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Abstract

Sparse principal component analysis (PCA) imposes extra constraints or penalty terms to
the standard PCA to achieve sparsity. In this paper, we introduce an efficient algorithm for
finding a single sparse principal component (PC) with specified cardinality. The algorithm
consists of two stages. In the first stage, it identifies an active index set with a desired
cardinality corresponding to the nonzero entries of the PC. In the second one, it uses the
power iteration method to find the best direction with respect to the active index set. Exper-
iments on randomly generated data and real-world datasets show that our algorithm is very
fast, especially on large and sparse data sets, while the numerical quality of the solution is
comparable to the state-of-art algorithm.

1 Introduction

Principal Component Analysis (PCA) is a classical tool for performing data analysis such as di-
mensionality reduction, data modeling, feature extraction and other learning tasks. Basically, PCA
consists of finding a few orthogonal directions in the data space which preserve the most information
in the data. This is done by finding directions that would maximize the variance of the projections of
the data points along these directions. However, standard PCA generally produces dense directions
(i.e., whose entries are mostly nonzeros), and hence are too complex to explain the data set. Instead,
a standard approach in the learning community is to pursue sparse directions which in some sense
approximate the directions produced by standard PCA. Sparse PCA has a few advantages, namely:
i) it can be effectively stored; and ii) it allows the simpler interpretation of the inherent structure and
important information associated with the data set. For these reasons, sparse PCA is a subject which
has received a lot of attention from the learning community in the last decade.

Several formulations and algorithms have been proposed to perform sparse PCA. Zou et al. [9]
formulate sparse PCA as a regression-type optimization problem which is then solved by Lasso-
type algorithms. Shen and Huang [8]combine simple linear regression and thresholding to solve
a regularized SVD problem, which achieves sparse PCA. D’Aspremont et al.’s DSPCA algorithm
[1] for sparse PCA consists of solving a semi-definite relaxation of a certain formulation of sparse
PCA whose solution is then post-processed to yield a sparse principal component (PC). Paper [2]
by d’Aspremont et al. proposes a greedy algorithm to solve a new semi-definite relaxation and
provides a sufficient condition for optimality. ESPCA algorithm in Moghaddam et al. [7] obtains
good numerical quality by using a combinatorial greedy method, although their method can be
slow on large data set. Their method, like ours, consists of identifying an active index set (i.e.,
the indices corresponding to the nonzero entries of the PC) and then using an algorithm such as
power-iteration to obtain the final sparse PC. Journée et al [4] recently formulate sparse PCA as a
nonconcave maximization problem with a penalty term to achieve sparsity, which is then reduced
to an equivalent problem of maximizing a convex function over a compact set. The latter problem

1



is then solved by an algorithm which is essentially a generalization of the power-iteration method.
A different multiple sparse PCA approach is proposed in [6] based on a formulation enforcing near
orthogonality of the PCs, which is then solved by an augmented Lagrangian approach. Throughout
this paper, we mostly compare our approach with the GPower method proposed in [4], which is
widely viewed as one of the most efficient methods for performing sparse PCA.

We propose a simple but effective algorithm for finding a single sparse principal component. An
important advantage of our method is that it can easily produce a single sparse PC of a specified
cardinality with just a single run while the GPower method may require several runs due to the fact
it is based on a formulation which is not directly related to the given cardinality. Experiments show
that our algorithm can perform considerably better than GPower in some data instances, and hence
provides an alternative tool to efficiently perform sparse PCA. In this paper, we concentrate on the
problem of computing a single sparse PC. Though our algorithm, combined with Schur complement
deflation, can sequentially find multiple sparse PCs while greedily maximizes the adjusted variance
[9] explained by the sparse PCs, this extension is not presented in this paper due to space limit.

2 Algorithms for single sparse PCA

2.1 Formulation

Throughout this paper, we consider sparse PCA on a data matrix V ∈ Rn×p whose n rows represent
data points in Rp. We assume that V is a centered matrix, i.e., a matrix whose average of its rows
is the zero vector (see section 2.3). Given a positive integer s ≤ p, single-unit sparse PCA on V
consists of finding an s-sparse PC of V , i.e., a direction 0 ̸= x ∈ Rp with at most s nonzero entries
that maximizes the variance of the projections of these data points along x. Mathematically, this
corresponds to finding a vector x that solves the optimization problem

max{∥V x∥2/∥x∥2 : ∥x∥0 ≤ s}, (1)

where ∥x∥0 denotes the number of nonzero entries of x.

2.2 Algorithm

We now present the basic ideas behind our method. The method consists of two stages. In the first
stage, an active index set J of cardinality s is determined. The second stage then computes the best
feasible direction x with respect to (1) satisfying xj = 0 for all j ̸∈ J , i.e., it solves the problem

max{∥V x∥/∥x∥ : xj = 0,∀j /∈ J}. (2)

We note that once J is determined, x can be efficiently computed by using the power-iteration
method (see for example [3]). Hence, from now on, we will focus our attention on the determination
of the index set J .

Based on the following observations, we design the procedure to determine J . First, we can alterna-
tively consider only the optimal vectors of size

√
s, i.e., x which solve

max{∥V x∥2 : ∥x∥0 ≤ s, ∥x∥ ≤
√
s}. (3)

Note that under the condition that ∥x∥0 ≤ s, the inequality ∥x∥∞ ≤ 1 implies that ∥x∥ ≤
√
s.

Hence, the problem

max{∥V x∥2 : ∥x∥0 ≤ s, ∥x∥∞ ≤ 1} (4)

is a restricted version of (3). Since its objective function is convex, one of its extreme points must be
an optimal solution. Note also that its set of extreme points consists of those vectors x with exactly
s nonzero entries which are either 1 or −1. Ideally, we would like to choose J as the set of nonzero
entries of an optimal extreme point of (4). However, since computing (4) is hard, we instead propose
an algorithm to find an approximate solution of (4), which is then used to determine J .

Our method to find an approximate solution for (4) proceeds in a greedy manner as follows. Starting
from x(0) = 0, assume that at the k-th step, we have a vector x(k−1) with exactly k − 1 nonzero
entries which are all either 1 or −1. Also, let Jk−1 denote the index set corresponding to the nonzero
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Algorithm 1 S1-SPCA
Given a centered data matrix V ∈ Rn×p (or, sample covariance matrix Σ = V TV ∈ Rp×p) and
desired cardinality s, this algorithm computes an s-sparse loading vector x.

1: Initialization: set x(0) = 0, J0 = ∅.
2: Phase I: find the active index set J for nonzero entries of x.
3: for k = 1, . . . , s do
4: Find jk = argmaxj /∈Jk−1

∥vj∥2 + 2|vTj V x(k−1)| and set αk = sign(vTjkV x(k−1)).

5: Set x(k) = x(k−1) + αkejk and Jk = Jk−1 ∪ jk.
6: end for
7: Phase II: compute the solution of (2) with index set J = Js using the power-iteration method.

entries of x(k−1). We then set x(k) := x(k−1) + αkejk , where ei denotes the i-th unit vector and
(jk, αk) solves

(jk, αk) = argmax
j ̸∈Jk−1, α=±1

∥V (x(k−1) + αej)∥2. (5)

Clearly, x(k) is a vector with exactly k nonzero entries which are all either 1 or −1. It differs from
x(k−1) only in the jk-th entries which changes from 0 in x(k−1) to αk in x(k).

Since, for fixed j /∈ Jk−1 and α = ±1,

∥V (x(k−1) + αej)∥2 = ∥V x(k−1)∥2 + ∥vj∥2 + 2αvTj V x(k−1), (6)

where vj is the j-th column of V , α that maximizes the above expression is the sign of vTj V x(k−1).
Hence, it follows that

jk = argmax
j /∈Jk−1

∥vj∥2 + 2|vTj V x(k−1)|, αk = sign(vTjkV x(k−1)). (7)

Hence, we need to compute vTj V x(k−1) for every j /∈ Jk−1 to find jk. A key point to observe is that
there is no need to compute vTj V x(k−1) from scratch. Instead, this quantity can be updated based
on the following identity:

vTj V x(k−1) = vTj V (x(k−2) + αk−1ejk−1
) = vTj V x(k−2) + αk−1v

T
j vjk−1

. (8)

There are two cases to discuss at this point. If V TV is explicitly given, then the quantity vTj vjk−1
is

just its (j, jk−1)-th entry, and hence there is no need to compute it. If V TV is not explicitly given,
it is necessary to essentially compute its jk−1-column and then extract the entries of this column
corresponding to the indices j /∈ Jk−1.

Our first algorithm, referred to as S1-SPCA, is summarized in Algorithm 1. Its main difference from
our second algorithm is that it adds to J exactly one index (instead of several indices) per loop.

2.3 Complexity and Speed-up Strategy

We now briefly discuss the computational complexity of the first phase of Algorithm 1. The com-
plexity of the second phase where the power-iteration method is applied generally depends on mea-
sures other than the dimension of the underlying matrix [3]. Moreover, our computational experi-
ments show that the first phase is generally by far the more expensive one. When V TV is explicitly
given, it is easy to see that the computational complexity of the first phase of Algorithm 1 is O(ps).
When V TV is not explicitly given, then this complexity becomes O(nps) in the dense case, and con-
siderably smaller than O(snnz + ps) in the sparse case, where nnz denotes the number of nonzero
entries of V .

It is possible to develop a variant of the above algorithm which includes a constant number, say c, of
indices into J in the same loop instead of just one index as in S1-SPCA, thereby reducing the overall
computational complexity of the first phase to O(nps/c). This simple idea consists of adding the c
best indices j /∈ Jk−1 according to the criteria in (7), say jk,1, . . . , jk,c, to the set Jk−1 to obtain the
next index set Jk, and then set

x(k) = x(k−1) + αjk,1
ejk,1

+ · · ·+ αjk,c
ejk,c

,
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where αjk,i
is the sign of vTjk,i

V x(k−1) for i = 1, . . . , c.

It is easy to see that such variant performs at most ⌈s/c⌉ loops and that the computational complexity
of each loop is O(pn), thereby implying the computational complexity O(nps/c) for the first phase.
We will refer to this variant as the Sc-SPCA method, where the c indicates the number of indices
added to J in each iteration. It is considerably faster than the single index version S1-SPCA at the
expense of a small sacrifice in the quality of its solution (i.e., its variance).

One of the advantages of our algorithm is that it is very efficient especially when the data matrix is
sparse. In many applications such as text mining, the data matrix W is extremely sparse. However,
the centered data matrix V = (I − eeT

n )W , where e is all one vector, is usually completely dense.
Note that V is only used in the key update (8) in our algorithms, which asks for the computation
of jk−1-th column of the sample covariance matrix V TV . The proposed algorithms can actually
be implemented without explicitly forming the centered matrix V , but keeping the raw data W and
computing the columns of V TV based on the observation that

V TV = WTW − nµµT , (9)

where µ = WT e/n consists of the average of the rows of W . As a result, we can take advantage of
any available sparsity on the uncentered data W .

3 Experiment results and comparison

3.1 Randomly Generated Data

In this section, we evaluate the numerical quality and speed of both versions of our method S1-SPCA
and Sc-SPCA(c > 1) using a set of randomly generated sparse matrices. Since our algorithms use
L0 constraint, we choose GPower0 as the counterpart, which is the the L0 penalized version of the
state-of-art sparse PCA algorithm GPower method [4]. Another reason is that the experiments in [4]
show that the L0 version of GPower is generally more efficient than the L1 version. For the speed-up
version Sc-SPCA, we set c = ⌈s/10⌉ as the number of added indices in each iteration, where s is
the desired cardinality. Experiments are performed in MATLAB with codes of all three methods
optimized for sparse matrix computation. All results are averaged over 10 repeated measurements.

In the first experiment, we randomly generate sparse square matrices W with dimension p varying
from 100 to 2000, with their sparsity (i.e., proportion of nonzero entries) set to 20%. For S1-SPCA
and Sc-SPCA, we set the required cardinality s to be p/5. For GPower0, we set the parameter
γ = 0.002maxi ∥vi∥2/p, where vi’s are columns of the centered data matrix V . Then we measure
the average cpu time for a single run of each algorithm. In Figure 1(a), the left graph plots the curve
of the running time (in seconds) against matrix size, which indicates that S1-SPCA and Sc-SPCA
are fast on large sparse matrix. Notice here we directly feed GPower0 the parameter γ rather than
using line search, and we compare the time for just a single run of different methods. But in practice,
it usually takes several times longer for GPower method to obtain a certain level of sparsity.

Using the same set of matrices, we compare the numerical quality of three algorithms using the
proportion of explained variance ∥V z∥2/σ2

1 , where σ1 is the largest singular value of V . Since
this value is closely related to the cardinality of z, we set the required cardinality s to be p/5 for
S1-SPCA and Sc-SPCA, while we use line search for GPower0 to obtain solutions with the same
sparsity, i.e., 20% nonzero components. In the right graph of Figure 1(a), we plot the curve of
explained variance against matrix size. Observe that while S1-SPCA achieves better numerical
quality compared to GPower0, Sc-SPCA with c > 1 can be faster than GPower0 at the expense of
a little loss in solution quality.

In the second experiment, the size of the square matrix p is fixed as 5000. We input the cardinality
of the solution z computed by GPower0 to both versions of our method, so that we can compare
their solution quality based on explained variance ∥V z∥2/σ2

1 . To obtain z with different cardinality,
we choose 20 parameters γ = 0.01maxi ∥vi∥2/p/

√
j, j = 1, . . . , 20 for GPower0. The trade-off

curve of the explained variance against the cardinality of the solution is displayed in the first graph
in Figure 1(b). The second graph plots running time against the cardinality, where again we only
compare the time for a single run. Observe that S1-SPCA method outperforms GPower0 in terms of
solution quality but the running time is proportional to the cardinality of solution. The running time
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(a) In these two plots, the size of the matrix is increasing from 100 to 2000. The left plot displays the curves of the
time for a single run of all three methods versus the size of the matrix. The cardinality of solution for S1-SPCA and
Sc-SPCA is fixed as p/5, while the parameter in GPower0 is given by γ = 0.002maxi ∥vi∥2/p so that no line search
is applied. The right plot displays curves of the explained variance ∥V z∥2/σ2

1 . GPower0 uses line search to obtain z
with cardinality p/5, which can be directly achieved by S1-SPCA and Sc-SPCA.
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(b) In the second experiment, we fix the data matrix as a square sparse matrix of size 5000 and run GPower0 with
different parameters. Then we feed the cardinality of the solution z computed by GPower0 to both versions of our
method so that solutions of all three methods have exactly the same cardinality. The left plot displays the trade-off
curve of variance against cardinality, and right plot displays the curve of running time against cardinality.
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(c) In the third experiment, as the number of variables p increases from 200 to 4000 and n/p = 0.1, the running time
curve is shown on the left, and as the number of observations n increases from 200 to 4000 and n/p = 10, the running
time curve is shown on the right.

Figure 1: Experiments on randomly generated matrix.
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of our speed-up algorithm Sc-SPCA barely increases as the cardinality increasing, at the expense of
an acceptable sacrifice in solution quality.

Our third experiment consists of two parts. In the first (resp., second) one, we randomly generate
n × p matrices with n/p = 0.1 (resp., n/p = 10), with the sparsity set to 20% and with their
larger dimension increasing from 200 to 4000. For Sc-SPCA, we set the required cardinality s to be
p/10. For GPower0, we set the parameter γ = 0.01maxi ∥vi∥2/n and γ = 0.00005maxi ∥vi∥2/n
respectively to obtain solutions with similar sparsity. The corresponding plots of the running time
against the size of the larger dimension are given in Figure 1 (c). While the speed of Sc-SPCA
method is comparable to GPower0 when n/p = .1, it is faster than GPower0 when n/p = 10.

3.2 Image data

In this subsection, we compare our method with GPower method using real-world data matrix from
handwritten digits database MNIST [5]. The matrix we use has size 5000 by 784. Each row of
the matrix corresponds to a image with 28 by 28 pixels, and hence of size 784. To obtain PCs
with different sparsity, we choose 20 parameters γ = 0.00002maxi ∥vi∥2/n/j, j = 1, . . . , 20 for
GPower0 and then directly control the cardinality constraint in S5-SPCA. In Figure 5, the first graph
plots running time against the cardinality of solution, while the second graph plots the explained
variance of the solution against its cardinality. Observe that on this data set, S5-SPCA method
outperforms GPower0 in terms of speed and generates sparse PCs with quality close to GPower0.
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Figure 2: Experiments on 5000 handwritten digits images. We show the plot of running time against
cardinality on the left, and the plot of variance against cardinality on the right.

3.3 Biology data sets

In this subsection we compare the speed of S1-SPCA with another greedy method proposed in [2]
–PathSPCA, as well as GPower0 and GPower1, on several biology data sets, which are available
as covariance matrices of size 500, 500 and 118. For S1 − SPCA and PathSPCA, we fix the
desired cardinality as 10% of the problem size. Both of these two methods can be either directly
applied on the covariance matrix or applied on the Cholesky factorization of the covariance matrix.
For GPower0 and GPower1, we use the Cholesky factorization of the covariance matrix as input.
We fix the parameter γ = 0.1 for GPower0 and GPower1, with no concern of the sparsity level.
The accumulated running time (in seconds) for 10 runs is shown in the table below.

Data set S1-SPCA-cov S1-SPCA-data PathSPCA-cov PathSPCA-data GPower0 GPower1
Lymphoma 0.0296 0.2714 3.3509 2.3977 0.1435 0.1934

Colon 0.0312 0.2761 3.3166 2.3884 0.1232 0.1576
Eisen 0.0062 0.0125 0.3307 0.1716 0.0078 0.0156
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