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ABSTRACT

Hands-free speech telephony and speech recognition in cars
suffer from additive noise and reverberation. We propose
an iterative blind channel estimation algorithm based on an
analysis-by-synthesis loop closed around a multipath Gener-
alized Sidelobe Canceller (GSC). By combining a post-filter
with the proposed scheme, optimal speech enhancement in
practical situations can be achieved. The algorithm is tested
using simulated data and using real speech recordings from
the AVICAR database.

Index Terms— dereverberation, speech enhancement, ro-
bust beamforming, blind channel identification

1. INTRODUCTION

In recent years, many systems have used multi-microphone
arrays for the task of speech enhancement [1, 2, 3] and ro-
bust speech recognition [4, 5]. However, few approaches
have presented a theoretical basis for the multi-microphone
speech signal processing under the assumed statistical mod-
els of source speech signal, room impulse responses (RIRs)
and noise. One of the few published systems that considers
a theoretical basis for speech enhancement is that of Balan
and Rosca [1], which showed that multi-microphone MMSE
spectral amplitude estimation can be factored into a sufficient
statistic followed by a single-microphone postfilter. If we
can assume that we know the RIRs, optimal estimation of the
speech signal can be done using a simple two-step method:
first the sufficient statistic is computed, then the classical
MMSE estimator. The two-step method actually guaran-
tees optimality in the sense of the one channel estimator.
However, it is actually not easy to satisfy the assumption of
known RIRs. Inspired by the sufficient statistic factorization
approach [1], we address a realistic implementation of the
sufficient statistic.

In an acoustic echo cancellation scenario, if we know
the source signal, we can adaptively estimate the channel
response [6]. Because more correctly beamformed output is
much nearer to the source signal, we might be able to use
the beamformed output as an input to estimate the channel
response from the output signal. Good channel estimation
makes the beamformer based on multipath GSC more ac-
curate, and this again guarantees better channel estimation,

where the multipath GSC is different with the conventional
GSC in the sense that it reflects the multipath effect to the
constraint part realized as the fixed beamformer (FBF). Until
we can get a satisfactory channel estimation result, in other
words, a satisfactory beamforming result (satisfactory de-
convolution), we keep iterating this adaptive procedure with
some reasonable channel constraint. The iterative procedure
can be used for the multi-channel identification as well as the
optimal beamforming. Even though we may not get perfect
channel identification, still this is a useful scheme in multi-
path GSC, because we might use the converged multichannel
information as a coefficient vector for the FBF, rather than us-
ing a naive delay and sum beamformer as in the conventional
GSC and by leveraging the converged channel we actually
mitigate the inherent signal cancellation problem due to the
reverberation.

To visualize the situation more or less in a simple and
tractable way, we first show the convergence of a simplified
version of the proposed scheme. The preliminary simulation
test has been conducted to show how this concept is working.
The result of the simple preliminary simulation shows that
this method seems to achieve sufficient blind deconvolution
at the output of FBF after enough iterations. We expand the
proposed algorithm into the realistic environment in a car.

2. PROPOSED METHOD

2.1. Multipath GSC

Multi-path GSC can be formulated as an optimization prob-
lem as in (1), which is a generalized version of generalized
sidelobe canceller (GSC) [7] under multi-path acoustic envi-
ronment.

argmin
w

E
{
wT yyT w

}
subject to CT w = f, (1)

where ŝ(n) = wT y is the time-domain estimated source
signal and y is is the noisy signal vector, superscript T is
transpose, the array filter coefficient w = [wT

1 wT
2 · · ·wT

N ]T

and wT
i = [w(i−1)L+1 w(i−1)L+2 · · ·w(i−1)L+L] where

i = 1, 2, · · · , N , y = [y1,[1:L] y2,[1:L] · · · yN,[1:L]]T where
yi,[1:L] = [yi(n− (i− 1)n0) yi(n− (i− 1)n0− 1) · · · yi(n−
(i− 1)n0 − (L− 1))], i = 1, 2, ...N and n is the current time
index, steered to a look direction of θ = arcsin(n0Fsd/c) for



microphone spacing d and sampling rate Fs, and CT w = f
is a linear constraint. To derive multi-path GSC, we simply
need to manipulate the constraint part in (1). The constraint
part has the following convolutional form:

[
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]
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where lh + L − 1 by L matrix Chi is constructed from the
room response hi(n):
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,

i = 1, 2, · · · , N (3)

(3) is a typical linear convolution matrix which has Toeplitz
structure. The constraint in (2) is therefore equivalent to the
requirement that W inverts H , i.e., (2) is actually a channel
deconvolution in the look-direction [8]. Note that the length
of the constraint vector f is determined as lh + L − 1 in (3).
We can simply find that we can get the optimal estimator in
Bayesian sense via multi-path GSC followed by Bayesian es-
timation. The beauty of this approach is in the FBF part and
the subsequent blocking matrix, which can be constructed as
the null space of the multi-channel convolution matrix. The
FBF can be simply regarded as a multi-channel deconvolution
problem. Therefore, we might be able to apply any kind of
multi-channel deconvolution scheme [8, 9, 10] for this fixed
part. The blocking matrix can also be constructed by using
an echo cancellation scheme [6], because ideally the output
of the fixed beamformer is the deconvolved and beamformed
speech signal. Although we might be able to apply any kind
of multi-channel deconvolution scheme for this fixed part, in
the subsequent sections we propose a blind multi-channel RIR
identification algorithm, which in fact exploits the structure of
multipath GSC.

2.2. Iterative blind estimation of RIR based on Multipath
GSC

2.2.1. Problem formulation

The channel response estimation follows the optimization
process below.

ĥi(t) = argmin
ĥi(t)

‖s(t) ∗ (h1(t) ∗ w1(t) +

· · · +hN(t) ∗ wN (t)) ∗ ĥi(t) − s(t) ∗ hi(t)‖2(4)

where ĥi is the estimated channel.

ĥi = arg min
ĥi

‖Ĉĥi − hi‖2 = (ĈT Ĉ)−1ĈT hi (5)

where Ĉ is the convolution matrix obtained with the beam-
formed output of impulse responses as input for the beam-
former. Ideally if Ĉ = I , in other words if the FBF with
RIR as input produces perfectly deconvolved output, then we
can obtain the real channel response. As in (5), the estimated
channel responses are obtained in the optimal sense of least
squares hereafter with the constraint of forcing to have zero
values as estimated RIR except the estimated time stamps of
each dominant reflection in RIRs. This is similar with the
concept of acoustic echo cancellation except the constraint
part.

2.2.2. Algorithm

The proposed algorithm is introduced below step by step. In
here, we just care about the deconvolution, because the noise
suppression after the deconvolution is quite straightforward.
Based on the assumption that we know the time stamps for
the reflections, we can successfully estimate the magnitude of
the reflections using the following algorithm, where the num-
ber of microphones is N . The way of estimating the time po-
sition for the reflections are discussed later in the subsequent
section.

1. Initialize the magnitude of the time location of reflec-
tions with epsilon and 0 otherwise.

2. Perform multipath GSC to get output ŝ and update
ĥ1(r) with solution of (4).

3. Set the updated magnitude ĥ1 of the time location with
0 if those are not the position for the designated reflec-
tions.

4. Iterate 2 and 3, until there is no more significant change
in the magnitude of the reflection.

If you follow the first iteration, you will get the first update of
ĥ1(r) ≈ h1(r) − 1

N (h1(r) − ε + h2(r) + · · · + hN (r)) and



if this number is bigger than ε it will be updated until there is
no change of ĥ1(r) and this is going to be:

ĥ1(r) = h1(r) − 1
N − 1

(h2(r) + · · · + hN (r)) (6)

In the early part of the RIR, reflections are infrequent,
therefore typically h2(r) = · · · = hN (r) = 0 or at least
h2(r), · · · , hN (r) << h1(r) and therefore ĥ1(r) ∼= h1(r)
in (6). Even if there exists noise, because we take a mean
of iteration measurements we can regard it as zero since we
can easily assume that the noise process is zero mean. How-
ever, in reality, because of low-pass filtering for sampling
and other low-pass filtering effects acting on the reflections,
the response will not contain perfect impulses, and this im-
perfection will produce some errors. Therefore, reflections
with similar direction of arrival (DOA) will not be estimated
correctly using this scheme. This intuitively makes sense; the
benefits of using beamforming are reduced when the direction
of interference is in the DOA of the source.
Figure 1 shows the converged result of a 2 channel mea-
surement with a seven reflection RIR, including one negative
component and one merged component in the RIR.

x1 = [1 0 0 0 0.5 0 0 0.4 0 0.05 0.3 0 0 −0.1 0.09 0 0 0.04]T

x2 = [1 0 0 0 0 0 0.5 0 0.45 0 0 0.3 − 0.1 0 0 0.09 0.04 0]T

The first three reflection time stamps are assumed to be
known and others are set as zero. We can confirm that by
having correct time stamp for some early reflection, not all,
we can estimate the channel responses up to the given reflec-
tion points and at the same time the deconvolution can be
performed up to the reflection points. This results are very
promising because we can track and deconvolve dominant
early reflections, which is usually sparse enough and deter-
ministically treatable within reasonably small amount of time
frame where we can assume that the early responses are time
invariant.

2.2.3. Algorithm with reflection time stamp estimation

In this section, we propose a heuristic dominant reflection
time stamp estimation together with the proposed algorithm.
Algorithm is as follows.

1. Initially we choose DSB as a first FBF and perform
normalized least mean square algorithm to estimate the
RIR FIR coefficients using the output of DSB.

2. Select the time stamps in which the estimated RIR mag-
nitudes are above a predefined threshold, which deter-
mines the significance level of the reflection.

3. Perform the proposed algorithm.

4. Iterate 2 and 3 enough

Figure 2 shows the converged result, where the simulated
output of two channel have been obtained by convolving the
channel response with a white Gaussian noise source and the
threshold has been set as “0.08”. Note that most of the sig-
nificant reflection points above the threshold can be estimated
almost correctly.

3. EXPERIMENT WITH REAL CAR DATA

In this section, we test the proposed algorithm using the real
multi-channel sources measured in cars. The whole procedure
for testing can be summarized as following.

1. Interchannel delay is estimated using GCC-PHAT
method [11] and adjust the delay to formulate DSB.

2. Perform the proposed algorithm.

Figure 3 shows the 2-channel identification results using one
of single digit utterance in AVICAR database [12], and no dis-
tinctive reflection other than direct path has been estimated.
Possible explanation about this result can be the fact that the
space inside of car is too small for having distinctive reflec-
tions which could be sparsely separable using the proposed
algorithm. However, because this fact also means that there
dose not exist significantly correlated reflections in the origi-
nal signals with the beamformed output using the direct path
information (DSB), we can avoid the signal canceling prob-
lem when we use GSC structure with DSB as FBF. Optimal
signal enhancement result and isolated digit recognition result
with conventional GSC have been reported in [5].

4. CONCLUSION

In this paper, we propose the multipath GSC based blind
channel identification method, which can be plugged in as
a realistic replacement of the sufficient statistic for optimal
speech enhancement. The simulation with artificially gener-
ated sparse channels show that the proposed algorithm can
converge into the original channel responses above a prede-
fined significance threshold. Channel estimation experiment
with real data measured in a car results in the fact that there
exists no distinctive significant reflection which can con-
tribute to the signal cancellation when we use GSC structure.
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Fig. 1. (a)FBF output: Blue dotted line is DSB output, black
dotted lines are updated FBF output, red line is final FBF out-
put after 20 iteration. Updated FBF output produces more
impulse-like output by eliminating the effect of the designated
reflections, in other words, more deconvolved output. (b) Es-
timated channel h1 (c) Estimated channel h2: Red dots show
the converged channel response after 20 iteration and the blue
dotted lines are updated responses. The black line is for orig-
inal RIR. The designated channel responses are almost per-
fectly identified.
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Fig. 2. (a) Estimated channel h1 (b) Estimated channel h2:
Red dots show the converged channel response after 20 iter-
ation and the black line is for original RIR. The designated
channel responses above the predefined threshold are almost
correctly identified.
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Fig. 3. (a) Estimated channel h1 (b) Estimated channel h2
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