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A multifractal fractional sum-difference model (MFSD) is a monotone
transformation of a Gaussian fractional sum-difference model [3FBhe
GFSD is the sum of two independent components: a moving sum of length
two of discrete fractional Gaussian noise (fGn); and white noise. letern
packet traffic interarrival times are very well modeled by an MFSD ictvh
the marginal distribution is Weibull; this is validated by extensive model
checking for 715,665,213 measured arrival times on three Iriténks. The
simplicity of the model provides a mathematical tractability that results in
much insight into traffic statistical properties. In the past, the foundation fo
understanding the properties has been changes in the properties withehe tim
scale; this is a frequency domain foundation. Emerging from matherhatica
investigations based on the MFSD is a more fundamental foundation based
on how the fGn and white noise components, and their relative variaaiees,
fect changes in the statistics with changing factors such as the padkat arr
rate and time aggregation of the traffic; this is a time domain foundation. A
simple logistic model relates the MFSD model parameters to the packet rate.
This enables the MFSD model to be used, with just a specification of the rate,
to generate packet arrivals for simulation studies.

1. Introduction.

1.1. Internet Technology. Internet traffic results from the transfers of infor-
mation between pairs of computers, or hosts, across the Intéasid(s 2007,
Peterson and Davj&999 Stevens1994). For simplicity we will refer to the infor-
mation as a file. The file is broken up into packets with sizes typically up to 1460
bytes = 11680 bits. The packets are sent from the source host oath &gn-
sisting of routers connected by transmission links, and the file is reassesatbled
the destination host. The two hosts establish a connection to carry out thietran
which means each is listening for the arrival of packets from the othexdéts,
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typically 40 bytes in size, are added to each packet to manage the file traonsmiss
and packet routing. In addition, both hosts can send control packetwitiie
data, just headers, as part of the transmission management. This meaaskieat
sizes range from 40 bytes to 1500 bytes. Each router has input linkewpdt
links; when a packet arrives on an input link, the router reads a fielceihélader
to determine the destination host, and looks in a table to determine the output link
over which the packet should be sent to get to the destination.

Each transmission link on the Internet at each point in time can be servicing
many ongoing connections. The packet arrival times for transmissioneolnth
are a superposition of the packet arrival times of the individual ongoamgec-
tions. As the average number of active connections increases, thet pieafkic
arrival rate,«c packets/sec (p/s), tends to increase. If a packet arrives for transmis
sion and the link is busy transmitting, then the arriving packet is put in a glitee
interface that writes the packet to the link has a speed in bits/sec that determine
the service time: the packet size in bits divided by the link speed. The qugisein
the major factor in quality-of-service (QoS) for Internet connectionguiéueing
delay is too large, QoS degradé¥(ls et al, 2005.

1.2. The Critical Role of Packet Arrival Statistical PropertiesThe statistical
properties of the superposed arrival point process are criticalisedhe queueing
delay depends heavily on them. In the 1990s, it was discovered in twoguinge
articles Leland et al. 1994 Paxson and Floydl995 that Internet traffic is long-
range dependent. The power spectrum as the frequgmmes to zero increases
like 724 for 0 < d < 0.5. The autocorrelation function as the laggets large
decreases liké>¢~1. These statistical properties make the traffic “bursty”, in the
language of network engineering; compared with Poisson arrivals witbaime
arrival rate, the upper tail of queueing delays is longer, and the anoduraffic
that can be put on the link and maintain QoS is I&usffield, 1996 Erramilli et al,
1996 Heyman and Lakshmari996 Park et al. 1997 Ribiero et al, 2006. The
development of Internet protocols and devices has been driven enrlaegsure by
these statistical propertieBé€lottia et al, 2008 de Pereira et 312002. Modeling
the properties has been and remains a critical task for network engigieerin

1.3. Past Statistical Foundations and Modeling: Self-Similarity and fGdost
studies of Internet traffic, including all of the early ones, analyzedegtamounts
in fixed intervals, a form of time aggregation. In the earliest papers, tfiie tnas
described as self-similar and fractional Gaussian noise (fGn) waspuarfd as a
model Csabaj1994 Leland et al. 1994 Paxson and Floydl995 Paxson1997
Taqqu et al. 1997h Willinger et al, 1995 1996. Using this f{Gn modelNorros
(1994 derived a number of statistical properties, and investigated queuespg pr
erties as a part of network engineering study.
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fGn is a tractable model and allows mathematical investigations such as the
above citation. The problem, however, is that after the earliest papdraesnet
traffic, subsequent articles showed that fGn is not an adequate medeladraffic
is not self-similar across all time scales, and packet counts for small times $sale
non-Gaussian.

1.4. Past Statistical Foundations and Modeling: Multifractal Moment and Time
Scaling ofm-Blocksums andn-Blockmeans. The inadequacy of fGn led to in-
tensive study of time scaling properties and the development of new modeld ba
on scaling. Work focused am-blocksums andr-blockmeans, defined as follows.
Foru =1,2,..., letw, be atime series. For positive integer them-blocksum
process consists of every-th value of a moving sum of lengtt:

m
wgm) = Zw(v_l)mH, v=1,2, ....
i=1

Them-blockmean process i8{™ = w{™ /m.

In a very large literature, the statistical properties of these block statistits an
how they change witim were studied in many way&bry et al, 2002 Ashoura and Le-NgQqc
2008 Figueiredo et a]2002 Dang et al.2003 Erramilli et al, 2002 Gilbert et al,

1999 Feldmann et a]1998a Gong et al.2005 Hannig et al.200Z Liu and Baras
2003 Jiang and Dovrolis2005 Masugi and Takum&007 Mikosch et al, 2002
Riedi and Vehel1997 Riedi et al, 1999 Taqqu et al.1997a Roughan and Veitch
2007 Ribeiro et al, 2005 Stoev et al.2005 Veitch et al, 2005 Veres and Boda
2000 Maulik and Resnick2003 Karagiannis et al.2004 Willinger et al, 2002
Yuan et al, 200Q Resnick et al.2003.

Multifractal wavelet models based on the block statistics were develGeui@nd Rubin
20014ab; Riedi et al, 1999 Riedi, 2002 Resnick et al.2003.

In almost all casesy,, was taken to be counts in successive small time intervals
such as 1 ms or 10 ms. In a few caseg,were taken to be interarrival sequences
(Gao and Rubin2001a Riedi et al, 1999, The time-aggregation scaling analyses
and modeling formed a foundation for intuition about the statistical properties o
the arrival time process.

One example of an analysis method is the variance-time plot, which became a

very commonly used tooHrramilli et al, 1996 Fraleigh et al.2003 Gong et al.
2005 Leland et al, 1994 Riedi et al, 1999: the log of the sample variance of
u?f]”) is plotted against logr. Another example is autocorrelation-time analysis in
which the standard nonparametric estimate of the autocorrelation functioe of th
m-blockmeans is studied as a functionref(Hannig et al. 2001).

Another important method of study was multifractal moment analysis, a study

of the moments of normalized values wﬁm). This was closely associated with
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the multifractal wavelet models in the above citations. Observed properttbe of
moments of then-blocksums of Internet packet traffic arrivals make the process
multifractal Riedi, 2002. The properties are discussed further in Seckommhe
multifractal concept is an enlargement of self-similar processes whichdaer-
tain uniformity in the moments that make them monofractal.

Multifractal wavelet models reproduce the statistical properties of trafficad
times, fixing the shortcoming of f{Gn. However, there are drawbackg, fiesmod-
els are complex and do not have a mathematical tractability that allows derivation
of the statistical properties of traffic statistics through mathematical studies. Se
ond, the models are fundamentally nonparametric, requwfﬁd when fitting to a
interarrival measurements. However, the statistical properties of thkepacival
process change with the traffic rate. Traffic generation by a model faartiheal
process for simulation studies must be able to produce traffic at any diésife
fic rate. The nonparametric nature of multifractal wavelet models makes toem n
conducive to the general task of generation at any desired rate.

1.5. GFSD and MFSD Models.This section introduces MFSD models, which
have a very simple structure with just three parameters. Coming sections-demon
strate that they reproduce the statistical properties of traffic arrival tianesnath-
ematically tractable, provide a new foundation for understanding traffistital
properties, and can be used to generate packet arrival times at singddiaffic
rate.

Let A, be fractionally differenced white noise, the Hosking discrete analog of
fractional Gaussian noise (fGrijl¢sking 1981),

(I — B)?hy = €.

B is the backward shift operatoBh, = h,_1; 0 < d < 0.5 is the fractional-
difference power(I — B)? is defined by expanding in a power seriesinande,
is Gaussian white noise with mean 0, and varianteNe will take

5 (11— d)T?(1 —d)
% T 901 - 2d)

for purposes stated below. This makes the variandg, &qual to(1 — d)/2.
Let s, be a moving sum of length 2 af,,

Su = hy + hy—1.
s, can be written in another form,

(I - B)dsu =€yt €u—1,
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s0s, is a fractional moving-average procestgking 1981). The above value of
o2 makes the variance of, equal to 1. Finally, letz, be Gaussian white noise
with variance 1.

A Gaussian fractional sum-difference (GFSD) model for a time seyibsis the

form
zu =1/ (1 —0)s, + Von,,

wheres, andn, are independent processes dnhdk 6 < 1. 6 is the mixture
parameter of the the GFSD. The meanpfs 0, and the variance is 1 for notational
convenience, and does not limit modeling.

A multifractal fractional sum-difference model (MFSD), is a stationary dis-
crete time series that is a nonlinear strictly monotone transformation of a GFSD,
zy. Let the cumulative distribution function (cdf) of, be T'(¢), which we sup-
pose is continuous with finite first and second momentsA(ef) be the cdf of a
Gaussian distribution with mean 0 and variance 1. Then

ty = T_l(Z(zu)),

and
Zy = Z‘l(T(tu)).

z, 1S the Gaussian image 6f, andt,, is the multifractal image of,,.

Suppose the marginal distribution of is a Weibull with shape parametar
Let the traffic rate bex = 1/E(¢,,), measured in packets/sec (p/s). Our parameter-
ization of the Weibull is somewhat different than usual, replacing the sxzdé
parameter with the rate, which is more meaningful for packet interarrivals. The
cdf for this parameterization is

T(ty) = Wty A, a) = 1 — e~ (oTOFAT)EY
The transformation to the multifractal image is

{~log(1 — Z(zu))}'*

S (S

t. is a Weibull MFSD.

Suppose the marginal distribution ©f is log normal wherg. is the mean of
log(t, ) andr? is the variance. The cdf iB(t,,) = L(t,; ui, 7%). The transformation
to the multifractal image is

TV 1—05y erx/énu e,u
M

ty,=¢€

so the transformation has a simple mathematical fegynm this case is a log nor-
mal, or multiplicative, MFSD.
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Both the Weibull MFSD and the multiplicative MFSD are multifractal, justify-
ing their name; this is demonstrated in Secttofhe Weibull MFSD is the model
that is validated here for the packet interarrival process. Howdwemultiplica-
tive MFSD is simpler and provides a good approximation of the Weibull MFSD; it
is used in some cases in coming sections to simplify mathematical derivations.

1.6. Overview of Results: Validation, Mathematical Study, Foundations, and
Traffic Generation. MFSD and GFSD models were first put forward®so et al.
(2002. Model parameter estimates were used as summary statistics to demonstrate
changing statistical properties of the traffic as the traffic load incre@ikesarticle
adds three additional sets of results to this initial work.

1.6.1. Model Validation. The results include the first extensive validation of
the Weibull MFSD as a model for packet interarrivals Validation is achieved
through showing that the statistical properties of Internet traffic statistiosedl
from the model agree very closely with empirical statistical properties of etstima
from live packet trace segments consisting of 715,665,213 measuie times
on 3 Internet links. The validation study is carried out across a wideerafigaffic
rates,«, because the statistical properties of theehange withn. Such a valida-
tion is necessary for the model to be used reliably in the many network enigigee
studies where accurate traffic models are essential, and to be used rfeliahéth-
ematical investigations.

1.6.2. Mathematical Investigations and Foundations for Traffic Statistical Prop-
erties. The results include mathematical investigations of many traffic statistics,
enabled by the mathematical tractability of the model. This leads to closed-form
formulas, approximations of these formulas, solutions to equations thatuake s
ied numerically, and theorems. An important outcome of the investigations is a
new foundation of understanding for the traffic statistics, based on thtvee
contributions ofy/1 — 6s,, and v/0n, to the variance of,,, and how the contri-
butions change with changing factors such as the trafficorated them of time-
aggregation scaling. This constitutes a time-domain foundation for undeirsgan

1.6.3. Simple Generation of Traffic.The results include a method for simple
generation oft,, for network engineering traffic studies. Only the traffic rate
needs to be specified. This is achieved by modeling, based on both enmgisicias
and mathematical derivations using the MFSD model, for how the parametérs
andd change withn. The model ford is a constant. Logit transformations band
6 are linear inlog(«).

1.7. Section Contents. The contents of the sections are the followiggPacket
traces that were collected or obtained for the validation stBdylarginal distri-
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bution oft,,. 4. Power spectrum of,,. 5. Multifractal properties ot,,. 6. Changes
in statistical properties df, andz,, with the traffic ratex. 7. Autocorrelation func-
tions of z,, andt,. ??. Approximations of autocorrelation functions of andt,.

9. Variance time plot foe,, andt,. 11. A model is derived for time aggregates of
ty. 12. Summary and discussion.

2. Packet Trace Segments for Model Validation. Validation was carried out
by analyzing live packet traces for traffic in both directions of 3 Intetims:
Auckland, Leipzig, and Bell. The total number of arrivals is 715,665, Bl
was the Internet gateway link for a Bell Labs research location with aboot
users. Leipzig was the gateway link for the University of Leipzig campugkA
land was a link near the edge of the University of Auckland network. Alection
used Endace cardbt{p://www.endace.comito provide highly accurate, hardware
timestamps, which is essential to the modeling. The collected data consist of net-
work and transport headers, and timestamps of packet arrivalsubuwnalysis
used only the packet size field and the timestamp.

The Bell live traces were obtained as a result of one author of this argele b
ing a part of the collection operation. The Leipzig live traces were obtdinosd
the Center for Applied Internet Data Analysis (CAIDAt{p://caida.org/tools
The Auckland live traces were obtained from the Waikato Internet €r&fforage
(http://www.wand.net.nz/wits/catalogue.php

In coming sections, in the interest of space, we use just Auckland traces in
visual displays and numeric information. However, statistical propertie$reod-
eling conclusions were the same for all links. The Auckland traces available
these links were broken into trace segments of 15 min or 1 hr, and eachrgegme
analyzed individually. Not all available segments were appropriate faysis for
reasons given below. Tablagives information about the analyzed segments; some
of the information will be explained later in this section.

2.1. Stationarity. The statistical properties of packet arrivals to a link interface
change with the expected number of ongoing connections becaus@asifien
of processes changes their statistical properties. The expected nohadvegjoing
connections changes because of calendar variation (day-of-haalqy, etc.) and
diurnal variation in the usage of the measured links. The modeling mustretdoou
the changes in the properties. We do this by studying the dependencepobhe
erties on the packet arrival rate which is inversely proportional to the expected
number of ongoing connections.

To accurately study changes in statistical properties wjttve need each trace
segment to have a nearly constant expected rate for the duration ofjtherse We
insure this, first, by taking segments with small lengths, and then, secoaldebly-
ing each segment for stationarity by visualization of measures of the peatket
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TABLE 1
Information about analyzed packet trace segments.

| Factor] Auckland 15-min Auckland 1-hr]

link speed (megabits/sef) 1000 1000
transmission technology Ethernet Ethernet

lab timestamp accuracy:(sec) 0.030 0.030
collection duration (days) 2.25 2.25
collection date March 200§ March 2008

number live 96 24

number live-multiplexed 24 0

max utilization live 5.24% 4.95%

min rate live (p/s 1193 1268

max rate live (p/s 7674 7712

min rate live-multiplexed (p/g) 2537 NA
max rate live-multiplexed (p/s) 137884 NA

such as the number of packets in 10 sec intervals. We found that 15 minrgsgme
worked well, and discarded any segments that showed more than mintatims
arity. We also used certain 1 hr traces that the visualization showed weestolo
stationary.

2.2. Packet Rate Above 1000 packets/sec (p/Spgments whose packets rates
are too small, less than about 1000 p/s, are not readily modeled statistically. If
there are a small number of ongoing connections, properties of the Ta&tpl
for individual connections can create cycles in the interarrivals atabeun of fre-
quencies of the form of /k wherek is a small integer greater than or equal to 2.
These peaks are readily seen in estimates of the power spectrum; thearfcezp
change across the trace segments, likely due to changes in the Intgoliedtam
that is dominant. If modeling is needed for very small rates, then a bettergstrate
is to use simulation models that run TCP. This means the MFSD model is not ap-
propriate for packet rates less than about 1000 p/s. We do not modethdirace
segments less than this rate, but as discussed below, we can use themivagthe
for modeling.

2.3. Modeled Arrivals, Measured Arrivals, and Timestampshe MFSD model
applies tot, = a, — a,_1 Wherea, is the arrival time at the interface queue
of the output link. The measured arrivd] is the exit time from the queue, and
t,, = al, — a!,_, are the measured interarrivals.

If packetu arrives when there is no packet in service, then= a,,. If packetu
arrives when a packet is in service, then its transmission begins as spacket
u — 1 has finished; this means thitis equal to the service time of packet- 1.
Let p, be the size of packet (bits), and let be the speed (bits/sec) with which the
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interface writes a packet to the link. The service time of packet is p,,_1 /¢. This
is the smallest possibté when packet.—1 has sizey,, 1. The timestamps,,, are
thea!, plus measurement error, and the timestamp interarrivals,atei.,, — ., 1.

2.4. Timestamp Accuracy and Identifying Packets with Queuing Delalye
accuracy of timestamps is critical to the validity of the MFSD modeling. The pre-
diction of timestamp accuracy from laboratory tests of the Endace cardfoised
the Auckland trace segmentsi® where¢ = 15 nanosec. This is excellent if it is
valid. We will investigatep empirically.

Identifying queued packets is also important for the trace segment selection
upon which modeling is based. We selected live trace segments for anabtsis th
have a small percent of delayed packets, less than about 10%, éecadsling is
for thet,, and not the/,. We need trace segments wheretheeflect the properties
of thet,. These segments are those with lower packet rates. We determine empir-
ically the percent of queued packets as part of the same method that iatestig
accuracy.

For all delayed packets, we havet!, = p,_1/¢. Measurement errors, however
result in timestamps, of these delayed packets that lie in the intepvél & 2¢.
Furthermore, we expect that the density of thavill have a noticeable drop just
abovet! +2¢. This can lead to a revision in the valueggfand allows identification
of packets that experience delay.

An accuracy and delay-identification plot is shown in Figlifer the Auckland
live trace segment that has the largest bitrate, 33.5 megabits/sec. On thg plot,
pu_1/¢ is graphed againgt, /¢ for v with £, less than 100 nanosec. Because
there are 690,239 sueh plotted just a sample of the values. The horizontal lines
are drawn att30 nanosec, the laboratory valuesb2¢. There is a dense band of
points contained within the accuracy limits, and a sharp cutoff in density @heve
band. This verifiesp = 15 nanosec, and packets within the band can be taken as
the queued packets.

2.5. Numerical Multiplexing. To study the changing statistical properties with
the packet arrival rate, we need trace segments with a wide range of observed
traffic rates, not just the live 15-min and 1-hr traces whose rates are kept small
to ensure a low percent of delayed packets. To achieve larger ratesty we
numerically multiplexed subsets of these 15-min live trace segments to produce
numerically-multiplexed 15-min traces with larger rates. This process refibetis
happens for the arrival times at the queue, and interarrival times carbliearily
small. Figure2 shows the log packet rates of the 96 live segments and the 24
numerically-multiplexed segments used in our analysis of the Auckland data.
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FIG 2. Log base 2 observed packet rate of Auckland trace segments.

2.6. Visual Displays of 4 Traces.Data visualization played a critical role in
the validation process. There were many types of displays and eachppléeda
to each analyzed trace segment. A number of these display types are Isé@vn
for 4 15-min Auckland trace segments to convey results. The packetafatks
4 segments range from small to large, and are as close to equally spaaddgon



MFSD AND GFSD MODELS 11

scale as possible. The 2 with the smallest rates are live segments, and thé&izwith
largest rates are numerically-multiplexed segments. The packet ratekéatigiaec
(p/s) arel771 = 21970 5634 = 21246 17928 = 21413 and66913 = 216:93,

3. Multifractal Marginal Distribution: Validation and Properties.

3.1. Validation of the Marginal Distribution. The marginal distribution of the
interarrival process, is well approximated by the Weibull. The parameterization
is described in Sectioh; « is the packet rate, equal to the inverse of the expected
value, and\ is the shape. For each trace segmerdnda were estimated by the
method of momentsy is the inverse of the sample mean of theUsing this value,

) is the value of the Weibull variance that matches the sample variance &f the

The method used to check the Weibull specification is the Weibull quantile plot,
illustrated in Figures for the 4 Auckland trace segments described in Se@ién
In each plot the fourth root of the quantiles of the obsenyeat empirical frequen-
cies 0.00005 to 0.99995 in steps of 0.0001 are plotted against the fouttbfroo
the quantiles of a fitted Weibull using the above estimates. Fourth roots are take
because the resulting transformed distribution is close to symmetric for vdlues o
) in the range of the trace segments. The vertical lines are drawn at thélegian
with probabilities 0.01, 0.05, 0.25, 0.75, and 0.95, and 0.99. The obliquedisie h
slope 1 and intercept 0.

If the observed, are well approximated by a Weibull, then the pattern of the
points on the plot should follow the oblique line. In Figeand for almost all
other analyzed trace segments, the Weibull provides an excellent fit, ts&ing
pling variability and artifacts into account. There are small departures, ahcimes
live empirical distributions, in the top 2 panels. These are artifacts resutong f
up to about 10% of the measured interarrivals not being the same as thiechode
interarrivals. This is discussed in Sect@rgueueing on the link input interface re-
sults in noticeable atoms in the measured interarrivals equaltéor commonly
occurring packet sizgs This is nearly eliminated in the bottom two panels due to
the numerical multiplexing.

3.2. The Change im\ with . Let e, k = 1,..., 144, be the estimates of the
shape)\ for the 144 Auckland trace segments, anddgtbe the estimates of the
packet ratex. Figure4 graphsf\k againstlog, (ay) wherelog, is log base 2. The
smallest values of;, are close to 0.6; they tend to 1 kg, (a;,) increases, which
means the marginal distribution tends to exponential.

Section6 presents a derivation of as a function ofx using the MFSD model.
Equations are solved that yield numeric values, leading to a mddel for the
dependence of on a. The theoretical model agrees with the empirical pattern in
Figure4. This dependence of on « is a critical aspect of the statistical properties
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of the packet arrival process, so we switch notation frorto A(«) in coming
sections.

4. Gaussian Power Spectra: Validation and Properties. The four time se-
ries considered in the GFSD, which are defined in Seciareh,,, s, n,, and
zy. This section presents formulas for their power spectra that providdntreagut
statistical properties. Validation study is also carried out for the obsefyvebeach
trace segment by comparing nonparametric estimates of the power spedtrum w
that of a GFSD model fitted to ths,.
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4.1. Formulas and Statistical PropertiesOne outcome of the simplicity of
the GFSD is simple formulas for their power spectra. et f < 0.5 denote
frequency in units of cycles/interarrival. The power spectra are

(1 - d)T2(1 - d)

pu(f) 9T (1 — 2d){2sin(r f)}24
ps(f) = dcos®(xf)pn(f)

pn(f) =1

p:(f) = (1 =0)ps(f)+0.

d is the fractional difference exponent afis the mixture parametes (f), ps(f),
andp.(f) decrease strictly monotonically gsincreases, and all go to infinity to
order f~2¢ at the origin, a signature property of the long-range dependence amply
observed empirically in many previous studies.

There are an infinite number of ways of decomposinginto a long-range
dependent component plus a white noise component. The decompositioa of th

GFSD,
Zu =V1—0s, + a\/énu,

is the one that maximizes the variance of the white noise bega(&é) = 0. This
meang.(0.5) = ¢, which will be used below in the estimation @f

Figure5 graphs/,.(f) = 10log,o{p-(f)} againstf wherelog,, is log base 10.
In visual displays of the power spectra, we switch to this decibel scaleubec
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it shows features more effectively. Three spectra are plotted. For éae 0.31
because estimates dfchange little, apart from statistical variability, across the
trace segments, ar31 is a central value. The values 6éfare different for the
three spectra: 0.6€), 0.8 (), 0.975 (—). These values reflect the range of the
estimates off across trace segments. The spectra were evaluated at vajfuigsof
2716 to 1/2. The vertical line on each panel is drawn at frequejicy= 0.129 for
reasons we explain next.

For fixed f andd, p.(f) is linear ind with derivativel — p,(f). Let f, be the
frequency wherd — p,(fp) = 0, which meang.(fy) and?,(f,) do not change
with 6. f, depends only o, and ford = 0.31, fy = 0.129 cycles/interarrival,
which has a period of 7.75 interarrivals. This is the value at which the aéline
is drawn in Figureb, and we can see that the spectra do not changefnattthis
frequency. It is easy to see that(f) and/.(f) decrease witl# for f > f,, and
increase forf < fy. This is also demonstrated in Figuse

4.2. Estimation of Parameterd and §. To carry out estimation and model
checking for the GFSD model for each trace segment, the obsgrfedeach seg-
ment were transformed to observegby the functionz, = Z~1{T'(t,)}, where
T is the empirical cumulative distribution function of thg andZ is the normal
cumulative distribution function with mean 0 and variance 1..b. &k the number
of t,, in the segment. Let(u) be the rank of,,. Thenz, = Z={(r(u) — 0.5)/n}.
The reason for using the empirical function, rather than a Weibull distritioc-
tion fitted to thet,,, was to have a portion of the model checking methods:for
not depend on the validity of the specification of the marginal distributiar.dh

20 —

10 Log 10 Spectrum (decibels)

T T T
0.0 0.25 0.50

Frequency (cycles/interarrival)

FiIG 5. Log power spectrd. (f) for d = 0.31 and 3 values of.
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Section3, model checking of the marginal 6f does not depend on the validity of
the specifications fog,. In a number of other sections, model checking depends
jointly on specifications for the multifractal and Gaussian images. Estimation of
the parameterd andf of the GFSD are based on the periodogram of the observed
zy. In addition, the periodogram and the estimate of the power spectrum using th
estimated parameters are a part of our model checking for validation oRE®G

To enable subsequent study of theblockmeans angh-blocksums with exactly
the same observations, we use just the fitstbservations of each trace segment
whereb is the greatest integer in log base 2 of the numbe,ah the segment. For
the 144 Auckland trace segments, the minimum valugis0 and the maximum
is 26. The periodogram is computed at the Fourier frequenyiesi/2° for i =
1,2,3,...2°71. These frequencies are divided ift® non-overlapping blocks of
equal length, so each has 16 values. Fopj = 1, ..., 2'5, let f; be the mean of the
frequencies in block, and Ietf(j_‘j) be the mean of the periodogram values in the
block. Estimation and model checking proceed witrnd( f;).

Our parameter estimation method for each trace segment is designed to be ro-
bust to minor departures of the patterns in fii¢;) from the general form of the
GFSD power spectrum. Some departures can adversely affect the estimftio
d (Hurvich et al, 2002. For example, minor low-frequency trends can remain be-
cause the detrending methods described in Se&iocannot entirely remove the
diurnal variation in the packet rate

The estimaté of ¢ is taken to be the mean of tHéf;) for f; > 0.48, since
p-(0.5) = 6. This insures that the estimated power spectrum fits the pattern of the
I(f;) for high frequenciesd is estimated from another frequency bafdil <
f; < 0.06. d is the estimate arising from a nonlinear least squares fit of values of
101og;0(p-(f;)) with & = 6 are fitted to the values db log;,(I(f;)) for f; in the
band. This is a variation of the method &dweke and Porter-Hudak983 where
the frequency band i$ < f < a for a smalla. The averaging of the periodogram
before taking thdog in the least-squares fitting falls in the category of an ATS
method Cleveland et a).1993; averaging before moving tolag scale results in
efficient least-squares estimation.

4.3. The Change i andd with ««. For the 144 Auckland trace segments, the
left panel of Figures graphs the estimateh, k = 1, ..., 144 of § against the log
estimates of the packet ratésg, (&), wherelog, is log base 2. The right panel
graphsdy, againstog(dy). The estimate&,, use the method of moments described
in Section3. The smallest values @, are close to 0.6; they tend to 1l (¢,
increases, which means thgttends to white noise. Except for two large outliers,
values ofd, vary from about 0.28 to 0.35, a narrow range. The median, shown by
the horizontal line, is 0.31. This suggests tthdbes not change appreciably with



16 D. ANDERSON ET AL.

0.40 — -
00 o
o
00 =
Q — -
o g 0.38
5 09 o FoQ .
ko] @
£ o ° =
3 o § 0.36 =
< 0 o
o 8 4 o £
o egb o [a) )
g %87 0 ° " Eoa4 co® % o °° -
= o %) gﬁo 2 ° o 0o
= o [ 3] 00 0 ¢ oo
° ) 00 © Q° 0 o
0 9% 09080 . o
Qo 09.0°0 — _ Q o L
= og® °° 5 0.32 09 o o o °
E o074 _°Q 5%902360 L 2 39 °00 5% °
7 2
w ] g ® ° gf%‘gﬁo
% o % 0.30 AT L
00 w c% o ‘?& o
0o 0
4 o2
0.6 o 0.28 J -
T T T T T T T T
10 12 14 16 10 12 14 16
Log Packet Rate (log base 2 p/s) Log Packet Rate (log base 2 p/s)

FIG 6. Estimatesdy, (left panel) of the mixture parameter and estimaﬁas(right panel) of the
fractional difference power vs. observed log traffic ralies, (¢ ) for the 144 Auckland traces. The
horizontal line in the right panel shows the median, 0.31, ofdthe

so that a fixed! of 0.31 is reasonable in our mathematical study of traffic statistics
based on the MFSD model.

Section6 presents a derivation é¢fas a function oty using the MFSD model.
Equations are solved that yield numeric values, leading to a nmtdglfor the
dependence of on «a. The theoretical model agrees with the empirical pattern in
Figure6. This dependence éfon a« is a critical aspect of the statistical properties
of the packet arrival process, so we switch to the notatier) in coming sections.

4.4. Model Validation: Properties of the Power SpectrunThe validity of the
GFSD model — its ability to account for the statistical time-series properties of
z, — was explored by studying power spectra, one description of the piepe
Other descriptions are studied in later sections.

For power spectra, a visual diagnostic method for each trace segnmepaes
the following: (1) 101logo(Z(f;)), which is a (noisy) nonparametric estimate of
the log power spectrum; (20 log,,(p.(f;)) with 6 = 6; andd = d;, which is
the GFSD model estimate of the power spectrum. Figushiow the results for
the 4 Auckland traces described in Sectibf. Each panel of the top row graphs
101ogyo(1(f;)) (¢) @and10log;(p.(f;)) (—) againstf;. The bottom row is similar,
except that values are graphed agairtsiog,,(f;). The fits are quite good. The
GFSD model estimates do a good job of fitting the patterns of the nonparametric
estimates. This was the case for almost all of the packet trace segments of ou
validation study.
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FIG 7. 10log,,(I(f;)) (¢) and101log,,(p-(f;)) (—) for 4 trace segments.
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5. Multifractal m-Blocksum Moment-Statistics: Validation. This section
addresses the nonlinearityigfthrough a moment-statistic study of theblocksum
processfz(,m) described in Sectioh. Normalized estimates of{EEtl(,m))q } are stud-
ied as a function off andm, which is a time scaling study for eagh This mul-
tifractal analysis is a standard in the Internet traffic literature. For eack seg-
ment we compared nonparametric moment-statistics of tléth the theoretical
moment-statistics from both the Weibull and multiplicative MFSD models fitted to
the t,,. This provides an important look at nonlinear properties to aid validation,
which very much justifies the analysis. However, it does not provide theda-
tional insights that arise from analyses in other sections.

For each trace segment, we estimated moments using the fies2? obser-
vations oft,, whereb is the largest integer in the log base 2 of the number of
interarrivals, the same data selection method used in Sektiogtt. = > t,,.

The nonparametrig-th moment estimate for the-blocksum is

. ob—r t(m) q
® 5o — Z( g ) |

v=1

Values ofm werem, = 2" for r = 0,...,b — 1, and the moments werg =
—10, -5, 2,2, 5, 10.

The Weibull MFSD has 4 parameters. Two are for the Weibull margina},.of
the shape\ and the packet rate. Two are for the associated Gaussian image
z,. the fractional difference coefficiemtand the mixture parametér The fitted
Weibull MFSD for each trace segment is the MFSD with parameter values equa
to the estimates described in Secti@and4: &, )\, d, andd. The multiplicative
MFSD has 4 parameters. Two are for the lognormal margingj:adhe mean. and
variancer of log(t, ). Their estimateg and7 are the values for which the first and
second moments of the log normal match the second moments of the Weibull with
parameters: and\. Two are for the associated Gaussian imagel andd. Their
estimates are also those of Sectibr, and.

We are unable to mathematically derive MFSD moment-statistics for the Weibull
and multiplicative MFSD models, so simulation “derivations” were carried out f
each trace segment. Each run for a trace segment consisted of genefatto
values oft,, from the fitted model, the same number used for the nonparametric
moment-statistics. Moment statistics for the run are computed using Equation
and final estimatesﬂ“ém), are means across 100 runs.

Figure 8 is a moment-statistien-plot for one of the four trace segments de-
scribed in Sectio, the one with packet rate = 17928 p/s. The other 3 segments
of the section are not shown in the interest of space. Each panelq@g{é’qm)}
againsfiog,{m,} for one of three cases: nonparametric, Weibull MFSD, and mul-
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FiG 8. Moment-statistien-plot for one Auckland trace..

tiplicative MFSD. Successive values for eaglare connected by line segments.
The resulting “curves” increase with
Figure9 is a moment-statistig-slopeplot. Let

(g = 10825~ logs (S )
e logo{m,} — logo{m; 41}

forr =0,...b—2. InFigure9, k,,1(q) is plotted againsg for the first 8 slopes.
Each of the 3 panels in FiguBxesults in one row of panels in FigugeThe values

of [r,r + 1] are shown in the strip label of each panel. The line on each panel of
the figure goes through the first two points plot to help judge linearity.

The mostimportant aspect of Figui@and9 is that the patterns for the nonpara-
metric, Weibull MFSD, and multiplicative MFSD moment-statistics are very close,
and agree with patterns of nonparametric moment-statistics seen in previsus pu
lications Feldmann et a].1998a Gao and Rubin2001a Riedi et al, 1999. This
provides a striking validation for this model checking analysis. The noniiryeszt
krr+1(¢) as afunctiony shown in the panels FiguBeare an indicator of multifrac-
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FIG 9. Moment-statistig-slopeplot for one Auckland trace.

tal behavior. The patterns are concave|foi] and tend toward linear 88, r + 1]
increases. Patterns f{#, 9] and above, not shown, are very close to linear.

6. Multifractal Traffic Generation: Modeling Changes in A and 6 with a.

The statistical properties af, change with an increase in the traffic ratebe-

cause the expected number of active connections increaseswithich means
more multiplexing, or superposition, of the packets from different cotmoes

The parameters of the Weibull MFSD — the Weibull shape parametey and

the Gaussian image mixture parameter reflect this change. Sectio®sand4

show that each tends to 1 withy the fractional difference coefficient does not
change appreciably with(«) and is taken to be 0.31.

We can also study the changeJfin) andé(«) with « theoretically using the
Weibull MFSD model. We do this in two ways. The first is a derivation by simula-
tion in which traffic is generated using the Weibull MFSD model. The second is a
heuristic mathematical derivation whose detail is described in the Appengx (S
tion 13). For both, we fixd = 0.31 and use initial value$, = 0.70 andfy = 0.55
at the traffic rateny = 2'0-22 p/s, the smallest rate for the Auckland trace seg-
ments. The initial values were chosen so that the derivations provide shéthie
the estimates. andd of Sections3 and4 as functions of the packet rate estimates
(6

For the simulation, we generated 2 Weibull MFSD series, each with parameters
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FiG 10. Logit transformations oA (left) and@ (right), derived by simulation{) and derived math-
ematically ¢), are plotted againslog, («).

Ao andf, for the rateng. The two MFSD series were then numerically multiplexed,
forming a series with rat2!!-?2 p/s.\(«) andf(«) were estimated using the meth-
ods employed in Sectiorand4 for the live and numerically multiplexed data,
but with d fixed at 0.31. Then two series were generated atX4t& p/s using the
estimated parameters, these two series were multiplexed, and then the parameter
again estimated. This process continued up to2&té” p/s. The result is 8 values
of A(«) andf(«) including the initial values, and 8 associated values.of

For the mathematical derivation, the process proceeds in a similar wayitbut w
a different multiplexing method: Weibull MFSD series with rates, and param-
eters)\y andfy were assumed to be multiplexed. Then values(ef) andf(«) for
the multiplexed series were derived. The values ofere 2, 3, 4, 5, 7, 10, 14, 20,
28 39, 55, 78, 110, 155. The rates for the derived parametersoanetf-22 p/s to
2175 p/s. The resultis 15 values af ) andd(«) including the initial values, and
15 associated values of

Figure 10 graphs logit transformations of the derived values of the parame-
ters, logit (A(a)) = logy{A(@)/(1 — A(a))} and logit (6(c)) = log,{0(a) /(1 —
f(«))}, againstog,(«). Each panel shows the simulation derived valugsdnd
the mathematically derived values) (for one parameter. The results of the two
derivations for each parameter as a function of rate are very clogeis@n impor-
tant validation of the mathematically derived values because certain assusnption
are made that are not true for an Weibull MFSD model, but that are belrited
affect the results. The logit transformation results in a nearly linear dispee on
log, (). The line on each panel is the least squares fit to the simulated values. The
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Fic 11. A (left panelo) andé (right panelo) are plotted againstog, (&). Derived equations\(a)
(left panel—) and#(«) (right panel—) are plotted against againsbg, (a).
equations are

2 logit(A(a)) = —5.36 + 0.63logy ()
(3) logit(f(«r)) = —7.21+0.751ogy(c).

The equations on the scales of the parameters are

2—5.36a0.63
(4) Me) = 155,088

2—7.21 0.75
5) 0(a) = -

1+ 277.21040.75‘

Equations4 and5 can be used for generating traffic using the Weibull MFSD with
a specification of the packet traffic rateonly.

Figure11 graphs\ andd against: for the 144 Auckland traces. The curves are
an evaluation of Equationd and5 plotted againstog,(«). There is substantial
variability in the estimates, both the ordinates and the abscissas of the plot. The
curves do a reasonable job of fitting the patterns of the estimates consittésing
variability.

7. Gaussian Autocorrelations: Validation and Properties. The four time
series considered in the GFSD, which are defined in Sediiare h,, sy, 1y,
and z,. This section presents formulas for their autocorrelations, which sets the
stage for Sectio?? where approximations of the autocorrelations are derived for
both z, andt, that provide important insight about statistical properties.
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This section also describes results of the validation study carried outdor th
observed:, of each trace segment by comparing nonparametric estimates of the
autocorrelation function with that of a GFSD model fitted to theThis parallels
the analysis of Sectiofithat used the power spectrum for model checking. Math-
ematically, the autocorrelation function is equivalent to the power spectrtimatin
each is a Fourier transform of the other, but both are used for validsihoe a
small consistent departure across lags or frequencies of one calatesto a large
departure locally at certain frequencies or lags of the other.

The autocorrelation function fot,, is p,(k) = 0. The 3 other series, which
are long-range dependent, have formulas that are easily derivedrésults of
Hosking(1981). The autocorrelation at laigfor h,,, s,, andz,, respectively, are

pr(k) =

r(1—-d) Tk+d) & (d+i—1)
I'(d) F(k—d+1)_,H i—d

s g
plt) = O

pz(k) = (1—0(x))ps(k).

p-(k) > 0 andp.(k) goes to O withk to orderk?¢—!, a signature property of the
long-range dependence amply observed empirically in many studies.

The validation process for each trace segment begins, as describectiong,
with a transformation to the observed Gaussian imggeom the observed multi-
fractal image,, fori = 1, ..., n. The nonparametric estimate of autocorrelation at
lag k for a segment is

1

n—Fk
—1
n Z Zu+kRu-
u=1

The fitted GFSD autocorrelations are an evaluation of Equdtiosing the esti-
matesd andd from Sectiond.

Figurel2graphs the nonparametric estimatesand the fitted GFSD estimates
(— ) againsty/k for the 4 Auckland trace segments described in Se@icfhe
square-root lag is used because it allows better assessment of thereal&dions
for small lags. The fitted GFSD estimates provide an excellent fit to the nanpar
metric estimates. This is the case for for almost all trace segments.

8. Self-Similarity: h,, and s,,.
8.1. Introduction.

8.2. Approximating the Autocorrelation FunctionsThe fGn process, which
is the stationary increment of self-similar fBm, has an autocorrelation function
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FiG 12. Nonparametric estimates)and GFSD fitted model estimates-() of autocorrelation are
plotted against square root lag for 4 Auckland trace segments.

approachingl(2d + 1)k~ for k — oo, a very simple mathematical form that
allows much insight and tractable mathematNsrfos 1994). It has the attractive
property that the log of the autocorrelation is linear in the log of the lag. Hgskin
proposedh,, as a discrete analog of continuous fGn.

A first question is whether the autocorrelation functior.gf

T(1-d) T(k+d)

k) = T Th—d+ 1)

is well approximated by a constant time%'—!. From Stirling’s formula,

D(k +d)/T(k —d +1)

klEIolo k2d—1 =1
SO we approximate by
o F<1 — d) 2d—1
k)= ——k .

This is not the only possibility; for example, we could attempt an approximation in
which the constant is chosen so thigtl) = px(1).

We saw in Sectiod that the estimateﬁ,, of the fractional difference parameter
d, varied by a small amount, and were centered on a median of 0.31. Thus it is
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entirely reasonable to také = 0.31 for the GFSD model for,. The left panel
of Figure 13 plotslog, (/i (k)) (—) andlogy(pn(k)) (o) againstlogs (k) for k =
1,...8. As we can see, the very simplg (k) is an excellent approximation for
these 8 lags. The largest discrepancy i at 1: p;(1)/pn(1) = 1.012. Fork =
2,...8, the discrepancy decreases, andifor 3 is negligible. The approximation
is excellent; it could be used for calculations for most purposes, althaugh
typically not necessary.

For s, we consider two approximations pf(k). Sinces,, = hy, + hqy—1,

1—

palk) = T {onk = 1)+ 200(k) + pu b+ D).

The first approximation usegs, (k) in place ofp, (k) in this last equation:

C(1—d)T(1 - d)

palk) = gy (1~ LR 424 (14 1/k)* 12!

The second simplifies by replacing each of the two tefins 1/k)2¢~1 and(1 +
1/k)?~1 by 1:
_ 2@ —d)

Both approximations are exact in the limit,
ps(k) Ps(k)

lim = lim =1.

k—00 ps(l{:) k—o0 ps(k?)
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1ogs(ps(k)) (0), log,(ps(k)) (+), andlog, (js(k)) (-) are plotted againsog, k
ford = 0.31 andk = 1,...8 in the right panel of Figur&3. p;(k) andps(k) are
in very close agreement for all lags; the latter certainly can be useddter feom-
putation. For the second approximation, we havék)/ps(k) for k = 1,2,3,4
are 1.235, 1.034, 1.014, and 1.007. Eor 4, the differences are negligible, and
ps(k) could be used for computation for these lags. In addition, for heuristic rea
soning about,,, the closeness of the approximation means we can think af a
near-fGn process whose statistics are very close to tha'sg of

8.3. m-Blocksums. In this Section we show tha{™ /m?+0-5 has the same
distribution ass'”) /370, The same holds fd{™ /md+05.

8.3.1. Variance. To begin, we have

() V(s(™) =m+23 " (m— k)ps(k),
k=1
We saw thapi,(k) = {2I'(2 — d)/T'(d)}k**~! provides a good approximation of
ps(k). We use this to approximaﬁé(sgm)):
A2 —d) TS, 2a
@ > (m—k)k**

k=1

We then approximate the summation on the right side of this equation by an integral
from 1 tom, which leads to the approximation

(7) Vi(si™) = 2F(dQ(2_dci)—/1I)‘<d) 2+

Following the same line of reasoning, we also have an approximation for the va
(m)
ance ofhy .

ooy 2L =d)/T(d) 9444

Vi) == marn ™

The result of Equatiof is consistent with Theorem 2.2 8eran(1994), derived
using the power spectrum. The theorem states that if the autocorrelaticiofun
of a long-range dependent series with fractional difference paweonverges to
ck??~1 ask gets large, then the:-blocksum variance converges to

c 2d+1
d(2d+1)

In our case: = 2I'(2 — d) /T'(d) for s, ande = o2T'(1 — d)/T(d) for h,. Let

my _ 50" somy "
Sv = L dF05) and ™ = md+05g,
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Thus we have

.oy 2T(2 = d)/T(d)
V() = d(2d + 1)

oo T(1—d)/T(d)
V) = d2d+1)

In Figure 14, the exact variances df£m> and 55,7”) are plotted as. The ap-
proximate variances, two constant values, are plotted-a3he approximation,
as we will see in Figurd4, is excellent form > 3 for both series. The scaled
m-blocksums have nearly constant variancesifor 3.

8.3.2. Autocovariance ofsq(]") and hf,m). We begin with the autocovariance
function of theqn—blocksum59£m). Fork > 1,

m—1

Cm(k) = Y (m—j]) ps(km +j).
j=—(m-1)

Again we usej, (k) = {2I'(2 — d)/T'(d)}k*?~! to approximatep,(k), and use
integral to approximate summation in the autocovariance function, which leads to

- 2I'(2 — d _
CST(]m) (k) _ ](-_‘(d) )m2d+1 ]{72d 1.
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FIG 15. Log of autocovariances df;™ and (™ versuslog, (k) for m = 2 (+), m = 3 (o), and
log, (ps(k)) andlog, (5 (k)) (—),

Follow the same line of reasoning, we have the autocovarianbé”afapproxi-
mated by
. I'(1—-d) _
_ 2 2d+17,2d—1
ChLm)(k) = Uhif(d) m= T

Becauses(k) = C ) (k) is the autocovariance ot andpy (k) = C; ) (k) is
the autocovariance dif,l),

.. .. . 2r(2—-d _
G ) = g (K) = islh) = 20— Do

v - T
O,;gm>(k) = OBE,”(k) = pn(k) = F(I{(;)d)km—l,

The scaledn-blocksumség,m) andk&m) have autocovariance functions not depen-

dent onm.

In Figure15, the exact values dbgy (C () (k)) andlogy(C; i) (k)) for m = 2

(+) andm = 3 (o), andlog,(ps(k)) andlo%Q(ﬁh(k)) (—), which is equivalent to
m = 1, are plotted againdbg, (k). We see the autocovariance functions:gt’

andhq(,m) are nearly the same for atb > 1.
For time aggregation with increasing, only the variances of the scaled-

m)

bIocksumsgf,m) and hg change. The autocovariance functions stay nearly con-
stant form > 1. Since form > 3, the variances o§5,m> andhﬁ,m) are quite close
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to the limit, the processe;ém) andhﬁm) Ym > 3 are almost the same processes as
55)3) andlvzq(,s). Both h,, ands, can be considered as near self-similar process,

9. The Variance-Time Plot: Variances ofm Blockmeansz{™). This sec-

tion treats the variances of the-blockmeans{™ and how they change with in-
creasingm (time scaling), and with increasing which cause#9(«) to increase
(source traffic scaling).

As discussed in Sectidh) m-blockmean study is a time scaling analysis that has
been widely used (e.g<aragiannis et al2004) as a basis for understanding traf-
fic statistical properties. For example, the variance-time plot, a populahigedp
method, is a display of the log:.-blockmean variance against lag. Such a plot
is linear for a self-similar process. The common pattern in Internet traffatestu
(e.g.,Fraleigh et al(2003) is convex upward with the slope tending2é/ — 2
whereH = d + 0.5 is the Hurst parameter. This and other patterns will be seen
in this section along with mathematical derivations that describe the pattems. Th
derivations reveal the properties of the patterns including the resulidbete traf-
fic scaling, not as widely studied, is a critical factor that interacts with time gralin

Them-blockmeans of the above three series are related by

2 = (1—0(a))s(™ + 6(a)nl™.
Because,, andn,, are independent, the variances are related by
(8) V(™) = (1= 0(a)V(0™) + 0(a)V (a™).

Sincen,, is Gaussian white noise with varianceV1(n\™) = m~1. So it is quite
clear from the beginning that scaling properties are determined by thegiolgan
relative contributions of/1 — 6(«)s, and/6(a)n,, to the variability of them-
blockmeans as: changes and & «) changes with the traffic rate.

9.1. Variance ofm-Blockmeans.

9.1.1. Approximation. In Section8 we have the approximatioﬁ(sf,m)) from
Equation?, which results in an approximation Of(z()m)):

©  VET)=0- 9(04))2F(d2(2_dﬁ/11;(d)

v

m2d=1 H(Q)m_l.

9.1.2. Validation. Validation study for the above variance derivations is an as-
sessment of the accuracy of the approximatiobf()ff,m)) by V(z(,m)), and an as-
sessment of how welf’ (2{™) fits sample-variance estimate$z,™) of V (z™)
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for each of the packet trace segments. Variance time plots are used irséss-as
ments.

For the approximation study, Figul® shows results for 3 values 6f«): 0.6,
0.8, and 0.975; the estimatesdtiv) for the the 144 Auckland traces range from
about 0.6 to about 0.974.was taken to be 0.31; it is the median of the estimates
from the trace segments and variation of the estimates from this value is small.
Let log, be log base 2. In Figur6, logQ{V(zq(,m))} (0) andlogZ{V(zq(,m))} (—)
are plotted against 15 valueslog,(m) from 0O to 14.V(2§m)) is computed from
Equationss and8. V(zq(}m)) is computed from Equatiof. The oblique lines will
be described shortly. Figuds shows that the approximation is excellent.

9.1.3. Properties of the Variance-Time PlotThe formula in Equatior® for

the approximaten-blockmean variancd','/(zgm)), provides much insight into the

1 1 1 1 1 1 1 1
0.60 0.80 0.975

Log Base 2 Variance

Log Base 2 m

FIG 16. Variance-time plot for 3 values 6f«), shown in the strip labels at the top of each panel. The

exactlog, V (z\™) (o) and the approximatiog, V (z\™) (—) are plotted against againsbg,, m.
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FiG 17. Variance-time plots for four trace segments. The approxirtmgng(zim)) (—) and the
sample estimatdsg, V(Zf,’”)) (e) againstlog, m.
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properties oflog,{V (z (m))} and therefore the properties Imfgz{V(zv )} as
a function of¢ = log,(m). Quite important is the derivative of the functional
dependence, the slope on the variance-time plat(df) were 1, therz, = n,,
the white noise component, the slope would be everywherelf 6(«) were 0,
thenz, = s,, the discrete near-fGn component, the slope would be everywhere
(2d — 1) > —1. While the slope on a variance-time plot for our trace segments, is
never everywhere-1 or 2d — 1, the slope does vary witlh andf(«) across the
traces between these extremes, and under certain circumstances gets ttlese
values. The slope dbg,(m) conveys information about the time dependence of
them-blockmean. The closer the slope istd, the closer then-blockmean is to
independence. The closer the slope i8do- 1, the closer then-blockmean is to
a discrete near-fGn process.

We can derive an expression for the slope. Let

_2l(2-d)
¢M)_d@d+nruy
Treating/ as a continuous variable and proceeding formally, the slope is

Ology V(z™) _ (1= 0(c))(2d = 1)(d) — H(c)m=>
ol N (1—0(a))p(d) + O(a)m—2d ’

For the study of the fit to the trace data, Figaisshows results for the 4 Auck-
land traces described in Sectidnvhose traffic rates: span the range of values of
observed rates. Analysis, including the method of transformjrtg the Gaussian
image to create observeg, was the same as that of Sectiar-or each trace, we
used the firsk = 2° values ofz, where2? is the Iargest power of 2 less than or

equal to the number of observations. The estim%(tev ) is the sample variance

of thez{™ for log,(m) from 0 tob — 5. The values oV(zf,m)) are computed using

the estimates of and0( ) described in Sectiod. In Figurel7, logQ{V(zvm))}
(o) andlogQ{V(zv )} (—) are plotted againdbg,(m). The approximate model
estimates do an excellent fitting the sample-variance estimates.Bince< 0.5,
the slope is everywhere negative. Amcreases, the slope tend2— 1. For the
valued = 0.31 used in our mathematical investigatiogd,— 1 = —0.38. In each
panel of Figurel6, the oblique line through the point for the largest valueroin
each panel has slope0.38. We can see that in each case, the largest valugs of
have slopes very close to this value. The second derivative with respeis

0%log, V(20™)  log(2)4d20(cr) (1 — 0(cr))$(d)ym 2

oe (1= 0(c)$(d) + f(a)m=21)*

so the slope increases monotonically V\éitlandlogQ{V(zv )} as a function of
is convex, which is the standard empirically-observed pattern.

A(m,0(a),d) =

I
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In addition,

0% log, V(20™) —2d¢(d)m 2 .
9000(c) {1 —0(a))p(d) + O(aym—2432 =

Thus for fixedd andm, the slope decreases witic). This can be seen in Fig-
ure 16. For example, a®(«) increases, there is an increase in the valuenof
for which the maximum slope 0f0.38 is nearly achieved. For the three values
of #(«) in Figure 16, the slopes ain = 1 are A(1,(0.6,0.8,0.975),0.31) =
(—0.72,—0.85, —0.98), which decrease with(«); in the three panels of Figufs,
the slopes of the oblique lines through the pointsifor= 1 have these three de-
rived values.

Them-blockmeans across andf(«) vary from nearly independent processes
for smallm and larged(«) to near-fGn process when gets large for all values
of 6(«). Them at which them-blockmean becomes near-fGn increase$(ag
increasesd(«) increases with the traffic rate. This dependence of the statistical
properties ofm-blockmean variances on the traffic rate for interarrivals has not
been previously recognized.

10. Multifractal Image Autocorrelation Approximations: Validation and
Properties. This section describes approximations for autocorrelation of the mul-
tifractal image. There are two purposes. One is to provide simpler desogitiat
contribute to our fundamental understanding of the drivers of the trstffitisti-
cal properties. The fundamentals are described in Setfdmat provides insights
about the properties of traffic statistics; we do this even for cases wiednave ex-
act formulas. A second purpose is to provide approximate formulas is vdwze
we are unable to derive exact formulas; the approximate formulas aratealigist
as we would an exact one.

10.1. Approximation of the Weibull MFSD by the Multiplicative MFSDrhe
multiplicative (log normal) MFSD discussed in Sectibis simpler than the Weibull
MFSD because the transformation to the multifractal image is simpler:

tu = exp{r(y/1 — 8(a)s + \/0(a)na) + u}.

Becauset,t, i is also log normal,L(2.,27%(1 + p.(k))), the autocorrelation
function of the multiplicative MFSD has a simple formula
emip=(k) _ 1

e’ —1

(10) pi(k) =

There is no simple closed-form formula for the autocorrelatj@(k), of the
Weibull MFSD, but we found through simulation that k) provides an excellent
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FIG 18. Nonparametric estimates of autocorrelatios) @nd estimates from fitted multiplicative
MFSD models-().

approximation ofy, (k). We also found that the standard nonparametric estimate of
pi(k) from each of the trace segments is very well matcheg,by) with d = 0.31
andy and7? estimated from each segment. The estimatesd 72 are those for
which the first two moments of the log normal match those of the Weibull with
parameters equal td(«) and«, those described in Sectid This is illustrated

in Figure 18. The nonparametric estimateg @nd the estimates fromy (k) (—)

are plotted against lag for the 4 trace segments used in previous seca@imgy T
the statistical variability into account, which includes correlation in the estimates
across the lags, the autocorrelation estimates for the multiplicative MFSD ig a ver
good approximation of the of the nonparametric estimates.

10.2. A Power Series ApproximationThe autocorrelations af, andt,,, while
highly persistent, are not large; almost all values are below 0.25, arahbdke
first few lags, are below 0.10. Furthermore, we found that estimate$ afross
all traces range from 0.7 to 1.4. The resulting values?f, (k) are small enough
that the termexp{72p.(k)} in Equation10 is very well approximated by a first
order power series approximation, resulting in the even simpler autod@mnela
approximation
2. (k)

pt(k> - o 1
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FiG 19. Power series approximatior<) of multiplicative MFSD autocorrelations).

Sincep, (k) is always positive we know thak (k) will be somewhat smaller than
pi(k). Figure 19 graphs the values qgf;(k) from Figure18 for lags 1 to 64 ¢)
and the values of;(k) (—). Except for lag 1, which has a minor departure, the
approximation is very close. The astonishing result, discussed next, ihé¢haii-
tocorrelations of the multifractal image are very close to being proportioniabe

of the Gaussian image.

10.3. Heuristics for the Multifractal Image. The mechanism for going to the
multifractal image, the nonlinear transformation, is simple to describe. However
the general result is a dramatic change in the statistical properties, fras Ga
sian to to highly nonlinear. The statistics &f, without he benefit of the simple
transformation mechanism of the model, have an appearance of a highlyegzomp
mechanism.

However, the very surprising result is that the form of the second moraeaits
to a very good approximation, preserved up to a multiplicative constant timele
transformation. This means that the properties of the autocorrelations Gaile
sian image, studied extensively in previous and coming sections, hold toda goo
approximation for the multifractal image. This includes the time-aggregation and
source-aggregation properties studied next in Secfar6.

11. A Derived Model for Time Aggregates oft,,. It is common in math-
ematical studies of engineering performance and control to use time atggeg
of packet arrivals as source traffic inputs and to assume a long-dampndent
Gaussian process; this can result in a more tractable mathematical cobstruct
cause of the Gaussian assumption. Time aggregates are also used in sistgation
speed computation (e.d@aiocchi and Vacirc§2007); Bauerle and RiedgP000);
Carofiglioa et al(2007); Gu et al.(2004); Kim and Shroff(200J); Liu et al.(2004;
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Kiddle et al.(2003). However, there is no guarantee that time aggregates of a non-
linear process tend to Gaussian.

In this section we verify that aggregates — blneblockmeansfg,m), of t, —
do tend to Gaussian, and we derive and validate an variance and aovautacce
function for thetf,m). This not only validates the Gaussian assumption but provides
a more incisive description of the autocovariance function that can mretidnger
results than a general long range dependence assumption frequesttljnuse
past.

11.1. Autocorrelation Function off)m). First we examine the autocorrelation
function p-(m) (k) of them-blockmeans ot,,, and how it changes with increasing

m or increasing(«). Previous studies have investigated these properties empir-
ically. Feldmann et al(19988; Gilbert et al.(1999 observed that the energy of
wavelet models for counts increases as the time aggregation incridasegy et al.
(2001 observed that the autocorrelation of arrival counts in fixed intervals in
creases with increasing time aggregation. The heuristics that guide censtarti-

ing of the properties of the:-blockmean variances enable us to readily predict
these outcomes as increases, and to add predictions of outcomes as the traffic
rate« increases. Asn increases for fixed(«), then the low-pass filtering of the
m-blockmean acting on,, removes a larger fraction of the variancengfthan of

Sus andngm)(k:) increases. For fixeth, asa increasesf(«) increases; this in-

creases the contribution of the white noise comporﬁi@t)ﬁém), to the variance
of 2™, reducingp, () (k).
We can calculate th,ez(m (k) from the GFSD model and check these properties.

We have
Cum (B) (1= 8(0))Cym (K)

pom (k) = = ;
: V(") V()

whereV(if,m)) is calculated from Equatiorsand 8, and

m—1

C.om (k) = m~! Z (1 - |J|> ps(km + 7).
v i m
j==(m-1)

Figure 20 graphslog, {p_cm) (k)} againstiog,(k) for d = 0.31, 6(a) = (0.60,
0.80, 0.975), andm = 1 (—), m = 50 (—), and3000 (—). Figure21 graphs
logy{p_em (k)} againstlogy (k) for d = 0.31, m = (1, 50, 3000), andf(a) =
0.975 (—), 6(«) = 0.80 (—), and0.60 (—). The figures show that the autocorre-
lation increases with increasing or with decreasing(«).
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Fic 20. log2{p5’<m) (k)} is plotted againstog, (k) for m = 1 (—), m = 50 (—), m = 3000 (—)
for 3 values of(«).
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Fic 21 logy{p_cm (k)} is plotted againstog, (k) for 6(c) = 0.975 (—), 6(ar) = 0.80 (—),
6(a) = 0.60 (—) for 3 values ofn.

11.2. Limiting Behavior of Partial Sums a@f,. In the MFSD model, the inter-
arrivalst,, are a monotone function of the GFSP. Past work has a number of in-
formative limiting results of time aggregates of functionals of Gaussian lomgera
dependent processdddbrushin and Majqrl979 Doukhan et al.2003 Surgailis
200Q Taqqu 1975 1977). We will apply the results oTaqqu(1975 to the mul-
tiplicative MFSD, which we think of as a good approximation of the true Weibull
MFSD. Next, we describe properties of the GFSD and the multiplicative MFSD
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that allow us to invoke results from this reference that a partial-sum of thig mu
plicative MFSD goes to fractional Brownian motion (fBm) whose stationarseinc
ment is fGn.

The GFSDz, is a Gaussian long-range dependent process with mean 0 and
variance 1. In addition, in Sectid??, we have shown that the autocorrelation of
2, approacheg(1 — 0)I'(2 — d) /T'(d)k**~! ask — oo. The multiplicative MFSD
with mean centered at O is

Gzy) = 7ot — et 712,
wherey and 2 are the mean and and variance of the log multiplicative MFSD.

G(z,) has variancge™ — 1)e2#+7",
The Hermite polynomial of ordek is

z dk —Zz
Hy(z) = (-1 2T (e77)2).

The first three arédy(z) = 1, Hi(z) = 2z, and Hy(z) = 22 — 1. The Hermite
expansion of7(z,) is

b
G(aw) = 3 7 Hr(z),
k=0 """

where

The Hermite rank is defined as the smallesh the expansion for which; # 0.
ForG(zy), bp = 0 and

by = E{z,(e™TH — e“+72/2)} — e /2tn,

So the Hermite rank af?(z,,) is 1. Let

5 \/(TzeTZHM)Q(l —OT2=d/T(d) |,
" d(1 + 2d) '

Using the above facts abou}, and G(z,,), we can now invoke the results of
Taqqu(1975. Let0 < w < 1, and let[mw] be the greatest integer inw. The
scaled partial sums

[mw]

a Z G(zu)

u=1
converge weakly to fBm as, — co.
This result is not a proof that thém) as process imn tends to Gaussian but
it does make it highly plausible. However, extensive empirical study OE(JHE
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provides a convincing validation that tlﬁ%”) are Gaussian for small valuesqaf.

For simulated i.i.d Weibull random numbers with= 0.7, the lower end of the
parameter estimateé(,m) approaches Gaussian with > 70. For simulated i.i.d
Weibull random numbers with = 1, the higher end of the parameter estimates,

f$,m> approaches Gaussian with less aggregatior; 50. For the lowest rate live

traces, it needs, > 20 for Eg,m) to approach Gaussian, which is equivalent to
aggregation over 10ms intervals on averageneeds to be larger for high rate

traces. For the highest rate traces, it needs 120 for ﬁjm) to approach Gaussian,
which is equivalent to aggregation over 1ms—2ms intervals on average.

11.3. Variance and Autocovariance 65‘,”"). For sufficient time aggregation,
we can use a Gaussian process as a model f(fﬁfﬁeln this Section we provide

the variance and covariance functionﬂ;&?). Hence we offer a concrete model for
the time aggregates.

Leto? = V(t,). Variance o™ equals to
t

m

V(EM) =of{m™ +2m > (1 - —

Applying the approximation of,, autocorrelation in Sectioh0.2

. 72 2(1-6
k) = ——pa(h) = =)
e —1 e —1

ps(k),

andj,(k) = {20'(2 — d)/T(d) }k24~1, we use this to approximaté(Z™):
B (1 —9) 2r(2 - m

We use an integral frorhto m to approximate the summation in the above expres-
sion, and obtain the following. The parameters are functions of the lraite.
The exact expressions of (o) and7?(«) are shown later.

7'2 « — 6% —
Ve = Utz(a){ (eT)Z((i) _05 ) QF(dz@dﬁ/f)(d) m? +m—1}.

Autocovariance ofﬁm) equals to

m—1 .
cgg,n)(k):o?ml{. > (1- L{J)pkam}

=—(m—1)
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FiG 22. Variance-time plots of,™ for four trace segments. The sample estimatgs VE™) (o)

and the approximatég, V(ﬁm)) (—) are plotted againslog,, m.

Again applying the approximations (k) andjs (k) and using integral to approxi-
mate summation, we have

A ’7'2 « — o —
(12) Cé}m) (k) = o?(a) (67)2((1) 05 ) Qrf(d) d) i 2d—17:2d—1

The parameters in Equatiodd and 12 depend only on the rate. Through
matching the first two moments of log normal with the first two moments of Weibull
we have

7*(ar) = logT (1+A(2a)) —2logT <1+ A(la)>

The variancer?(«) of Weibull is

A(«) andd(«) follow the logistic models.

A Gaussian process with the approximate variance and autocovariarot®iu
specified by Equation$l and12 is a concrete model for tl"uém), whose coeffi-
cients depend on the rateonly, as the MFSD and GFSD models. Furthermore the
ratio of Equationd1and12is an approximation of théf”) autocorrelation, which
behaves as fGn autocorrelatidf2d + 1)k%**~! asm — oc.

In Figure 22, the sample estimat66g2{17(ff,m))} (¢) and the model approxi-
matelogz{V(EE,m))} (—) are plotted againgdbg,(m) for the four selected traces.
This is the variance time plot for the multifractal image. The approximate model
estimates do a good fitting the sample-variance estimates. The valuésdfom
23 t0 215, For the trace with raté771 p/s, it is equivalent to aggregation from 4ms
to 18sec. For the trace with ra68913 p/s, it is equivalent to aggregation from
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FIG 23. The sample estimates of autocovariaﬁ}‘f@n) (k) (o) and the approximate autocovariance

C}um (k) (—) are plotted against/k for m = 25, for four trace segments.

0.1ms to 0.5sec. The same intuition obtained from the Gaussian image variance
time plot applies to the multifractal image as well.
In Figure23the sample estimateiéf(,n) (k) () and the approximate autocovari-

anceC}(m)(kz) (—) are plotted against the square root of lagrhe approximate
autocovariance specified by Equatibprovides an excellent fitting to the sample
estimates for all the live traces fas > 25, a small number. Figur23 shows the
four selected traces. The variance of interarrivafgp), approaches 0 quickly as

« increases. Hence the variance and autocovariané%”l)ifor fixed m decrease
fast witha.

12. Discussion: Fundamentals of Traffic Statistical Properties. The basic
characteristic from which mathematical tractability and strong intuition arise from
our modeling of Internet traffic is the form of the GFSD model for the Ganss
imagez,. The model is an additive mixture of two components: a near-fGn compo-
nent,/1 — 0(a)s, with variancel — 6(«), and a white noise componep®(a)n,,
with varianced(«). The term “near-fGn” is used because the autocorrelation func-
tion of s, is very well approximated b¥(1 — d)/T'(d)k??~! for lag k = 3 and
higher.
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Fundamental understanding of the statistical properties of the trafficas! loas
(1) simple formulas arising from the simple form of the GFSD model; and (2) the
effect of /1 — 6(«a)s, and+/0(«a)n, on traffic statistics arising from operations
on z,. In this article we (1) present formulas, some exact and some approximate;
and (2) investigate a number of operations: transformation to the multifractgéima
t,, m-blocksums, increases in the packet arrival rat@and partial sums of,,. In
general, mathematical investigations of traffic statistics using the MFSE fman
proceed in this way.

12.1. Transformation fromy,, to¢,,. The transformation of,, to the multifrac-
tal imaget,, results in a Weibull marginal distribution fay,. However, to a good
approximation, the process is a multiplicative MFSD

tu =~ exp{p+ (/1 — 8(@)su + \/6(a)n))}.

The two components of the GFSD act multiplicativelytin This implies the
marginal distribution oft,, is log normal, but this not far off from the Weibull
for the range of estimates of the shapfrom the trace segments.

Even more, the autocorrelation function arising from this multiplicative MFSD
is to a very good approximation a constant times the autocorrelation functign of
This fundamental characteristic is a fortuitous interpretive bonus begcaith ad-
justments for the constant, statistical properties derived fahat involve second
moments can be carried overttg The good fortune occurs because the values of
7 andl — 0(«) that arise in practice are sufficiently small that an exponential in the
autocorrelation formula for the multiplicative MFSD can be well approximated by
a first order power series.

12.2. Increase in the Traffic Rate. As « increases)(«) andf(«) go to 1.
This is demonstrated by mathematical derivations based on the MFSD, and esti-
mates based on the trace segments. Simple logit models account for the.change
Let 0*(a) = 277209076 and \* (o) = 275-3%600-628  then the models are

AMa) = N(a)/(L+X(a))
bl@) = 6°(a)/(1+06%()):

The limits mean that the marginal distribution f tends to exponential; the
variance,1 — 0(«), of the near-fGn component tends to O; the variarige,),
of the white noise component tends to 1; @gpdends to a Poisson process. The
autocorrelation functions at lags> 0 for ¢,, andz, go to O uniformly. Each has
the form(1 — 6(«))ay, wherea;, > 0 do not depend ofi(«)(«). From the above
logit model forf(«), 1 — 0(a) = 1/(1 + 6*(«)), so the autocorrelations go to 0
like a=0-628,
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12.3. m Blockmeans. Fundamental insight about the effect ¢fl — 0(«)s,,
and./0(a)n,, the m-blockmeans ot,, is straightforward. Because this involves
second moments, results hold fgras well.

Themth block mean ot is

2 = (1—0(a))5'™ + 6(a)nl™.

The blockmean operation, before taking evetyh value, is a linear, low-pass,
digital filter with transfer functionn=! sin?(7mf) sin=2(x f). The filter removes
almost all frequencies outside of an inter{alf*(m)] cycles/interarrival in which
f*(m) — 0 asm increases,/1 — 0(«)s,, has much of its total power near O fre-
quency, whereas the power g (a)n,, is spread uniformly across all frequencies.
This means the reduction in variance\gﬁ(a)ng,m) starting atm = 1 advances
more quickly than that ofL — 6(a))s\™, s0,/8(@)n\™ dominates the reduction
in the variance of{"™, which drops to orde(f(a)m~1). Oncem is sufficiently

large, \/8(a)n!™ has little power left relative tq/(T — 0(a))5.", so the latter

dominates the reduction in variancez6f”, which drops to ordefl — () )m24-1.
However, we can also see that the packet sapdays a roll becausé(a) — 1

asa increases. Whefi(«) is close to 1, for small values of, the variance of (™

is mostly due t@(a)i\"™ to initially the reduction in variance is like.~*. But for
the smallest values @f(«) observed in our traces, about 0.6, the drop in variance

is affected for smalin by §,(€m) and the decrease is less rapidiasncreases from
1.

Another immediate insight is that an increasing packetaatBanges the results
of the operation. With the increas{«v) increases. This means the variance of the
white noise component is larger at the outsidefoe 1, so there an increase in
the value ofin for which 5™ dominates.

This intuition is backed up the quantitative results oftimdslockmean operation
in Section9. Consider as an example the variance-time plot. For all valué&of

the slope on the plottends2d—1 asm increases, that fO?(Um). 3055,"0 eventually
dominates. For the slope at = 1 and forf(«) at its smallest estimated value,
about 0.6, the slope on the variance time plot for thexat 1 is approximately
-2/3. Atf(«) increases, the slope at = 1 tends to—1, that for an independent

process. So for smath, H(a)ﬁﬁm) dominates atn = 1 for largef(«).

However, this does not mean that it is prudent to assume a Poisson pi@cess
mathematical or engineering study largeThe caution arises because the near-fBn
component always has a positive variance, and a stochastic pracegsging to
a limit does not mean all operations (functions) of the process convergieto
operation on the limit. The next discussion provides and example.
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However, the very surprising result is that the form of the second moraests
to a very good approximation, preserved up to a multiplicative constant timele
transformation. This means that the properties of the autocorrelations Gaile
sian image, studied extensively in previous and coming sections, hold toda goo
approximation for the multifractal image. This includes the time-aggregation and
source-aggregation properties studied next in Secfar6.

13. Appendix: Derivations of A and @ for Changing a.

13.1. Heuristic Derivation of\. We present a heuristic derivation fdiin this
section, under the simplified assumption of renewal processes. Assumatbe
i.i.d renewal processes, wheréds a positive integer. Each renewal process has a
Weibull marginal distribution with parametersand A. From the analysis of the
trace segments in the previous sections, we notice the marginal distributitbre for
live traffic superposition process is Weibull with parametgrs) anda(r), where
the increasing traffic rate is

a(r) =ra.

Based on the Weibull marginal distribution for the individual renewal psses,
we have the marginal density of their superposition procgss, (1962:

o0 r—1
gr(ﬂ = _% <e—(taF(1+§\))>\ (/ ae—(zaF(H_}l\)))\d'x) ) '
t

The mediang” of the distribution with density” (¢) is found by solving the fol-
lowing equation:

r

r—1
@3 e Wrerarhy <1_a [ e—<wf<1+i>>kdx> 05,
0

We approximate the distribution with densy(¢) by a Weibull distribution with
parameters\(r) anda(r) whose median matcheg.

1
(log 2) )

(14) B = raT U+ 1)

We solve Equatiod4 for A(r). The right hand side of Equatidi changes mono-
tonically with A(r). Hence there is a unique solution fofr).

13.2. Heuristic Derivation off. Assume there are i.i.d MFSD source pro-
cesses,,. Each has a Weibull marginal distribution with paramete@nd\. The
corresponding Gaussian imagg of a source process, follows a GFSD model
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with parameter® andd. From the analysis of trace segments in the previous sec-
tions, we observe the values of the fractional difference paranietemot change
appreciably under different traffic rates. We then fix the valu¢tofbe the median

of the estimates in Sectich Let

d(r) =d=0.31.

For the Weibull marginal distribution of the superposition proaéssve have the
estimatesi(r) = ra, and\(r) obtained from Equatiofi4.

6(r) can be obtained from the autocorrelation at lafpr the Gaussian image
2! of the superposition process as follows:

_AME-d)

(15) O(r)=1 P

To estimated(r), we first computep; (1) for the superposition proces§, then
obtainp’ (1) from pj (1), and apply Equatiof5.

In order to obtairpj (1), first we examine the sources of the arrivals that lead
to the two consecutive interarrival times in the superposition pro¢gss\dz;, ;.
Assume theu-th arrival a], in the superposition process is thith arrival from
source 1. Noté; ., = a;, | — a;,. Lett; ; be thejth interarrival time from source
i, andV; be a forward recurrence time (the time from an arbitrary time point until
the next arrival) for sourcé To find the autocorrelation betweéhandt; , ;, we
examine the following five cases:

1. The arrivalsz;, ; anday,, ; both come from source 1. Thef) andt;,, , are
two consecutive interarrival times from source 1. We hgi\(@) = p(1).

2. The arrivalay,, ; comes from source 1, but the arrivg] ; comes from a
different source. We havet; , | = t1 ;1. Andt], = Vi = t1; —n, where
7 is the sum of interarrival times and forward recurrence times from ssurc
other than source 1. Then as in Casej1]) = p:(1).

3. The arrivala;,_; comes from source 1, but the arrivg) ,; comes from a
different source. Thent;, = t; ; andt;,, ; = V;. Since the individual source
processes are independesit;1) = 0.

4. The arrivalsyy,_, anda;,,; come from different sources, and neither comes
from source 1. Assume arrival,, ; come from source, i # 1. Thent;, =
Vi1 andt;,_ , = V;. We havep} (1) = Corr(V1,V;) = 0.

5. The arrivalsz;,_; anday,, ; both come from the same sourge # 1. This
is exactly the same as Case 4. Agdjn= V1 andt;, | = V;. pj(1) = 0.

Hence under the first two casgg1) = p.(1), while under the last three cases
p;(1) = 0. Let the minimum forward recurrence time from all other sources be
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Vinin, = ming;_o_,y Vi. Case 1 and 2 occur wherj, anday,; both come from
source 1. This implies; j11 < Vpi. Therefore,

Pr(Case 1 or 2) = Pr(t1 j4+1 < Vinin)-
Thus, we have
(16) pr(1) = Pr(tyj41 < Vinin)Corr(ty g, t1 j11lt1j41 < Vinin)-

It remains to solve for both terms on the right hand side of Equdté®®Based
on the density of a forward recurrence time from one source proCess 1962,
we obtain the density foV},;,, the minimum ofr — 1 forward recurrence times.
Sincet; ;11 is Weibull with parameters andc, and independent df,,,;,,, we have

00 Y r—2
P(t1j4+1 < Vipin) =1—(r — l)a/ e WY (1 — a/ emx/wdx> dy,
0 0

-A
wherey) = (aP(l + %))

Next we approximate the joint density of two consecutive interarrival timoes f
the same source processandt; 1, by converting the joint density of their Gaus-
sian images; andz;;1, z; = Z~'(W(t;)), and ignoring the correlation between
t; andt;1; in the Jacobian matrix. Let = p.(1) = Corr(zj, zj4+1). We have the
following approximate density, up to a normalizing factor:

1 —1 2

fwltistin) o —== ep{g— 51/ (271 W) + 271 (W (k1))
+2p” = p)Z (W ()2 (T(tj41) ] }

2

X E(tjtjﬂ)/\_l eXP{—(t? + t?‘+1)/¢}-
Using fw<tj, tj_|_1) combined WithP(tLj_H < me), COI‘I‘(tL]‘, t17j+1‘t17j+1 <
Vinin) €an be calculated.

There are two ways to comput(1), either using Equatioh6 or directly using
the approximate joint densitfy (¢;,¢;11), becauseyy (¢;,t;41) can be applied to
two consecutive interarrival time§ andt;,  ; in the superposition process as well.
This provides a numerical method for us to fipild 1) from a givenpy (1).

We first obtain the estimatéf (1) using Equatiorl6. With \(r) obtained using
Equation14 and a(r) = ra, we evaluatefy (t;,t;41) over a grid of potential
p.(1) values. For eacp’ (1) value we compute the correspondipig 1) directly
using fiw (¢;,t;+1). The estimatg’ (1) is the one that provides the closest match to
py (1) obtained from Equatio6. Then we apply Equatioh5 to have an estimate

~

of 6(r).
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