
How to “Alternatize” a Clustering Algorithm

M. Shahriar Hossain1, Naren Ramakrishnan1, Ian Davidson2, and Layne T. Watson1

1Dept. of Computer Science, Virginia Tech, Blacksburg, VA 24061
2Dept. of Computer Science, UC Davis, CA 95616

Abstract
Given a clustering algorithm, how can we adapt it to find multiple,
non-redundant, high-quality clusterings? We focus on algorithms
based on vector quantization and describe a framework for auto-
matic ‘alternatization’ of such algorithms. Our framework works
in both simultaneous and sequential learning formulations and can
mine an arbitrary number of alternative clusterings. We demon-
strate its applicability to various clustering algorithms—k-means,
spectral clustering, constrained clustering, and co-clustering—and
effectiveness in mining a variety of datasets.

1 Introduction
Alternative clustering (e.g., [12]) is the idea of uncovering
multiple clusterings of a dataset so as to suggest varying
viewpoints and differing hypotheses. It has been studied in
various applications, e.g., to help refine functional classifi-
cations of genes [29] and in multiple-criteria decision mak-
ing [21, 22]. Alternative clustering is also typically consid-
ered a precursor step to consensus clustering [20, 23].

While it has been long accepted that clustering formula-
tions are generally under-constrained and hence afford mul-
tiple solutions, the idea of explicitly mining alternative clus-
terings has witnessed a recent surge of interest [3, 6–9, 11–
13, 17, 25–27, 36]. Both sequential and simultaneous
learning formulations have been studied. In the sequential
formulation, we are given a clustering or set of clusterings,
and the goal is to identify a new high-quality clustering that
is as different as possible from the supplied clustering(s). In
the simultaneous learning formulation, also known as dis-
parate clustering [17], the goal is to simultaneously identify
two (or more) different high-quality clusterings.

Algorithms for mining alternative clusterings approach
the underlying problem in different ways. Davidson and Qi
[9] propose a constrained optimization formulation to trans-
form the underlying instance space where the results of the
previous clustering are used as constraints. Jain et al. [17]
learn two disparate clusterings simultaneously by minimiz-
ing a k-means sum-of-squares error objective for the two
clustering solutions and at the same time minimizing the cor-
relation between these two clusterings. Cui et al. [6] find
many alternative clusterings using a series of orthogonal pro-

jections. Data is repetitively orthogonalized into a space not
covered by existing clusterings and a clustering algorithm is
applied on the new space. Dang and Bailey [7] propose an
information-theoretic approach to ensure alternative cluster-
ing quality by minimizing the mutual information between
the desired clustering and a supplied clustering. Niu et al.
[25] describe an approach that is based on learning multiple
subspaces in conjunction with learning multiple alternative
clustering solutions by optimizing a single objective func-
tion.

As the above discussion shows, there are truly ‘alter-
nate’ views of alternative clustering. Our goal here is not
to present yet another alternative clustering algorithm but a
formulation where we can take an existing algorithm and au-
tomatically ‘alternatize’ it. In other words, given a clustering
algorithm we show how we can automatically adapt it to find
alternative clusterings.

Our framework builds upon the mathematical machin-
ery introduced in [16] but solves fundamentally different
problems. At a high level, the work in [16] can be viewed
as exploring ‘relational space’ whereas our work explores
‘algorithm space.’ The work in [16] can relate clusterings
across multiple domains but restrictive in that it can only
relate k-means clusters across a relation. In contrast, the
present paper is focused on mining alternative clusterings in
a given dataset but expressive in the range of algorithms it
can alternatize. In particular, we show that most algorithms
based on vector quantization—i.e., those that choose proto-
types/codebook vectors to minimize distortion when the data
are replaced by the prototypes—can be alternatized using our
approach. As is well known, this covers a broad range of
clustering algorithms.

Our contributions are:

1. We demonstrate how vector quantization algorithms
that optimize for prototypes can be embedded into a
larger contingency-table framework to identify alterna-
tive clusterings. We show how this alternatization ap-
proach works for k-means, spectral clustering [28], co-
clustering of bipartite graphs [10], and constraint-based
clustering formulations [34].

2. We are able to find an arbitrary number of alternative

clusterings, rather than just two alternative clusterings
or one clustering alternative to a given clustering. Since
there is an intrinsic limitation to mining multiple alter-
native high-quality clusters, our approach helps explore
the space of possible clusterings in a systematic man-
ner. We show how this is a valuable tool in exploratory
data analysis.

3. Our approach works in both simultaneous and sequen-
tial learning formulations. In our experiments here, we
demonstrate the use of our simultaneous formulation to
first find two alternative clusterings and then use the se-
quential paradigm to incrementally find more alterna-
tive clusterings.

2 Alternatization
Fig. 1 depicts a 2D example involving 200 points where we
seek to mine two clusters. In vector quantization algorithms,
each cluster is denoted by a prototype and because we de-
sire alternative clusterings, we wish to identify two sets of
prototypes—Proto1 and Proto2—each of which has two vec-
tors (one for each cluster). There are two desired properties
for these clusterings: i) when compared across clusterings
the clusters must be highly distinct from each other, ii) the
individual clusters in each clustering must be local in the
respective spaces (i.e., points within a cluster are similar
whereas points across clusters are dissimilar).

2.1 Modeling dissimilarity We model overlap between
clusterings by constructing a contingency table, as shown in
Fig. 1 (bottom). The table is 2×2, where the rows denote
clusters from Fig. 1 (top left) and the columns denote clusters
from Fig. 1 (top right). The cells indicate the number of
data points that are common among the respective clusters.
An ideal alternative clustering as shown would result in a
uniform (or near uniform) distribution over all contingency
table entries. The deviation of this distribution from the
uniform distribution serves as our objective criterion.

It is important to note, however, that we do not have
direct control over the contingency table entries. These
entries are computed from the clusters, which in turn are

Clustering 1

X

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Y

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5 Clustering 2

X

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Y

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

50 50
50 50

Figure 1: Two alternative clusterings compared.

defined by the prototypes. The objective function can hence
be formulated as:

Obj = F(n(v(Data,Proto1), v(Data,Proto2)).

Here, v computes two sets of clusters given the prototypes
Proto1 and Proto2, n compares the results and constructs the
contingency table, and F is the objective function applied
over the contingency table that measures dissimilarity over
clusterings. The goal is hence to optimize the above function
for Proto1 and Proto2.

To find three or more alternative clusterings (simultane-
ously), the above function can be trivially generalized, e.g.:

Obj = F(n(v(Data,Proto1), v(Data,Proto2))
+ F(n(v(Data,Proto1), v(Data,Proto3))
+ F(n(v(Data,Proto2), v(Data,Proto3));

In other words, all three clusterings must be pairwise dif-
ferent. These notions can also be easily adapted to the se-
quential mining case where we are given a partition of the
data and need to identify a clustering alternative to the given
partition:

Obj = F(n(Clust1, v(Data,Proto2)),

Here, Clust1 is the supplied clustering and Proto2 denotes
the to-be-found prototype vectors.

2.2 Modeling locality Now we turn our attention to mod-
eling locality of clusters. It is well known that, for a cluster-
ing to satisfy optimality of a sum-of-squared error distortion
measure, it must satisfy two criteria:

1. Nearest neighbor criterion: A vector (data point) is
assigned to the cluster corresponding to the nearest
prototype.

2. Centroid criterion: A prototype must be the (possibly
weighted) average of the vectors assigned to its cluster.

Classical vector quantization algorithms such as k-means
solve each of the above criteria alternatively and iteratively.
Here, we instead build these criteria into the definition of the
cluster assignment function v (see next section for details)
rather than as a separate objective measure. In this manner,
by optimizing the objective criterion presented above, we
achieve the twin goals of dissimilarity across clusterings and
locality within clusterings.

3 Formalisms
Let W be a dataset where W = {ws}, s = 1, . . . , n are
the real-valued vectors in dataset W . Each vector in W
is of dimension lw, i.e., ws ∈ Rlw . g(W) is a function
that maps vectors from W into a space over which vector

quantization is conducted. Specifically, X = g(W) where
X = {xs}, s = 1, . . . , n is a set of (real-valued) vectors in
the transformed space. Vectors inX are of dimension lx, i.e.,
xs ∈ Rlx . We will occasionally abuse notation and viewW
and X as matrices where the vectors are packaged row-wise.

The function g captures any transformations and pre-
processing necessary for the algorithm being alternatized.
For the classical k-means algorithm, as we will see, g is sim-
ply the identity function (i.e., no special pre-processing is
required). For other vector quantization algorithms, its defi-
nition is more complicated (see next section for details). In
the remainder of this section, we assume that the transfor-
mation through g has been performed and that we work with
vectors in the transformed space X .

Because we desire alternative sets of clusters, we cre-
ate X ′, an exact replica of X , i.e., X ′ = {xt}, t =
1, . . . , n,xt ∈ Rlx . Let C(x) and C(x′) be the cluster in-
dices, i.e., indicator random variables, corresponding to X
and X ′ and let k be the corresponding number of clusters.
Thus, both C(x) and C(x′) takes values in {1, . . . , k}.

3.1 Assigning vectors of X and X ′ to clusters Let mi,X
be the prototype vector for cluster i in vector-setX (similarly
mj,X ′). (These are precisely the quantities we wish to
estimate/optimize for, but in this section, assume they are
given). Let v(xs)

i (likewise v(xt)
j) be the cluster membership

indicator variables, i.e., the probability that data sample
xs is assigned to cluster i in vector-set X (resp). Thus,∑k
i=1 v

(xs)
i =

∑k
j=1 v

(xt)
j = 1. The traditional hard

assignment is given by:

v
(xs)
i =

{
1 if ||xs −mi,X || ≤ ||xs −mi′,X ||, i′ = 1 . . . k,
0 otherwise.

(Likewise for v(xt)
j .) Ideally, we would like a continuous

function that tracks these hard assignments to a high degree
of accuracy. A standard approach is to use a Gaussian kernel
to smooth out the cluster assignment probabilities. Here,
we present a novel smoothing formulation which provides
tunable guarantees on its quality of approximation and for
which the Gaussian kernel is a special case. First we define

γ(i,i′)(xs) =
||xs −mi′,X ||2 − ||xs −mi,X ||2

D
, 1 ≤ i, i′ ≤ k,

where

D = max
s,s′
||xs − xs′ ||2, 1 ≤ s, s′ ≤ n

is the pointset diameter. We now use argmin
i′

γ(i,i′)(xs) for

cluster assignments so the goal is to track min
i′
γ(i,i′)(xs)

with high accuracy. The approach we take is to use
the Kreisselmeier-Steinhauser (KS) envelope function [19]

given by

KSi(xs) =
−1
ρ

ln
[k∑
i′=1

exp(−ργ(i,i′)(xs))
]
,

where ρ � 0. The KS function is a smooth function
that is infinitely differentiable (i.e., its first, second, 3rd,
.. derivatives exist). Using this the cluster membership
indicators are redefined as:

v
(xs)
i =

exp
[
ρKSi(xs)

]
∑k
i′=1 exp

[
ρKSi′(xs)

]
=

exp(− ρ
D ||xs −mi,X ||2)∑k

i′=1 exp(− ρ
D ||xs −mi′,X ||2)

(3.1)

An analogous equation holds for v(xt)
j . The astute

reader would notice that this is really the Gaussian kernel
approximation with ρ/D being the width of the kernel.
However, this novel derivation helps tease out how the
width must be set in order to achieve a certain quality of
approximation. Notice that D is completely determined by
the data but ρ is a user-settable parameter, and precisely what
we can tune.

3.2 Preparing contingency tables Preparing the k × k
contingency table (to capture the relationships between en-
tries in clusters across X and X ′) is now straightforward.
We simply iterate over the implicit one-to-one relationships
between X and X ′: We suitably increment the appropriate
entry in the contingency table in a one-to-one relationship
fashion:

wij =
n∑

m=1

v
(xm)
i v

(x′
m)

j ,(3.2)

where xm and x′m refer to two copies of the same vector in
vector-sets X and X ′.

We also define

wi. =
k∑
j=1

wij , w.j =
k∑
i=1

wij

where wi. and w.j are the row-wise and column-wise counts
of the cells of the contingency table respectively.

We will find it useful to define the row-wise random
variables αi, i = 1, . . . , k and column-wise random vari-
ables βj , j = 1, . . . , k with probability distributions as fol-
lows

p(αi = j) = p(C(x′) = j|C(x) = i) =
wij
wi.

,(3.3)

p(βj = i) = p(C(x) = i|C(x′) = j) =
wij
w.j

.(3.4)

The row wise distributions represent the conditional distri-
butions of the clusters in vector-set X given the clusters in
X ′; the column wise distributions are also interpreted analo-
gously.

3.3 Evaluating contingency tables Now that we have a
contingency table, we must evaluate it to see if it reflects
disparateness of the two clusterings. Ideally, we expect that
the contingency table would be uniform in a perfect alter-
native clustering. Therefore for our objective criterion, we
compare the row-wise and column-wise distributions from
the contingency table entries to the uniform distribution. We
use KL-divergences to define the objective function (lower
values are better):

F =
k∑
i=1

DKL

(
αi||U(

1
k

)
)

+
k∑
j=1

DKL

(
βj ||U(

1
k

)
)
.

(3.5)

Note that the row-wise distributions take values over
the columns and the column-wise distributions take values
over the rows of the contingency table, in which case if F
is minimized would result in two alternative clusterings in
the two vector-sets X and X ′ represented respectively by the
rows and columns of the contingency table. Finally observe
that the KL-divergence of any distribution with respect to the
uniform distribution is proportional to the negative entropy
(−H) of the distribution. Thus we are essentially aiming to
maximize the entropy of the cluster conditional distributions
between a pair of replica of the same vector-set.

4 Cluster Handlers
The function g(W) handles the necessary computations
to construct X based on specific details of the clustering
algorithm. Table 1 shows how g(W) computes X for k-
means clustering, spectral clustering, constrained clustering,
and co-clustering.

The k-means handler is trivial as it is simply the iden-
tity function. In this case, it is easy to verify that Eqn. 3.1
denotes soft membership probabilities corresponding to soft
k-means algorithms. The remaining three algorithms, which
are variants or generalizations of spectral clustering, all per-
form specific transformations before invoking k-means on
the transformed space. Consequently, the handlers in Ta-
ble 1 perform transformations of W to X in line with the
semantics of the respective algorithms. The spectral cluster-
ing handler solves the underlying generalized eigenproblem
and prepares the resulting generalized eigenvectors for k-
means clustering. The constrained clustering handler encap-
sulates must-link (ML) and must-not-link (MNL) constraints
into the matrix Q and solves the corresponding generalized
eigenvalue problem. Finally, the co-clustering framework
applies to weighted bipartite graphs and finds partitions for

Table 1: Four different cluster handlers.
k-means:

1. X=W . Return X .

Spectral clustering [28]:

1. Compute the affinity matrix A for the all-pairs similarity
graph G of vectors inW using a Gaussian similarity
function.

2. Compute the diagonal degree matrix D, whose (i, i)th
element is the sum of all elements of the ith row of A.

3. Compute the unnormalized Laplacian L = D −A.

4. Compute the first k generalized eigenvectors u1, ..., uk of
the generalized eigenproblem Lu = λDu. Package the
eigenvectors u1, ..., uk as columns into a n× k matrix and
return the row vectors of this matrix as X .

Constrained clustering [34]:

1. Construct the affinity matrix A and degree matrix D of the
similarity graph G as above.

2. Construct the constraint matrix Q such that

• Q(i, j) = 1 if vectors i and j inW have a must-link
constraint,

• Q(i, j) = −1 if vectors i and j inW have a
must-not-link constraint,

• Q(i, j) = 0 otherwise.

3. Compute vol (G) =
∑n

i=1

∑n
j=1Aij ,

L = I −D−1/2AD−1/2, and Q = D−1/2QD−1/2 where
I is the identity matrix.

4. Solve the generalized eigenvalue system

Lu = λ

(
Q− β

vol(G)
I

)
u

and preserve the top-k eigenvectors u1, ..., uk corresponding
to positive eigenvalues as columns in X ∈ Rn×k.

5. Return X .

Co-clustering [10]:

1. Construct the affinity matrix A and degree matrix D of the
similarity graph G as above. Form T = D−1/2WD−1/2.

2. Compute the singular value decomposition of T and form
l = dlog2ke singular vectors u2, ..., ul+1 from left unitary
matrix and similarly l singular vectors v2, ..., vl+1 from the

right unitary matrix, and construct X =

[
D
−1/2
1 U

D
−1/2
2 V

]
where D1 and D2 are diagonal matrices such that
D1 (i, i) =

∑
jWij , D2 (j, j) =

∑
iWij ,

U = [u2, ..., ul+1], and V = [v2, ..., vl+1].

3. Return X .

both modes of the graph with one-to-one correspondences
between the elements of these partitions. See [10, 28, 34] for
details of these algorithms.

5 Algorithms
Now we are ready to formally present our data mining
algorithms as optimization over the space of prototypes.

5.1 Simultaneous alternative clustering Our goal is to
minimize F , a non-linear function of mi,X and mi,X ′ . For
this purpose, we adopt an augmented Lagrangian formula-
tion with a quasi-Newton trust region algorithm. We re-
quire a flexible formulation with equality constraints (i.e.,
that mean prototypes lie on the unit hypersphere) and bound
constraints (i.e., that the prototypes are bounded by the max
and min (componentwise) of the data, otherwise the opti-
mization problem has no solution). The LANCELOT soft-
ware package [5] provides just such an implementation.

For simultaneous alternative clustering, we “package”
all the mean prototype vectors for clusters from both X and
X ′ (there are k + k of them) into a single vector ν of length
t. The problem to solve is then:

argminF(ν) subject to hi(ν) = 0, i = 1, . . . , η,
Lj ≤ νj ≤ Uj , j = 1, . . . , t.

where ν is a t-dimensional vector and F , hi are real-valued
functions continuously differentiable in a neighborhood of
the box [L,U]. Here the hi ensure that the mean proto-
types lie on the unit hypersphere (i.e., they are of the form
||m1,X ||− 1, ||m2,X ||− 1, · · · , ||m1,X ′ ||− 1, ||m2,X ′ ||− 1,
· · ·) The bound constraints are uniformly set to [−1, 1]. The
augmented Lagrangian Φ is defined by

(5.6) Φ(ν, λ, ϕ) = F(ν) +
η∑
i=1

(
λihi(ν) + ϕhi(ν)2

)
,

where the λi are Lagrange multipliers and ϕ > 0 is a
penalty parameter. The augmented Lagrangian method (im-
plemented in LANCELOT) to solve the constrained opti-
mization problem above is given in OptPrototypes.

Algorithm 1 OptPrototypes
1. Choose initial values ν(0), λ(0), set j := 0, and fix
ϕ > 0.
2. For fixed λ(j), update ν(j) to ν(j+1) by using one step
of a quasi-Newton trust region algorithm for minimizing
Φ
(
ν, λ(j), ϕ

)
subject to the constraints on ν. Call Prob-

lemSetup with ν as needed to obtain F and ∇F .
3. Update λ by λ(j+1)i

= λ(j)i
+ 2ϕhi

(
ν(j)
)

for i = 1,
. . ., η.
4. If

(
ν(j), λ(j)

)
has converged, stop; else, set j := j + 1

and go to (2).
5. Return ν.

In Step 1 of OptPrototypes, we initialize the prototypes using
a k-means algorithm (i.e., one which separately finds clus-
ters in each dataset without coordination), package them into

the vector ν, and use this vector as starting points for opti-
mization. For each iteration of the augmented Lagrangian
method, we require access to F and∇F which we obtain by
invoking Algorithm ProblemSetup.

Algorithm 2 ProblemSetup
1. Unpackage ν into values for mean prototype vectors.
2. Use Eq. (3.1) (and its analog) to compute v(xs)

i and
v
(xt)
j .

3. Use Eq. (3.2) to obtain contingency table counts wij .
4. Use Eqs. (3.3) and (3.4) to define r.v.s αi and βj .
5. Use Eqn. (3.5) to compute F and∇F (see [33].)
6. Return F ,∇F .

This routine goes step-by-step through the framework devel-
oped in earlier sections to link the prototypes to the objective
function. There are no parameters in these stages except for
ρ which controls the accuracy of the KS approximations. It
is chosen so that the KS approximation error is commensu-
rate with the optimization convergence tolerance. Gradients
(needed by the trust region algorithm) are mathematically
straightforward but tedious, so are not explicitly given here.

The per-iteration complexity of the various stages of our
algorithm can be given as follows:

Step Time Complexity
Assigning vectors to clusters O(nklx)
Preparing contingency tables O(nk2)
Evaluating contingency tables O(k2)
Optimization O((η + 1)t2)

Observe that this is a continuous, rather than discrete, op-
timization algorithm, and hence the overall time complex-
ity depends on the number of iterations, which is an un-
known function of the requested numerical accuracy. The
above complexity figures do not take into account complex-
ity of the handler functions g (W) and assume the simplest
k-means implementation. For each vector, we compare it to
each mean prototype, and an inner loop over the dimension-
ality of the vectors gives O(nklx). The per-cell complexity
for preparing the contingency table will simply be a linear
function of the length n of the dataset W . Evaluating the
contingency tables requires us to calculate KL-divergences
which are dependent on the sample space over which the
distributions are compared and the number of such compar-
isons. Either a row-wise or a column-wise such comparisons
has O(k2) time complexity. Finally, the time complexity of
the optimization is O((η + 1)t2) per iteration, and the space
complexity is also O((η + 1)t2), mostly for storage of Hes-
sian matrix approximations of F and hi. Note that t = 2klx
and η = 2k. In practice, to avoid sensitivity to local minima,
we perform several random restarts of our approach, with
different initializations of the prototypes.

5.2 Sequential alternative clustering The sequential al-
ternative clustering in our framework proceeds exactly the
same way as the simultaneous approach described above ex-
cept that the packaging style of the mean prototypes in ν is
now changed. Since one clustering is already given as an
input in the sequential alternative clustering, we prepare the
mean prototypes ofX based on those given assignments. We
package only the mean prototypes of X ′ in ν where t = klx.
As a result, the cluster membership probabilities of X re-
main the same over the iterations of the optimization but the
mean prototypes of X ′ vary. At the end of the optimization,
we obtain an alternative clustering for X ′.

5.3 Finding additional alternative clusterings Finding
more than two alternative clusterings is also straightforward.
As described earlier, all known clusterings and their mean
prototypes stay fixed during the optimization and only the
desired clustering’s prototypes vary.

5.4 Evaluation We present here the evaluation metrics for
capturing the locality of clusters in their respective spaces as
well as for capturing their ‘alternativeness’ w.r.t. previously
discovered clusterings. The clustering quality is measured
using several indicators: Vector Quantization Error (VQE),
Dunn Index (DI), and Average Silhouette Coefficient (ASC).
VQE measures the cohesion of a clustering when the data
are replaced by prototype vectors. Smaller VQE values
are better. DI measures the separation between clusters
and larger values are better. ASC is a measure that takes
both cohesion and separation into account (higher values are
better). In our experiments, we utilize either ASC, or use
both VQE and DI together to evaluate clusterings.

The level to which two clusterings are alternatives of
each other is measured using the Jaccard Index (higher
values are better). Given two clusterings C(i) and C(j),
and for every pair of vectors in the dataset, JI investigates
whether the pair are clustered together in both clusterings or
separate in both clusterings, or together in one but separate
in the other. Specifically, it is defined as:

Jij =
a+ b(
n
2

)
where a is the number of agreements across all pairs, b is the
number of disagreements, and n is the number of vectors in
the dataset.

To assess the quality of clustering alternatives as they
are discovered, we track the Jaccard dissimilarity Jd (i, j) =
1 − Jij between the newly discovered clustering and any
previous ones:

min
i<j

Jd (i, j)

A plot of Jd against discovered clusterings is referred to as
the minimum dissimilarity plot. The minimum dissimilar-
ity for the first clustering is set to be 1 and the minimum

dissimilarity for subsequent clusterings will decrease mono-
tonically. How fast it decreases before reaching 0.0 suggests
the potential for finding alternatives. Once we reach 0.0, we
conclude that there are no further alternatives possible.

6 Experimental Results
In this section we present evaluations of our framework using
synthetic and real-world datasets. The questions we seek to
answer are:

1. Can the framework help reveal a dataset’s intrinsic
potential for alternative clusterings? At what point
should we abandon the search for alternatives?

2. How does the runtime of the framework scale with
increasing dimensions, increasing number of clusters,
and increasing data points?

3. How do the quality of clusterings computed by our
framework compare with the clusterings computed by
the original ‘un-alternatized’ algorithm?

4. What is the potential for knowledge discovery when our
framework is applied on real-world datasets?

All the experiments in this paper were conducted on a single
machine with a Core2 Quad CPU (Q9459@2.66GHz).

6.1 How many alternatives? We utilize a 2D synthetic
dataset having six Gaussians, each with 50 points, arranged
around a circle. Fig. 2 depicts the clusterings discovered by
our framework for a setting of three clusters. Observe that we

Clustering 1

X
-3 -2 -1 0 1 2 3

Y

-3

-2

-1

0

1

2

3
Clustering 2

X
-3 -2 -1 0 1 2 3

Y

-3

-2

-1

0

1

2

3

Clustering 3

X
-3 -2 -1 0 1 2 3

Y

-3

-2

-1

0

1

2

3
Clustering 4

X
-3 -2 -1 0 1 2 3

Y

-3

-2

-1

0

1

2

3

Figure 2: Alternative clusterings (k=3) for a dataset of six
Gaussian distributions arranged around a circle. We identify
three clusterings before we encounter a repetition.

Synthetic data, 3 clusters

Clustering
1 2 3 4

M
in

im
um

 d
is

si
m

ila
rit

y

0.0

0.2

0.4

0.6

0.8

1.0
Synthetic data, 3 clusters

Clustering
1 2 3 4A

vg
. s

ilh
o

u
et

te
 c

o
ef

fi
ci

en
t

0.0

0.2

0.4

0.6

0.8

Figure 3: Minimum dissimilarities and average silhouette
coefficients of the clusterings with k=3.

mine three different clusterings before we encounter a repe-
tition. Fig. 3 (left) tracks the quality of clusterings as they
are mined, specifically their minimum dissimilarity with any
previously discovered clustering. Clustering 1 is the refer-
ence and has a score of 1.0. We see a monotonic decrease
in the dissimilarity score for the first three clusterings. Clus-
tering 4 has a dissimilarity of 0 and this suggests that we
should stop seeking further alternatives. Fig. 3 (right) de-
picts the average silhouette coefficients (ASC) for each dis-
covered clustering. Note that all the discovered clusterings
have positive ASCs indicating both cohesion and separation
of the underlying clusters.

The number of clusterings discovered before we run
out of alternatives is a complex function of the number
of clusters and the nature of the dataset. Using the same
dataset as shown in Fig. 2, we varied k, the number of
clusters sought. For each setting, we computed alternative
clusterings until we experienced no further possibilities.
Fig. 4 demonstrates the results. For example, there is only
a single clustering with k=1 (likewise with k=6), but three
different clusterings with k=2, 3 and 4 (the reader can verify
why this is so). The number of clusterings is highest with 6
possible alternatives at k=5.

6.2 Runtime characteristics Fig. 5 (left) depicts the run-
time behavior of our alternatization framework with the ba-
sic k-means algorithm. While the runtime monotonically in-
creases with number of clusters, number of data points, and
number of dimensions, we see that the increases are mod-

Synthetic data (6 Gaussians)

Number of clusters
1 2 3 4 5 6

N
u

m
b

er
 o

f
cl

u
st

er
in

g
s

0

1

2

3

4

5

6

7

Figure 4: Number of clusterings discovered with different
numbers of clusters.

500 points of different dimensions

of clusters
2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
)

0

10

20

30

40

50
2 dimensions
4 dimensions
6 dimensions
8 dimensions
10 dimensions

Different numbers of 2D points

of clusters
2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
)

0

10

20

30

40

50

60

1000
2000
3000
4000
5000

Figure 5: Runtime characteristics.

est. Also note that the runtime includes time for the cluster-
ing handler (which is specific to the algorithm being alterna-
tized) and the time for the optimization.

6.3 Comparison with [26] We compare the quality of
clusters computed by our alternatization framework with the
alternative clustering framework of Qi and Davidson [26].
Since the latter is a sequential approach, for a fair compari-
son we setup our framework in a sequential fashion as well.
We first obtain a k-means clustering of the dataset, and then
alternatize this clustering using Qi and Davidson’s frame-
work as well as ours. We applied both the frameworks on
four UCI repository datasets—Glass, Ionosphere, Vehicle,
and Iris—characteristics of whom are shown in Table 2. We
find alternative clusterings with k set equal to the number of
classes in each dataset. The results in this subsection are av-
eraged over 10 runs of both our approach and the approach
of Qi and Davidson.

Fig. 6 (a) depicts the Jaccard index between the clus-
tering obtained by k-means and the clusterings obtained by
either our algorithm or the framework of Qi and Davidson. It
shows that our framework provides lower Jaccard index (and
hence better alternatives) than [26] with all of the datasets.
Another measure of alternativeness is our objective function
itself (lower values being better). Fig. 6 (b) shows a compar-
ison of the two approaches in terms of our objective function
(F). It shows that F is much lower with our approach when
compared with that of [26]. Note that, for the approach of
Qi and Davidson, F is calculated by comparing the result of
k-means (clustering 1) and the resultant assignments of the
discovered clustering (clustering 2), constructing the contin-
gency table, and evaluating it. Hence, our alternative cluster-
ing framework provides better alternatives in terms of both
Jaccard index and F .

Considering the measure of cluster quality, Fig. 6 (c)

Table 2: Four UCI datasets.

Instances # features # classes
Glass 214 10 6

Ionosphere 351 34 2
Vehicle 946 18 4

Iris 150 4 3

Jaccard Index (smaller values are better)

Glass Ionosphere Vehicle Iris

Ja
cc

ar
d

 In
d

ex

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Qi & Davidson
Our approach

Obj. function (smaller values are better)

Glass Ionosphere Vehicle Iris

O
b

j.
fu

n
ct

io
n

10x10 -15
100x10 -15

1x10 -12
10x10 -12

100x10 -12
1x10 -9

10x10 -9
100x10 -9

1x10 -6
10x10 -6

100x10 -6
1x10 -3

10x10 -3
100x10 -3

Qi & Davidson
Our approach

VQE (smaller values are better)

Glass Ionosphere Vehicle Iris

V
Q

E

10x10 0

100x10 0

1x10 3

10x10 3

100x10 3

1x10 6

10x10 6

100x10 6

k-means
Qi & Davidson
Our approach

Dunn index (larger values are better)

Glass Ionosphere Vehicle Iris

D
u

n
n

 In
d

ex
 (

D
I)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
k-means
Qi & Davidson
Our approach

(a) (b) (c) (d)
Figure 6: We used four UCI datasets (Glass, Ionosphere, Vehicle and Iris) to compare the quality of clusterings and
alternatives between the approach of Qi and Davidson [26] and our method. (a) Jaccard index. (b) Objective function.
(c) Vector quantization error. (d) Dunn index.

MAGIC Gamma Telescope Data Set, 2 clusters

of total random constraints

10 20 30 40 50 60 70 80 90 100

o

f
co

n
st

ra
in

ts
 v

io
la

te
d

0

10

20

30

40

50
Clustering by Wang & Davidson
Alternative clustering by our framework

MAGIC Gamma Telescope Data Set, 2 clusters

of total random constraints

10 20 30 40 50 60 70 80 90 100

V
ec

to
r

Q
u

an
ti

za
ti

o
n

 E
rr

o
r

(V
Q

E
)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
Clustering by Wang & Davidson
Alternative clustering by our framework

MAGIC Gamma Telescope Data Set, 2 clusters

of total random constraints

10 20 30 40 50 60 70 80 90 100
D

u
n

n
 In

d
ex

 (
D

I)

0.3

0.4

0.5

0.6

0.7

0.8 Clustering by Wang & Davidson
Alternative clustering by our framework

MAGIC Gamma Telescope Data Set, 2 clusters

of total random constraints

10 20 30 40 50 60 70 80 90 100

Ja
cc

ar
d

 In
d

ex
 (

JI
)

0.33

0.34

0.35

0.36

0.37

0.38

(a) (b) (c) (d)
Figure 7: Alternatizing the algorithm in [34] to mine the MAGIC Gamma Telescope dataset. Plots of (a), and (b) (c)
are respectively numbers of constraint violations, the Vector Quantization Error (VQE), Dunn Index (DI) for the native
algorithm and our alternatized version. The plot in (d) shows the Jaccard Index (JI) with various numbers of constraints.
This shows that there are alternative clusterings even when the given constraints are satisfied.

and (d) depict the comparison of locality and separation of
the clusters in the alternative clusterings discovered by the
two approaches using vector quantization error (VQE) and
the Dunn index (DI). They depict that, for the glass and
ionosphere datasets, VQE and DI of our approach are almost
the same as the approach of Qi and Davidson. For the
vehicle and iris datasets, the approach of [26] has slightly
better locality and DI. This shows that our framework finds
high-quality alternatives without compromising the quality
of clusters.

6.4 Comparison with [34] We consider the MAGIC
Gamma Telescope dataset (UCI ML Repository) which con-
tains 19,020 instances, 11 attributes, and 2 class labels. The
objective of this experiment is to alternatize a constrained
clustering algorithm ([34]) and to assess if the constraints are
satisfied in the alternative clustering while maintaining the
clusters’ quality. We experimented with different quantities
of randomly generated constraints. For each case considered
here, half of the constraints are must-link (ML) constraints
and the other half are must-not-link (MNL) constraints. Fig-
ure 7 (a) depicts the number of constraint violations for dif-
ferent constraint sets. It demonstrates that the constrained
clustering algorithm of Wang and Davidson and our alter-
natizatation perform comparably. Fig. 7 (b) shows that the
locality of the generated clusters in terms of VQE is slightly
better (recall smaller values are better) in the alternative clus-

terings generated by our framework. Fig. 7 (c) shows that
the Dunn index is better with a smaller number of input con-
straints in the framework of Wang and Davidson. On the
other hand, our framework has better (higher) Dunn index
with a larger number of input constraints. Finally by study-
ing the Jaccard indices (similarity), Fig. 7 (d) depicts that our
framework really generates alternative clusterings with low
similarity to the original clustering. However, the similarities
tend to become higher with larger number of constraints, in-
dicating a breakdown of alternativeness with higher number
of constraints.

6.5 Image segmentation Image segmentation is a popu-
lar application of spectral clustering and in this section we
demonstrate the alternatization of Shi and Malik’s [28] nor-
malized cut algorithm.

The first image we consider is a 85×100 optical illusion
(see Fig. 8 (left)). Fig. 8 (middle) shows a segmentation
of this image with the normalized cut algorithm with k=2.
Fig. 8 (right) is the alternative segmentation discovered by
our framework. The reader might get the illusion from
Fig.8 (right) that in the alternative segmentation the cluster
labels are merely flipped. However, a closer look reveals
key differences. In fact, the Jaccard index between Figs. 8
(middle) and (right) is 0.51 (a very significant result for the
case of just two clusters – refer back to the synthetic data
example).

Original Image

Student Version of MATLAB

Partitioning1

Student Version of MATLAB

Partitioning2

Student Version of MATLAB

Original image Clustering 1 Clustering 2
Figure 8: (left) A 85 × 100 optical illusion. (middle) Segmentation (k = 2) discovered by [28]. (right) Segmentation after
alternatization by our framework. Contrary to appearances, this segmentation is not simply a flipping of colors from the
previous segmentation. The Jaccard index between the two segmentations is 0.51.

Original Image

Student Version of MATLAB

Partitioning1 Image

Student Version of MATLAB

Partitioning2 Image

Student Version of MATLAB

Original image Clustering 1 Clustering 2
Figure 9: (left) A 100 × 72 distorted image of actors Liu Fengchao, Jackie Chan, and Wang Wenjie. (middle) Clustering 1
(k = 5) found by [28]. (right) Segmentation after alternatizing clustering 1 using our framework. Note that this clustering
brings the three people together better. Jaccard index between the two clusterings is 0.78.

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

45

50

Student Version of MATLAB

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

45

50

Student Version of MATLAB

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

45

50

Student Version of MATLAB

Original image Clustering 1 Clustering 2

Figure 10: (left) A 40 × 50 image of Homer Jay Simpson.
(middle) Segmentation (k = 3) found by [28] (right) Seg-
mentation after alternatizing clustering 1 by our framework.
Jaccard index between clusterings 1 and 2 is 0.72.

Alternative clusterings can sometimes aid in discerning
features of images that were missed in previous clusterings.
Fig. 9 shows an example where spectral clustering (with k =
5) fails to separate the people from the backgrounds. Note
that Wang Wenjie (the right most actor) is conflated with the
background (at bottom side). Although the similarity 0.78
between the two segmentations is comparatively high, the
alternative clustering found by our framework separates the
people from the backgrounds better. This has applications
to features like the ‘magic wand’ of photo editing tools like
PhotoShop where the user can be presented with a range of

alternative possibilities rather than a single selection.
Fig. 10 shows a final example of image segmentation

with a 40 × 50 image of the fictional character Homer Jay
Simpson. In Clustering 1, the shirt, neck and the head of
Simpson are in one cluster. In the alternative clustering
(clustering 2), the lips are better visible. A consensus
clustering of these two clusterings can help discern all key
characteristics of the image.

6.6 Sequential alternative co-clustering We consider a
subset of DBLP, specifically 12 computer science con-
ferences (ICDM, KDD, SDM, SIGMOD, ICDE, VLDB,
CIKM, SIGIR, WSDM, WWW, ICML and NIPS) and the
500 authors who had top publication counts when aggregated
across these conferences. Each author is represented as a
(normalized to norm 1) 12-length vector of the publications
in these conferences.

We first apply Dhillon’s framework [10] to discover one
co-clustering and then repeatedly alternatize it using our
framework. Every subsequent co-clustering is alternative to
all previously discovered ones. Recall that the goal of co-
clustering is to discover clusters of authors and concomitant
clusters of conferences.

We discovered five different co-clusterings with non-

ICDE, SIGMOD, VLDB, WSDM

Abraham Silberschatz

Anthony K. H. Tung

Boualem Benatallah

ICML, NIPS

Corinna Cortes
Michael I. Jordan
Shai Shalev-Shwartz

ICDM, KDD, SDM

Tobias Scheffer
Xifeng Yan

CIKM, WWW

Rong Jin
Ding Zhou

SIGMOD, VLDB, NIPS

Abraham Silberschatz

Michael I. Jordan

ICDE

Anthony K. H. Tung

CIKM, ICDM, KDD, SDM,
WWW, WSDM

Boualem Benatallah

Ding Zhou

Xifeng Yan

SIGIR, ICML

Tobias Scheffer

Rong Jin

Corinna Cortes

Shai Shalev-Shwartz

ICDE, SIGMOD, VLDB

Abraham Silberschatz

Anthony K. H. Tung

Boualem Benatallah

Xifeng Yan

ICML, NIPS

Corinna Cortes
Michael I. Jordan
Shai Shalev-Shwartz
Tobias Scheffer

ICDM, KDD, SDM

Rong Jin

Ding Zhou

CIKM, SIGIR, SIGMOD, VLDB

Abraham Silberschatz

ICDE

Anthony K. H. Tung

Xifeng Yan

ICDM, KDD, SDM

Boualem Benatallah

Ding Zhou

ICML, NIPS, WSDM

Corinna Cortes
Michael I. Jordan
Shai Shalev-Shwartz
Tobias Scheffer
Rong Jin

CIKM, ICDE, SIGIR, SIGMOD, VLDB

Abraham Silberschatz

Anthony K. H. Tung

Boualem Benatallah

ICDM, KDD, SDM

Xifeng Yan

Corinna Cortes

Tobias Scheffer

ICML, NIPS, WSDM

Michael I. Jordan
Shai Shalev-Shwartz
Rong Jin

WWW

Ding Zhou

Clustering 1 Clustering 2 Clustering 3 Clustering 4 Clustering 5

Figure 11: Zig-zag pattern of authors and conferences as discovered through sequential alternative co-clustering.

zero minimum dissimilarity. A partial description of the
results is shown in Fig. 11. By tracking a specific author, we
can observe how he/she changes clusters and cluster labels in
subsequent clusterings. For instance, Corinna Cortes moves
through the clusterings: ICML, NIPS → SIGIR, ICML →
ICML, NIPS → ICML, NIPS, WSDM → ICDM, KDD,
SDM. The zig-zag pattern of movements in Fig. 11 reveals
the disparateness of consecutive clusterings.

6.7 Simultaneous alternative co-clustering In this sub-
section we alternatize the co-clustering algorithm but in the
simultaneous mode. We use a text mining example here as
motivated in [10]. As motivated there, we constructed a text
dataset by randomly picking 200 documents from Cranfield
and 200 documents from Medline abstracts. We evaluated

Medline Cranfield

Cluster 1 123 126

Cluster 2 77 74

Medline Cranfield

Cluster 1 199 9

Cluster 2 1 191

Confusion matrix of clustering 1 Confusion matrix of clustering 2

(a) Confusion matrices of both the clusterings.

Clustering 1 Clustering 2

Cluster 1 207 220

Cluster 2 193 180

Term counts in each term cluster
of two clusterings

C
lu

st
e

ri
n

g
2

Clustering 1

Cluster 1 Cluster 2

Cluster 1 134 86

Cluster 2 73 107

Term distributions in
opposite clusterings

(b) Terms counts in clusterings and clusters.

C
lu

st
e

ri
n

g
2

Clustering 1

Cluster 1 Cluster 2

Cluster 1 126 123

Cluster 2 82 69
Document distributions
in opposite clusterings

(c) Distribution of documents in the clusterings.

Figure 12: Document confusion matrices of both the cluster-
ings and distributions of terms and documents in the clusters
of the clusterings.

the contribution of a term by measuring the information gain
with respect to the class (Cranfield or Medline), and selected
the top 400 terms. So the dataset has 400 documents (in-
stances) and 400 terms (attributes). We mined with a setting
of k = 2 clusters.

Fig. 12 (a) shows the confusion matrices for Clustering
1 and Clustering 2 (recall that both are computed using
our alternatization framework). The confusion matrix for
Clustering 1 indicates that cluster 1 has 199 documents from
the Medline collection whereas cluster 2 has 191 documents
from the Cranfield collection. Numbers in the other cells of
the confusion matrix of Clustering 1 are small. On the other
hand, cluster 1 of Clustering 2 contains 249 documents with
123 of them from Medline and the other 126 from Cranfield.
77 documents are from Medline and 74 documents are from
Cranfield in cluster 2 of Clustering 2. This shows that
Clustering 2 has no diagonal pattern in its confusion matrix
like the confusion matrix of Clustering 1, hence suggesting
disparateness (alternativeness).

Fig. 12 (b) (left) shows that terms are almost uniformly
distributed in the clusters of the two clusterings. Fig. 12 (b)
(right) shows how the terms of one clustering are distributed
in the clusters of the other clustering. This shows that
there are overlaps of terms between the clusters of the
clusterings, indicating some degree of alternativeness in the
term clusters.

Fig. 12 (c) catalogs the document distributions in both
the clusterings and compares them. It supports the confusion
matrix of Fig. 12 (a) (right). To see why, observe that
Clustering 1 closely matches with the class labels (see left
table of Fig. 12 (a)), whereas the table of Fig. 12 (c) bears
resemblance to the confusion matrix of Clustering 2 shown
in Fig. 12 (a) (right).

Because this is a co-clustering example, we also con-
sider term distributions across clusters. Fig. 13 depicts the
membership probabilities of terms in the two clusters across

Membership probabilities of the
terms of Clustering 1

Term sequence

0 25 50 75

10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

M
em

b
er

sh
ip

 p
ro

b
ab

ili
ty

 o
f

a
te

rm
 o

f
b

ei
n

g
 in

 a
 c

lu
st

er

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Cluster 1
Cluster 2

Membership probabilities of the
terms of Clustering 2

Term sequence

0 25 50 75

10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

M
em

b
er

sh
ip

 p
ro

b
ab

ili
ty

 o
f

a
te

rm
 o

f
b

ei
n

g
 in

 a
 c

lu
st

er

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cluster 1
Cluster 2

Membership probabilities of the
terms of clustering 3

Term sequence

0

25 50 75

10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

M
em

b
er

sh
ip

 p
ro

b
ab

ili
ty

 o
f

a
te

rm
 o

f
b

ei
n

g
 in

 a
 c

lu
st

er

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

Cluster 1
Cluster 2

Figure 13: The effect of alternatization on the membership probabilities of terms in clusters across three alternative
clusterings. The terms of all three plots are ordered according to the reference of Clustering 1 so these plots can be compared
by visual inspection.

three alternative clusterings. We see that these patterns are
qualitatively different, again suggesting the ability of our
framework to recover alternative clusterings.

7 Related Work
As stated earlier, the idea of finding more clusterings than a
single one has been studied through various mechanisms and
also in various guises, including subspace clustering [1, 4],
non-redundant clustering/views [6, 11, 25], associative clus-
tering [18, 31], meta-clustering [3, 35], and consensus clus-
tering [20, 23, 32]. A key distinguishing feature of our work
is the formulation of objective functions for alternatization
using a uniform contingency table framework. While con-
tingency tables have been employed elsewhere [2, 30], they
have been used primarily as criteria to evaluate clusterings.
The few works [14, 15, 24] that do use contingency tables
to formulate objective criteria use them in the context of a
specific algorithm such as co-clustering or block clustering,
whereas we use them to alternatize a range of algorithms.
This work can also be viewed as a form of relational clus-
tering [16] because we use (two) homogeneous copies of the
data to model the ‘alternativeness’ property of two cluster-
ings. However, the locality of clusterings in their respective
data spaces is also incorporated into the objective function
without any explicit trade-off between locality and the ‘al-
ternativeness’ property.

8 Discussion
We have presented a general and expressive framework
to alternatize a range of clustering algorithms based on
vector quantization. Our results show that the framework
is both broadly applicable across algorithms and efficient in
systematically exploring the space of possible clusterings.
We are working on three main directions of future work.
First, we would like to increase the expressiveness of our
framework to mine alternative sets of clusters with different
numbers of clusters. This would result in a ‘scatter gather’
approach to clustering, where clusters in one alternative

clustering can be scattered into multiple clusters in the
other alternative clustering (vice versa, for gather). Second,
because alternative clustering is often driven by user input
and domain considerations, we would like to develop an
interactive tool for guided exploration of complex datasets.
Finally, combined with our earlier work [16], we plan to
generalize alternative clustering in the direction of modeling
and compressing entire relational schemas of data.

ACKNOWLEDGMENTS
This work is supported in part by NSF FODAVA grant
0937133 “Formal Models, Algorithms, and Visualizations
for Storytelling Analytics”.

References
[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.

Automatic Subspace Clustering of High Dimensional
Data for Data Mining Applications. SIGMOD Rec.,
27(2):94–105, 1998.

[2] S. Brohee and J. van Helden. Evaluation of Clustering
Algorithms for Protein-protein Interaction Networks.
BMC Bioinformatics, 7:488, 2006.

[3] R. Caruana, M. Elhawary, N. Nguyen, and C. Smith.
Meta Clustering. In ICDM ’06, pages 107–118, 2006.

[4] C. Cheng, A. W. Fu, and Y. Zhang. Entropy-based
Subspace Clustering for Mining Numerical Data. In
KDD ’99, pages 84–93, 1999.

[5] A. R. Conn, N. I. M. Gould, and P. L. Toint.
LANCELOT: A Fortran Package for Large-scale Non-
linear Optimization (Release A), volume 17. Springer
Verlag, 1992.

[6] Y. Cui, X. Fern, and J. G. Dy. Non-redundant Multi-
view Clustering via Orthogonalization. In ICDM ’07,
pages 133–142, 2007.

[7] X. Dang and J. Bailey. A Hierarchical Information
Theoretic Technique for the Discovery of Non-linear
Alternative Clusterings. In KDD ’10, pages 573–582,
2010.

[8] X. Dang and J. Bailey. Generation of Alternative
Clusterings Using the CAMI Approach. In SDM ’10,
pages 118–129, 2010.

[9] I. Davidson and Z. Qi. Finding Alternative Clusterings
Using Constraints. In ICDM ’08, pages 773–778, 2008.

[10] I. S. Dhillon. Co-clustering Documents and Words
using Bipartite Spectral Graph Partitioning. In KDD
’01, pages 269–274, 2001.

[11] D. Gondek and T. Hofmann. Non-redundant Clustering
with Conditional Ensembles. In KDD ’05, pages 70–
77, 2005.

[12] D. Gondek and T. Hofmann. Non-redundant Data
Clustering. Knowl. Inf. Syst., 12(1):1–24, 2007.

[13] D. Gondek, S. Vaithyanathan, and A. Garg. Clustering
with Model-level Constraints. In SDM ’05, pages 126–
137, 2005.

[14] G. Govaert and M. Nadif. Clustering with Block
Mixture Models. PR, 36(2):463–473, 2003.

[15] M. Greenacre. Clustering the Rows and Columns of
a Contingency Table. J. of Classification, 5(1):39–51,
1988.

[16] M. S. Hossain, S. Tadepalli, L. T. Watson, I. David-
son, R. F. Helm, and N. Ramakrishnan. Unifying De-
pendent Clustering and Disparate Clustering for Non-
homogeneous Data. In KDD ’10, pages 593–602, 2010.

[17] P. Jain, R. Meka, and I. S. Dhillon. Simultaneous
Unsupervised Learning of Disparate Clusterings. In
SDM ’08, pages 858–869, 2008.

[18] S. Kaski, J. Nikkilä, J. Sinkkonen, L. Lahti, J. E. A.
Knuuttila, and C. Roos. Associative Clustering for Ex-
ploring Dependencies between Functional Genomics
Data Sets. IEEE/ACM TCBB, 2(3):203–216, 2005.

[19] G. Kreisselmeier and R. Steinhauser. Systematic Con-
trol Design by Optimizing a Vector Performance Index.
In IFAC Symp. on CADCS, pages 113–117, 1979.

[20] T. Li, C. Ding, and M. I. Jordan. Solving Consensus
and Semi-supervised Clustering Problems Using Non-
negative Matrix Factorization. In ICDM ’07, pages
577–582, 2007.

[21] B. Malakooti and Z. Yang. Clustering and Group Selec-
tion of Multiple Criteria Alternatives with Application
to Space-based Networks. IEEE Trans. on SMC, Part
B, 34(1):40–51, 2004.

[22] K. Miettinen and P. Salminen. Decision-aid for Dis-
crete Multiple Criteria Decision Making Problems with
Imprecise Data. EJOR, 119(1):50–60, 1999.

[23] S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consen-
sus Clustering: A Resampling-Based Method for Class
Discovery and Visualization of Gene Expression Mi-
croarray Data. Machine Learning, 52:91–118, 2003.

[24] M. Nadif and G. Govaert. Block Clustering of Con-
tingency Table and Mixture Model. In IDA ’05, pages
249–259, 2005.

[25] D. Niu, J. G. Dy, and M. I. Jordan. Multiple Non-
redundant Spectral Clustering Views. In ICML ’10,
pages 831–838, 2010.

[26] Z. Qi and I. Davidson. A Principled and Flexible
Framework for Finding Alternative Clusterings. In
KDD ’09, pages 717–726, 2009.

[27] D. A. Ross and R. S. Zemel. Learning Parts-Based
Representations of Data. JMLR, 7:2369–2397, 2006.

[28] J. Shi and J. Malik. Normalized Cuts and Image
Segmentation. PAMI, 22(8):888–905, 2000.

[29] J. Sinkkonen and S. Kaski. Clustering based on Con-
ditional Distributions in an Auxiliary Space. Neural
Comput., 14(1):217–239, 2002.

[30] J. Sinkkonen, S. Kaski, and J. Nikkilä. Discriminative
Clustering: Optimal Contingency Tables by Learning
Metrics. In ECML ’02, pages 418–430, 2002.

[31] J. Sinkkonen, J. Nikkilä, L. Lahti, and S. Kaski. Asso-
ciative Clustering. In ECML ’04, pages 396–406, 2004.

[32] A. Strehl and J. Ghosh. Cluster Ensembles — a
Knowledge Reuse Framework for Combining Multiple
Partitions. JMLR, 3:583–617, 2003.

[33] S. Tadepalli. Schemas of Clustering. PhD thesis,
Virginia Tech, Feb 2009.

[34] X. Wang and I. Davidson. Flexible Constrained Spec-
tral Clustering. In KDD ’10, pages 563–572, 2010.

[35] Y. Zeng, J. Tang, J. Garcia-Frias, and G. R. Gao. An
Adaptive Meta-Clustering Approach: Combining the
Information from Different Clustering Results. In CSB
’02, pages 276–287, 2002.

[36] W. Zhang, A. Surve, X. Fern, and T. Dietterich. Learn-
ing Non-redundant Codebooks for Classifying Com-
plex Objects. In ICML ’09, pages 1241–1248, 2009.

