential energy in contrast to the
kinetic energy.
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Generalizations to nonlinear elasticity and systems of particular symmetries can be
obtained. It is also possible to include viscoelasticity, and viscoplasticity in our formu-
lation. Due to complexity of biological systems, we expect intensive research on these
generalizations in the future. However, these aspects are beyond the scope of the present
work.

There are two types of fluid-electro-elastic systems, i.e., near equilibrium and far from
equilibrium systems. Formulations for these two types of systems differ very much. For
near equilibrium systems, we can make use of the Boltzmann distribution approximation
for the densities of ionic species in the solvent. The main advantage of this approach is
that one does not need to solve conservation law equations, or the Nernst–Planck equa-
tions for ionic species. This is a reasonable approach for many applications that are near
equilibrium. An example is the DNA packing or unpacking in salt solutions where we
do not expect a dramatic variation of the ion density distribution over space and time.
On the other hand, for systems far from equilibrium, we cannot assume the Boltzmann
distribution approximation and have to solve the conservation law equations, such as the
Nernst–Planck equation, for the densities of ionic species. Typical examples of this type
of systems include PEM fuel cells, ATP synthase motors, etc. Very often in these sys-
tems, both chemical reaction and charge transfer occur. In the following two subsections,
we develop multiscale models for the aforementioned two types of electro-fluid-elastic
systems.

6.2. Fluid-electro-elastic systems near equilibrium

The action functional can be constructed by making use of the system developed in Sec-
tion 3.3. We incorporate the elastic Lagrangian into the fluid and electrostatic action func-
tional

Stotal[S,φ,w,x] =
∫ ∫ {[

γ ‖∇S‖ + Sp + (1 − S)ρsu
] + S

[
ρmφ − εm

2
|∇φ|2

]

+ (1 − S)

[
−εs

2
|∇φ|2 − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)]

− (1 − S)

[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]

− S

[
ρe

2
ẇ2 − 1

2

(
λeσ

2
ii + μe(σij )

2
)]}

dxdt. (117)

Here, the term (1 − S)ρsu now represents the interaction between the fluid and elastic
macromolecule. The charge density ρm in the macromolecule can be either a set of dis-
crete charges or a continuous function over the molecule domain. These two terms are
functions of the position and the displacement of the macromolecule. As in the earlier
treatment, the gravitation potential energy has been omitted due to the small length scale
of the problem under consideration.

We make use of the least action principle to derive governing equations for the fluid
and for the elastic macromolecule from the action functional Stotal[S,φ,w,x]. To this end,
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we consider the variation of Eq. (117)

δStotal[S,φ,w,x] =
∫ ∫ {[

∇ · ε(S)∇φ + Sρm + (1 − S)

Nc∑
j

qj cj e−qj φ/kBT

]
δφ

+
{[

−∇ · γ∇S

‖∇S‖ + p − ρsu

]
+

[
ρmφ − εm

2
|∇φ|2

]

−
[
−εs

2
|∇φ|2 − kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)]

+
[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]

−
[

ρe

2
ẇ2 − 1

2

(
λeσ

2
ii + μe(σij )

2
)]}

δS

+
[
S∇p + (1 − S)∇ρsu + Sφ∇ρm

+ (1 − S)ρs

(
∂v
∂t

+ v · ∇v
)

+ (1 − S)∇p − ∇ · (1 − S)T

]
· δx

+ [
(1 − S)∇wρsu + Sφ∇wρm

] · δw

− S

[
−ρeẅ · δw − 1

2
δ
(
λeσ

2
ii + μe(σij )

2
)]}

dxdt = 0, (118)

where ∇w = ∂
∂w , ρe is treated as a constant, ρsu and ρmφ are functions of the macromole-

cular deformation. Here, we assume the condition that the mass should not be varied, i.e.,
δ(ρedx) = 0.

Governing equations for the system can be deduced. First, we obtain the generalized
Poisson–Boltzmann equation (14) by requiring terms associated with δφ to vanish in
Eq. (118). There is no change in the form of the Poisson–Boltzmann equation except
a possible replacement of the discrete change density ρm with a continuous one. The se-
lection of this continuum treatment depends on the system under study.

Additionally, the terms associated with δS in Eq. (118) are minimized by the following
hypersurface equation constructed by using the steepest descent scheme

∂S

∂t
= ‖∇S‖

{
∇ · γ∇S

‖∇S‖ − p + ρsu − ρmφ + εm

2
|∇φ|2 − εs

2
|∇φ|2

− kBT

Nc∑
j

cj

(
e−qj φ/kBT − 1

)
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−
[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]

+
[

ρe

2
ẇ2 − 1

2

(
λeσ

2
ii + μe(σij )

2
)]}

. (119)

As discussed earlier, two pressure terms in Eq. (119) cannot cancel each other because of
their different domains.

Moreover, the terms associated with δx in Eq. (118) lead to the generalized Navier–
Stokes equation (54). However, the interaction environment in the generalized Navier–
Stokes equation is quite different now. It describes the fluid-structure interaction (FSI) in
the present setting.

Finally, the variation of the elastic energy term is discussed in the following:
∫ ∫

SδEelastic dxdt

=
∫ ∫

S

[
λσii

∂δwi

∂xi

+ μeσij

(
∂δwi

∂xj

+ ∂δwj

∂xi

)]
dxdt

= −
∫ ∫ [

λe

∂Sσii

∂xi

+ 2μe

∂Sσij

∂xj

]
δwi dxdt

= −
∫ ∫ [

λe∇S∇ · w + μe(∇ · S∇w + ∇S∇ · w)
] · δwdxdt, (120)

where some surface integrals have been discharged.
Therefore, all terms associated with δw can be written

∫ ∫ [
(1 − S)∇wρsu + Sφ∇wρm + Sρeẅ − λe∇ · S∇ · w

− μe(∇ · S∇w + ∇S∇ · w)
] · δwdxdt,

=
∫ ∫ [

Sρeẅ − λe∇S∇ · w − μe(∇ · S∇w + ∇S∇ · w) − Sfe
] · δwdxdt, (121)

where fe = feFSI + feRF are the forces acting on the elastic macromolecule. The fluid-
structure interaction (FSI) force feFSI and reaction field (RF) force feRF are given by

feFSI = −1 − S

S
∇wρsu (122)

feRF = −φ∇wρm. (123)

Unlike in previous cases, the force due to the atomic potential interactions does not appear.
This force contributes to elastic properties, i.e., the elastic modulus and the shear modulus.

We therefore have the governing equation for the dynamics of the elastic macromole-
cule when S �= 0

ρeẅ = 1

S

[
(λe + μe)∇S∇ · w + μe∇ · S∇w

] + fe. (124)
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By using the stress tensor defined in Eq. (113), we can rewritten the first term in
Eq. (124) as

∂ST
e
ij

∂xj

= (λe + μe)∇S∇ · w + μe∇ · S∇w. (125)

Additionally, because the symmetry of the stress tensor (114), we can write Eq. (124) in
the desirable form

ρeẅ = 1

S
∇ · ST

e + f e, (126)

where T
e is the elastic stress tensor. Equation (126) is the generalized elastic equation of

motion.
The solution of Eq. (124) is subject to appropriate initial and boundary conditions.

Typically, the steady state solution

1

S
∇ · ST

e + f e = 0 (127)

is pursued in most applications. The Dirichlet boundary condition can be directly applied
to the displacement vector

w = w0.

However, it is convenient to impose the free boundary condition on the stress tensor

T
e
ij nj = 0. (128)

If a surface force f e is applied on the boundary, we have

T
e
ij nj = f e

j , (129)

where nj is the j th component of the norm vector n and f e
j is the j th component of the

force f e at the boundary. Computational aspects for structural analysis are available in the
literature (Wei, 2001a, 2001b; Wei et al., 2002).

6.3. Fluid-electro-elastic systems far from equilibrium

In this section, we formulate a multiscale model for systems that are far from equilibrium.
The main feature is that we cannot assume the convenient Boltzmann distribution for
ionic densities. Additional governing equations have to be solved to attain the density of
each species. We therefore utilize the generalized Nernst–Planck equation (94) for this
purpose.

The action functional of the present fluid-electro-elastic model can be constructed by
modifying Eq. (98) with the additional elastic Lagrangian

Stotal[S,φ,x] =
∫ ∫ {[

γ ‖∇S‖ + Sp + (1 − S)ρsu
] + S

[
ρmφ − εm

2
|∇φ|2

]

+ (1 − S)

[∑
α

qαραφ − εs

2
|∇φ|2

]
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− (1 − S)

[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]

− S

[
ρe

2
ẇ2 − 1

2

(
λeσ

2
ii + μe(σij )

2
)]}

dxdt. (130)

Here, various components have been explained in the previous section.
As usual, we derive all the governing equations by applying the least action principle

to the multiscale total action functional (130)

δStotal[S,φ,w,x]

=
∫ ∫ {[

∇ · ε(S)∇φ + Sρm + (1 − S)
∑

α

qαρα

]
δφ

+
{[

−∇ · γ∇S

‖∇S‖ + p − ρsu

]
+

[
ρmφ − εm

2
|∇φ|2

]

−
[∑

α

qαραφ − εs

2
|∇φ|2

]

+
[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]

−
[

ρe

2
ẇ2 − 1

2

(
λeσ

2
ii + μe(σij )

2
)]}

δS

+
[
S∇p + (1 − S)∇ρsu + Sφ∇ρm + (1 − S)φ∇

∑
α

qαρα

+ (1 − S)ρs

(
∂v
∂t

+ v · ∇v
)

+ (1 − S)∇p − ∇ · (1 − S)T

]
· δx

+ [
(1 − S)∇wρsu + Sφ∇wρm + Sρeẅ

− λe∇ · S∇ · w − μe(∇ · S∇w + ∇S∇ · w)
] · δw

}
dxdt = 0. (131)

Details of this variation have been discussed in the preceding sections. Here, δS, δφ, δw,

and δx are infinitesimally small but nonzero perturbations. By variational principle, each
independent variation vanishes.

It is easy to see that the generalized Poisson equation (99) can be deduced from terms
associated with δφ. This equation requires the input from the generalized Nernst–Planck
equation (94) and information about the hypersurface function S.

From the terms associated with δS, we construct the following evolution equation for
the hypersurface function by the steepest descent scheme:

∂S

∂t
= ‖∇S‖

{
∇ · γ∇S

‖∇S‖ − p + ρsu − ρmφ + εm

2
|∇φ|2 − εs

2
|∇φ|2 +

∑
α

qαραφ
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−
[
ρs

v2

2
− p + μf

8

∫ t
(

∂vi

∂xj

+ ∂vj

∂xi

)2

dt ′
]

+
[

ρe

2
ẇ2 − 1

2

(
λeσ

2
ii + μe(σij )

2

)]}
. (132)

This equation is coupled to all other quantities, such as φ, w, and v.
From the terms associated with δx, we obtain again the generalized Navier–Stokes

equation (102). This equation is solved together with the generalized Poisson equa-
tion (99), the generalized Nernst–Planck equation (94), the hypersurface equation (132),
and an equation for the deformation of the macromolecule, which can derived from the
terms associated δw in Eq. (131). The final form of the governing equation for the dy-
namics of the elastic macromolecule is the same as that given in Eq. (124). The detailed
derivation has been given in the last subsection.

The multiscale formulations presented in this section can be easily converted into ones
without differential geometry based surfaces. The procedure for the conversion is the same
as that developed in Section 4. The consequences of such a conversion is similar to those
discussed and compared in Section 4. We will restrained from a further elaboration on
this aspect.

In addition to applications discussed in Section 6, this multiscale model can also be
very useful to voltage-gated ion channels, which open and close depending on the volt-
age gradient across the membrane. Most important voltage-gated ion channels include
sodium channels, calcium channels, potassium channels, and some proton channels. Typ-
ically, voltage-gated ion channels often involve two or more configurations during the ion
transport circle. The present coupled fluid-electro-elastic model may provide a viable de-
scription of complex voltage-gated ion channels, such as voltage-gated sodium channels.
The core of a voltage-gated sodium channel consists of four homologous repeat domains,
and involves about 4,000 amino acids. Each of the four domains comprises six trans-
membrane segments (S1–S6). The real time molecular dynamics simulation of sodium
channels is intractable at present.

7. Concluding remarks

We propose a differential geometry based multiscale paradigm for the description and
analysis of aqueous chemical, biological systems, such as protein complex, molecular
motors, ion channels, and PEM fuel cells. Our multiscale paradigm provides a macro-
scopic continuum description of the fluid or solvent, a microscopic discrete description of
the macromolecule, a differential geometric formulation of the micro-macro interface, and
a mixed micro-macro description of the electrostatic interaction. In the proposed frame-
work, we have derived four types of governing equations for different parts of complex
systems: fluid dynamics, molecular dynamics, electrostatic interactions, and surface dy-
namics. These four types of governing equations are generalized Navier–Stokes equa-
tions, Newton’s equations, generalized Poisson or Poisson–Boltzmann equations, and
hypersurface evolution equations. For systems far from equilibrium, coupled geomet-
ric evolution equations, generalized Navier–Stokes equations, Newton’s equations, and
Poisson–Nernst–Planck (PNP) equations are formulated. For excessively large chemical
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and biological systems, we replace the expensive molecular dynamics with a macroscopic
elastic description and develop alternative differential geometry based fluid-electro-elastic
models.

A series of multiscale models ranging from simple to complex are introduced in the
present work. Two different metric settings,

∫
dx and

∫∫
dxdz are used in our derivations.

As such, the definitions of various densities (ρs, ρm,ρj ), surface tension γ , pressure p,
interaction potential energy densities (u and U ), etc. should have changed appropriately
according to two different metric settings,

∫
dx and

∫∫
dxdz. In fact, they differ by a

volume factor. For simplicity and to avoid confusion, the same set of symbols has been
used in the two settings. A more formal treatment would have kept all the quantities
defined in the full spatial setting

∫∫
dxdz. However, our informal treatment does not

affect the form of the governing equations derived in the present work.
The multiscale approaches provided in the present work can be easily generalized to

other chemical, physical, and biological systems. For example, it is straightforward to ex-
tend the present fluid models to compressible flows, and to the equation of change of the
thermal energy, including the energy production due to the chemical reactions. The inclu-
sion of the thermal energy is of particular importance to the modeling of PEM fuel cells
where reactive energy production, temperature control, and water management are crucial
aspects for the performance of the energy devices. However, these aspects are beyond the
scope of the present work and will be addressed elsewhere. In fact, thermal energy is not a
conservative quantity as shown in our earlier formal kinetic theory for a system involving
kinetic energy and potential energy into conversion (Snider et al., 1996a, 1996b).

Additionally, the proposed differential geometry based multiscale models can be easily
generalized to complex systems with multiple interfaces. An interesting topic is the mod-
eling of fluid-electro-elastic and macromolecule interactions. One can maintain macro-
scopic continuum descriptions for the fluid and the solid while employing a discrete de-
scription of the macromolecule of interest. A typical example is those ion channels whose
open channel configurations differ significantly from their close channel configurations.
The dramatical changes in configurations may involve receptor binding and rearrange-
ment of membrane lipid bilayers. As such, a fluid-electro-elastic and molecular dynamics
model will provide a fluid dynamics description of the solvent, an elastic description of
the membrane lipid bilayers, and a molecular dynamics description of channel ions, mem-
brane proteins, and their possible binding.

Likewise, the introduction of random effects in the molecular dynamics is another
important aspect (Nottale and Auffray, 2008). This can be done either in the manner of
the Brownian dynamics (Madura et al., 1995; Gabdoulline and Wade, 1998; Elcock et al.,
1999) or in the manner of the Langevin dynamics (Tan et al., 2006; Prabhu et al., 2008;
Gordon et al., 2009), which includes an additional inertia term. These approaches have
become standard techniques in generalized molecular dynamics methods and have been
applied to the simulation of ion channels and other biomolecular systems.

Yet another interesting issue concerns the possible use of high-order curvature defin-
itions in solvation and surface modeling. The Willmore flow (Willmore, 1997) captures
the deviation of a surface from the local sphericity and minimizes the difference of the
square of the mean curvature and the Gauss curvature. As a generalization of the Willmore
energy functional, the Canham–Helfrich curvature energy functional (Canham, 1970;
Helfrich, 1973) allows the aforementioned difference to be minimized with respect to
an arbitrary ratio. This theory has been widely used in the membrane bending analysis
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(Ou-Yang and Helfrich, 1989; Iwamoto et al., 2006). There are still many other high-
order geometric flow models, such as those proposed in our earlier work (Wei, 1999;
Bates et al., 2009). Unlike the mean curvature operator that clearly minimizes the surface
area as well as the surface free energy of macromolecules, the exact physical role of var-
ious high-order curvature models in solvation and surface modeling is yet to be carefully
analyzed and explored.

Moreover, the inclusion of a quantum mechanical description is important for the un-
derstanding of the formation and break-up of chemical bonds, reaction rates, and selec-
tivity (Nottale and Auffray, 2008). This extension would also add an extra scale to the
present differential geometry based multiscale theory. In fact, we have incorporated the
quantum mechanical description into the electrostatic system in our effect of modeling
nano-electronic devices (Chen and Wei, 2009). The continuous miniaturization of nano-
scale electronic devices, such as metal oxide semiconductor field effect transistors (MOS-
FETs), has given rise to a pressing demand in the new theoretical understanding and
practical tactics for dealing with quantum mechanical effects, such as channel tunneling
and gate leaking, in integrated circuits. We have developed a variation framework to put
the nanoscale description of electrostatic interactions and the microscopic description of
electronic dynamics on an equal footing. By energy optimization, we have derived self-
consistently coupled Poisson–Schrödinger equations for the electron structure of nano
devices. In a similar manner, the incorporation of the quantum mechanical description
into the present multiscale formalism can be pursued. This development is undertaken
and will be published elsewhere.

Further, there are more dramatic extensions of the present multiscale formalism.
First, we can incorporate integral equation approaches of solvation analysis (Tully-Smith
and Reiss, 1970; Fries and Patey, 1985; Beglov and Roux, 1997) into the differential
geometry based multiscale description. There are many existing theories in the inte-
gral equation approaches, including (molecular) density functional theory, hyper-netted
chain (HNC), and Percus–Yevick (PY) equations. These approaches emphasize the dis-
tortion of the solvent distribution near the solvent-solute boundary (Akiyama and Hirata,
1998). Additionally, a differential geometry based solvent-solute boundary can be in-
troduced to the polarizable continuum model (PCM) (Tomasi et al., 2005) to improve
its surface description. This approach has already included a quantum description of
the solute and is multiscale in nature. The PCM often calculates energies and gradients
by using the Hartree–Fock and/or the density functional theory (Parr and Yang, 1989;
Yang and Lee, 1995). Moreover, the combination of the present theory with the general-
ized Born (GB) model (Feig and Brooks III, 2004) is feasible too. As the solvent-solute
boundary can dramatically impact the result of theoretical predictions, the aforementioned
generalizations should be very significant to the current practice in solvation analysis.

Furthermore, there has been a long and interesting history of developing mechani-
cal models for morphogenesis of biological systems at cellular and/or organismic lev-
els (Oster et al., 1985; Collier et al., 1996). This development is based on the funda-
mental laws of physics, and has considerably enriched our understanding of biologi-
cal systems. Recently, Navier–Stokes and Stokes models for visco-elastic systems have
yielded impressive successes in the description of tetrapod embryogenesis (Fleury, 2009;
le Noble et al., 2005). The construction of multiscale models in the present work follows
the same principle, i.e., utilizing the fundamental laws of physics to describe biological
phenomena and experimental measurements. However, the subject of interest described
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in the present work is much more elementary, i.e., biomolecular systems, rather than cel-
lular systems and organisms. It is hoped that multiscale models at macromolecular levels
might complement the earlier mechanical models.

Finally, we note that computational feasibility, numerical efficiency, simulation strat-
egy, and model validation are very important aspects of multiscale modeling and simu-
lation. More detailed investigations of the solvation process, including alternative mod-
els, extensive numerical examples of both small molecules and macromolecules, specific
studies of geometric flow surfaces, as well as comparisons with experimental data and
other existing models, have been carried out and will be published elsewhere (Chen et al.,
2010). A Poisson–Boltzmann model based implicit molecular dynamics method has also
been developed in our recent work (Geng and Wei, 2008). The further incorporation of
fluid dynamics into the implicit molecular dynamics is under our consideration and will be
published elsewhere. The extension of the present multiscale models for the investigation
of ion channels is in progress.
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