
Efficient Nonnegative Matrix Factorization with Random Projections

Fei Wang∗ Ping Li†

Abstract

The recent years have witnessed a surge of interests in
Nonnegative Matrix Factorization (NMF) in data min-
ing and machine learning fields. Despite its elegant the-
ory and empirical success, one of the limitations of NMF
based algorithms is that it needs to store the whole data
matrix in the entire process, which requires expensive
storage and computation costs when the data set is large
and high-dimensional. In this paper, we propose to ap-
ply the random projection techniques to accelerate the
NMF process. Both theoretical analysis and experimen-
tal validations will be presented to demonstrate the ef-
fectiveness of the proposed strategy.

1 Introduction

Factorization of matrices is a fundamental technique for
data analysis. There have already been a variety of pow-
erful methods, such as Principal Component Analysis
(PCA) [18] and Singular Value Decomposition (SVD)
[13]. During the last decade, Nonnegative Matrix Fac-
torization (NMF) [21] has aroused considerable inter-
ests from the machine learning and data mining fields;
and NMF has been successfully applied in many ar-
eas, such as computer vision [14][28][10], information
retrieval [36][9] and bioinformatics [19][11].

Basically, suppose we have a nonnegative data
matrix X ∈ Rd×n, where d is the dimensionality of
the data points, n is the data set size. The goal
of NMF is to factorize X into the product of two
nonnegative matrices F ∈ Rd×r and G ∈ Rn×r (usually
r ¿ min(n, d)) by minimizing the following loss

(1.1) J(F,G) =
∥∥∥X− FGT

∥∥∥
2

F

with ‖ · ‖F representing the matrix Frobenius norm.
Some researchers have proposed other types of loss
functions such as the matrix divergence [21].

During the last decade, many algorithm have been
proposed to solve the NMF problem, such as Alternat-
ing Least Squares [20], Multiplicative Updates [21] and
Projected Gradient Descent [29]. According to [20], all

∗Department of Statistical Science, Cornell University.
†Department of Statistical Science, Cornell University.

these methods can be derived from the following two-
block coordinate descent framework [5]:

• Initialize G with a nonnegative matrix G(0); t ← 0

• Repeat until a stopping criterion is satisfied

–Find F(t+1): J(F(t+1),G(t)) 6 J(F(t),G(t))

–Find G(t+1): J(F(t+1),G(t+1)) 6 J(F(t+1),G(t))

To enhance the applicability of those NMF based
algorithms, Ding et al. [12] generalized the traditional
NMF algorithm to handle data with both nonnegative
and negative entries; and they named the proposed
algorithm Semi-NMF. The goal of semi-NMF is to
factorize X (whose entries could be either nonnegative
or negative) into the product of two matrices F ∈
Rd×r and G ∈ Rn×r, where only G is constrained
to be nonnegative. According to the analysis in [12],
semi-NMF is equivalent to a relaxed version of K-
means clustering, where r is the number of clusters,
F = [f1, f2, · · · , fr] is composed of the cluster centers,
and G is the cluster indicator matrix with Gij being
the possibility of datum xi belonging to cluster j.
The Semi-NMF algorithm has also successfully applied
to template matching [33], gene clustering [32] and
relational learning [35].

Despite their theoretical and empirical success, one
of the main limitations of NMF based algorithms is
that they need to store the data matrix X in the main
memory throughout the computation process. This
can be prohibitive when the data set is large and high
dimensional. For example, in web scale data mining,
one may commonly encounter data sets of size n = 1010

web pages and each may be represented by d = 105

dimensions (using single words) or 1015 dimensions
(using 3 contiguous words, i.e., 3-shingles).

As a dimension reduction technique, Random
Projection [34][23][24][17] provides an efficient mecha-
nism to compress the data. Basically, the random pro-
jection method makes use of a random projection matrix
R ∈ Rk×d to project the original d-dimensional data
matrix X into a k-dimensional space by

(1.2) X̃ =
1√
k
RX ∈ Rk×n (k ¿ d)

The much smaller matrix X̃ can be used to approxi-
mate some measures in the original d-dimensional space,
e.g., it has been proved that matrix X̃ can preserve the
data vector norms and all pairwise distances of X in ex-
pectations [34]. In recent years, the random projection
technique has successfully been applied to solve many
computational data analysis problems, such as princi-
pal component analysis [7], singular value decomposi-
tion [7], least squares [8] and manifold learning [16].

In this paper, we propose to incorporate the ran-
dom projection technique into the nonnegative matrix
factorization process. Specifically, as there are both neg-
ative and nonnegative values in the random matrix R,
we first investigate the issue of semi-NMF with random
projections, where X is not restricted to be nonnegative.
Then we propose a dual random projection method to
solve the original NMF problem. We also provide ex-
perimental results on applying our algorithm to three
real world high dimensional dense data sets.

The rest of this paper is organized as follows. Sec-
tion 2 introduces how to make use of random projection
to accelerate the semi-NMF procedure. The detailed al-
gorithm on NMF with random projections will be intro-
duced in Section 3. Section 4 presents the experimental
results of the proposed algorithms, followed by the con-
clusions and discussions in Section 5.

2 Semi-NMF with Random Projections

In this section we introduce how to apply random pro-
jection techniques to reduce the storage and computa-
tion burden of semi-NMF. First, we briefly review the
basic semi-NMF algorithm.

2.1 An Overview of Semi-NMF As we stated
in the introduction, semi-NMF also aims to factorize
X into the product of F and GT , where only G is
restricted to be nonnegative. The semi-NMF procedure
also complies with the block-coordinate procedure: It
starts with a random nonnegative G(0), and then find
an F(0) such that

(2.3) F(0) = argmin
F

J
(
F,G(0)

)
=

∥∥∥∥X− F
(
G(0)

)T
∥∥∥∥

2

F

Since semi-NMF does not constrain F to be non-
negative, (2.3) is just an ordinary least square problem,
and its solution would be

(2.4) F(0) = XG(0)

[(
G(0)

)T

G(0)

]−1

The computational complexity of computing F(0)

would be O(dnr+2nr2 + r3). Then semi-NMF will find

a G(1) such that

(2.5) J
(
F(0),G(1)

)
6 J

(
F(0),G(0)

)

which can be achieved by one of the following two ways.

• Multiplicative Update [12], which updates G(1) by
(2.6)

G
(1)
ij ←− G

(0)
ij

√√√√ (XT F(0))+ij + [G(0)((F(0))T F(0))−]ij

(XT F(0))−ij + [G(0)((F(0))T F(0))+]ij

whose computational complexity can reach
O(ndr + rd2 + n2r), which would be extremely
high when n and d are both large. Then the algo-
rithm iterates between Eq.(2.4) and Eq.(2.6) to find
F(1), G(2) and so on and so forth, until the proce-
dure converges. The convergence property has been
proved in [12]. One issue should be mentioned here
is that since the optimal F(t) can be expressed in
a closed form as in Eq.(2.4), we can update G(t+1)

each time without explicitly compute F(t), by
(2.7)

G
(t+1)
ij ←− Gij

√√√√ (KΘ(t))+ij + [G(t)((Θ(t))T KΘ(t))−]ij

(KG(t))−ij + [G(t)((G̃(t))T KG(t))+]ij

where K = XT X is the Gram matrix, and

Θ(t) = G(t)

[(
G(t)

)T (
G(t)

)]−1

Whenever F(t) is needed, we can just calculate it
by Eq.(2.4) using G(t).

• Nonnegative Least Square [20], which obtains G(1)

by solving the following optimization problem

(2.8) G(1) = argmin
G>0

J(F(0),G) =
∥∥∥X− F(0)GT

∥∥∥
2

F

which can be solved, for example, by the active
set method [3][20]. Similar to Eq.(2.7), we can also
obtain G(t+1) by solving

(2.9) G(t+1) = argmin
G>0

J(G) =
∥∥∥X−XΘ(t)GT

∥∥∥
2

F

without explicitly computing F(t).

2.2 Semi-NMF with Random Projections
As we have mentioned, when the data set is large and
high dimensional, updating F and G would be time and
space expensive. Thus, we propose to first left multiply
X ∈ Rd×n with a matrix R̃ = 1√

k
R ∈ Rk×d (k ¿ d),

with R ∈ Rk×d being a normal random matrix1, to

1We say R is a normal random matrix if each of its entry rij is
chosen independently from a standard normal N (0, 1). Actually
R can be a random matrix of other types as in [1][27].

compress its dimensionality from d to k, and then
perform semi-NMF on X̃ = R̃X ∈ Rk×n, i.e., solve the
following optimization problem

(2.10) min
G̃>0,F̃

∥∥∥X̃− F̃G̃T
∥∥∥

2

F

where F̃ ∈ Rk×r and G̃ ∈ Rn×r. In this case, the size
of G̃ would still be the same as G in Eq.(1.1).

To solve problem (2.10), we still initialize G̃(0) =
G(0), and obtain F̃(0) by solving the following (uncon-
strained) least squares problem

(2.11) F̃(0) = argmin
F̃

J̃(F̃, G̃(0)) =

∥∥∥∥X̃− F̃
(
G̃(0)

)T
∥∥∥∥

2

F

whose solution is

(2.12) F̃(0) = X̃G̃(0)

[(
G̃(0)

)T

G̃(0)

]−1

= R̃F(0)

where F(0) is computed as in Eq.(2.4).
Therefore, to obtain G̃(1), we just need to solve

(2.13) G̃(1) = argmin
G>0

J̃(F̃(0),G) =
∥∥∥X̃− F̃(0)GT

∥∥∥
2

F

Combining Eq.(2.13) with Eq.(2.12) yields

(2.14) G̃(1) = argmin
G>0

J̃(F̃(0),G) =
∥∥∥R̃X− R̃F(0)GT

∥∥∥
2

F

which is a compressed nonnegative least square regres-
sion problem [8][30]. According to [2], we have the fol-
lowing Theorem.

Theorem 2.1. [2]. Let R = (rij) be a random k × d
matrix, such that each entry rij is chosen independently
according to N (0, 1). For any vector fixed u ∈ Rd

and any 0 < ε < 1, let ũ = R̃u = 1√
k
Ru. Then,

E(‖ũ‖2) = ‖u‖2 and with the probability of at least
1− e−(ε2−ε3) k

4

(2.15)
∣∣‖ũ‖2 − ‖u‖2

∣∣ 6 ε‖u‖2 ¤

Applying Theorem 2.1 to matrix U(0) = X −
F(0)GT , we obtain the following corollary.

Corollary 2.1. Let R̃ = 1√
k
R and R be a nor-

mal random matrix, then for any particular G,
E(‖Ũ(0)‖2F) = ‖U(0)‖2F with Ũ(0) = R̃U(0), i.e.,

E
[
J̃

(
F̃(0),G

)]
= J

(
F(0),G

)
. Moreover, with the

probability of at least 1 − e−(ε2−ε3) k
4 with 0 < ε < 1,

we have that

(2.16)
∣∣∣J̃

(
F̃(0),G

)
− J

(
F(0),G

)∣∣∣ 6 εJ
(
F(0),G

)
¤

Corollary 2.1 tells that, in the expectation sense,
the random projection procedure would not change
the objective value J(F(0),G). Moreover, we have
the following theorem on the quality-of-approximation
result of the final solutions.

Theorem 2.2. Let Gopt = arg minG>0 J(F(0),G),
and G̃opt = arg minG>0 J̃(F̃(0),G). Then with the
probability of at least 1 − e−(3ε2−ε3) k

108 with 0 < ε < 1,
we have that

(2.17) J(F(0), G̃opt) 6 (1 + ε)J(F(0),Gopt)

Proof. See Appendix I.¤

From Corollary 2.1 and Theorem 2.2, we know that
solving problem (2.13) is approximately the same as
solving (2.8). As introduced in Section 2.1, the whole
semi-NMF process actually only involves the successive
updating of the G matrix. Therefore at each iteration,
we can solve problem (2.13) instead of (2.8) (or update
G̃(t) to descend J̃(F̃(t−1), G̃(t))).

Algorithm 1 summarizes the basic procedure of our
semi-NMF with random projections algorithm.

Algorithm 1 Semi-NMF with Random Projections

Require: Data Matrix X ∈ Rd×n, Projection Matrix R̃ ∈
Rk×d, Positive Integer r, Number of Iterations T

1: Construct the projected matrix X̃ = R̃X ∈ Rk×n

2: Randomly initialize G̃(0) ∈ Rn×r to be a nonnegative
matrix

3: for t = 1 : T do
4: Construct

F̃(t) = X̃G̃(t−1)

[(
G̃(t−1)

)T (
G̃(t−1)

)]−1

5: Find G̃(t) with J̃(F̃(t), G̃(t)) 6 J̃(F̃(t), G̃(t−1))
6: end for
7: Output G̃(T) and F̃(T)

3 NMF with Dual Random Projections

In this section we will introduce how to apply random
projection to the regular NMF procedure. First we
briefly review the basic NMF problem and algorithm.

3.1 An Overview of NMF The goal of NMF [21]
is to factorize a nonnegative matrix X into the product
of two (low rank) nonnegative matrices F and G by
minimizing the Frobenius loss in Eq.(1.1). The NMF
algorithm starts with initial nonnegative G(0) and F(0),
and then seeks a nonnegative F(1) such that

(3.18) J(G(0),F(1)) 6 J(G(0),F(0))

where J(G,F) is just the Frobenius loss as defined in
Eq.(1.1). After obtaining F(1), we then seek a G(1) such
that

(3.19) J(G(1),F(1)) 6 J(G(0),F(1))

The above process is repeated iteratively to find
F(2),G(2)... till convergence.

To achieve this goal, we can apply either the multi-
plicative update [21] or the alternating nonnegative least
squares [4][20] method. One of the most well-known al-
gorithms for the first type of method is Lee and Seung’s
multiplicative update rules, which updates F and G by

Gij ←− Gij

(
XT F

)
ij

(GFT F)ij

(3.20)

Fij ←− Fij

(XG)ij

(FGT G)ij

(3.21)

For the second type of method, [20] proposes to
apply the active set method [3] to solve the nonnegative
least square problems

min
F

J(F,G(t)) =
∥∥∥X− F(G(t))T

∥∥∥
2

F
(3.22)

min
G

J(F(t),G) =
∥∥∥X− F(t)GT

∥∥∥
2

F
(3.23)

alternatingly. [20] showed that their method can
converge much faster than the multiplicative update
method, and usually achieve lower Frobenius loss.

One interesting issue should be mentioned here is
that we can also apply semi-NMF style updating rules
(Eq.(2.6)) to solve the NMF problem, as the problem
of updating G with F fixed in semi-NMF is exactly
the same as the problem of updating G with F fixed
(and updating F with G fixed) in NMF. In this sense,
since X,F,G are all required to be nonnegative in NMF,
there would be no negative parts in XT F and FT F; and
hence the updating rules for G and F become

Gij ←− Gij

√
(XT F)ij

(GFT F)ij

(3.24)

Fij ←− Fij

√
(XG)ij

(FGT G)ij

(3.25)

The convergence of the above updating rules is guar-
anteed by the following theorem.

Theorem 3.1. Update G and F using Eq.(3.24) and

Eq.(3.25) to minimize J(F,G) =
∥∥∥X− FGT

∥∥∥
2

F
will

finally converge.

Proof. The above theorem can be directly derived from
the convergence proof of the semi-NMF updating rules

in [12], where we first make use of the auxiliary function
method to prove update one part (i.e., F or G) with the
other part fixed can monotonically decrease the objec-
tive function value J(F,G) (the form of the constructed
auxiliary function is exactly the same as Eq.(18) in [12]
with the negative part dropped). Since J(F,G) is obvi-
ously bounded so the algorithm will finally converge.¤

Interestingly, the “new part” to be multiplied to
the old G (or F) in Eq.(3.24) (or Eq.(3.25)) is just
the square root of the counterpart in Eq.(3.20) (or
Eq.(3.21)). We thus expect that the updating rules in
Eq.(3.24) and Eq.(3.25) will converge slower than the
rules in Eq.(3.20) and Eq.(3.21).

3.2 NMF with Dual Random Projections
Applying random projections to NMF is not that
straightforward as in semi-NMF, because the nonneg-
ativity constraint would no longer hold if we multiply
X by R̃. This is our motivation to decompose the NMF
with random projection problem into the following two
subproblems at each iteration step t:

• Find a nonnegative G(t) such that
J̃G(F(t−1),G(t)) 6 J̃G(F(t−1),G(t−1))

• Find a nonnegative F(t) such that
J̃F (F(t),G(t)) 6 J̃F (F(t−1),G(t−1))

where
J̃G(F,G) =

∥∥∥R̃dX− R̃dFGT
∥∥∥

2

F

J̃F (F,G) =
∥∥∥R̃nXT − R̃nGFT

∥∥∥
2

F

and R̃d ∈ Rk1×d = 1√
k1

Rk1×d (k1 ¿ d), R̃n ∈
Rk2×n = 1√

k2
Rk2×n (k2 ¿ n) with Ra×b being the

normal random matrix of size a× b.
From Corollary 2.1 and Theorem 2.2 we know

that the minimization of J̃G(F,G) (J̃F (F,G)) with
respect to G (F) is approximately equivalent to the
minimization of J(F,G) with respect to G (F). This
allows us to obtain an approximate solution to the
original NMF by iteratively solving the following two
small scale nonnegative least square problems:

G(t) = argmin
G>0

J̃G(F(t−1),G)(3.26)

F(t) = argmin
F>0

J̃F (F,G(t))(3.27)

The above two problems may be efficiently solved
via the active set method [3][20]. As an alternative, by
noting that the above two problems are exactly the same
as the G-update step in semi-NMF and using Eq.(2.6),
we can also apply the following multiplicative update

rules to successively update F and G:

Gij ←− Gij

√√√√ (X̃T
d F̃)+ij + [G(F̃T F̃)−]ij

(X̃T
d F̃)−ij + [G(F̃T F̃)+]ij

(3.28)

Fij ←− Fij

√√√√ (X̃nG̃)+ij + [F(G̃T G̃)−]ij

(X̃nG̃)−ij + [F(G̃T G̃)+]ij
(3.29)

where X̃d = R̃dX, X̃n = XR̃T
n , F̃ = R̃dF, G̃ = R̃nG.

These updating rules can be viewed as the randomized
approximation of the rules in Eq.(3.24) and Eq.(3.25).

Algorithm 2 NMF with Random Projections

Require: Data Matrix X ∈ Rd×n, Projection Matrix R̃ ∈
Rk×d, Positive Integer r, Number of Iterations T

1: Construct the projected matrix X̃d ∈ Rk1×n and X̃n ∈
Rd×k2

2: Randomly initialize G(0) ∈ Rn×r and F(0) ∈ Rd×r to be
nonnegative matrices

3: for t = 1 : T do
4: Find a nonnegative G(t) such that J̃G(F(t−1),G(t)) 6

J̃G(F(t−1),G(t−1))

5: Find a nonnegative F(t) such that J̃F (F(t),G(t)) 6
J̃F (F(t−1),G(t−1))

6: end for
7: Output G̃(T) and F̃(T)

4 Experiments

This section presents a set of experiments on applying
our nonnegative matrix factorization with random pro-
jection method using three real world data sets. The
basic information of the data are summarized in Table
1; and more detailed information will be available in
their respective sub-sessions.

Table 1: Data Set Information
Name Dimension(d) Size(n) # Class

Harvard [6] 12600 203 5

Gisette [15] 5000 6000 2

COIL [31] 16384 7200 100

4.1 Harvard Microarray Data Set The Harvard
Microarray data set [6] has been used in [22] for testing
sparse random projection algorithms. It contains 203
samples (specimens) in 12600 gene dimensions, includ-
ing 139 lung adenocarcinomas (12 of which may be sus-
picious), 17 normal samples, 20 pulmonary carcinoids,
21 sqamous cell lung carcinomas, and 6 SCLC cases.

We test the effectiveness of our random projection
method on both semi-NMF and NMF. The number of
columns r of both F and G is set to 5, which is equal to
the actual number of clusters. Results with 4 different
initializations will be reported.

4.1.1 Semi-NMF with Random Projections We
conduct the multiplicative update and active set method
to solve the semi-NMF problem. Both algorithms use
the same randomly initialized G(0). The number of
iterations is set to 500 for multiplicative update, and
200 for active set method (since it converges faster, as
can be seen from the experiments). The Frobenius loss
at step t is computed as

(4.30) J(F(t),G(t)) = ‖X− F(t)(G(t))T ‖2F
For the random projection method, we generate a k× d
normal random matrix R, where k varies from 50 to
1000 (which is very small compared to d = 12600 for
this data set), and then run Algorithm 1 with T = 500
for the multiplicative method (or T = 200 for the active
set method). For the convenience of comparison, we
use the same G(0) as in ordinary semi-NMF. For each k
value, we conduct 100 independent runs with the same
G(0) and report the statistics of performance measures.
The Frobenius loss at step t is computed as

(4.31) J ′(F′(t), G̃(t)) = ‖X− F′(t)(G̃(t))T ‖2F

where G̃(t) is obtained by solving the compressed non-
negative least square problem (2.13) with F̃(t) fixed (us-
ing multiplicative update or active set), and

F′(t) = XG̃(t)

[(
G̃(t)

)T

G̃(t)

]−1

as in Eq.(2.4).

As noted in [12], the final G of semi-NMF or NMF
can also be viewed as a relaxed cluster indicator matrix,
where Gij represents the possibility that data point
xi belongs to cluster j. Therefore we also make use
of G to calculate the clustering accuracy [35] on X.
The predicted cluster membership for data point xi is
determined according to ci = argmax

j
Gij .

Fig.1 and Fig.2 respectively plot the variation of the
Frobenius loss and the clustering accuracy with respect
to the number of iterations for the semi-NMF method
using multiplicative rules in Eq.(2.4) and Eq.(2.6) (re-
ferred to as multiplicative semi-NMF) with 4 differ-
ent random initializations of G. The solid lines in these
figures are the lines with different projected dimension-
ality, which are averaged over 100 independent runs (i.e.,
we generate 100 different R̃ independently and compute
the corresponding curves and average them). The dot-
ted line corresponds to the curves calculated by orig-
inal multiplicative semi-NMF without random projec-
tion. The initializations of G are set to be the same for
semi-NMF with or without random projections.

From Fig.1 we can see that with the increase of
the projected dimensionality, the Frobenius loss curve
of the random projection method becomes closer to the

0 100 200 300 400 500
2

2.5

3

3.5

4

4.5

5
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

50

(a) Initialization 1

0 100 200 300 400 500
2

2.5

3

3.5

4

4.5

5
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

50

(b) Initialization 2

0 100 200 300 400 500
2

2.5

3

3.5

4

4.5

5
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

50

(c) Initialization 3

0 100 200 300 400 500
2

2.5

3

3.5

4

4.5

5
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

50

(d) Initialization 4

Figure 1: Frobenius loss variation over 500 iterations on

Harvard Microarray data using Multiplicative Semi-

NMF with 4 different initializations of G. Dotted line is

the plot of original semi-NMF. Solid lines are the averaged

(over 100 independent runs) plots of semi-NMF with random

projections (k = 50 to 1000 from top to bottom).

0 100 200 300 400 500
0.25

0.3

0.35

0.4

0.45

0.5

0.55

number of iterations

cl
us

te
rin

g
ac

cu
ra

cy

50

(a) Initialization 1

0 100 200 300 400 500
0.25

0.3

0.35

0.4

0.45

0.5

0.55

number of iterations

cl
us

te
rin

g
ac

cu
ra

cy

50

(b) Initialization 2

0 100 200 300 400 500
0.25

0.3

0.35

0.4

0.45

0.5

0.55

number of iterations

cl
us

te
rin

g
ac

cu
ra

cy

50

(c) Initialization 3

0 100 200 300 400 500
0.25

0.3

0.35

0.4

0.45

0.5

0.55

number of iterations

cl
us

te
rin

g
ac

cu
ra

cy

50

(d) Initialization 4

Figure 2: Clustering accuracy variation over 500 itera-

tions on Harvard Microarray data using Multiplicative

Semi-NMF with 4 different random initializations of G.

The dotted line is the plot of original semi-NMF. The solid

lines are the averaged (over 100 independent runs) plots of

semi-NMF with random projections (k = 50 to 1000).

original curve; and when k > 100, the gap between the
random projection curve and original curve diminishes.

Fig.2 shows the variation of the clustering accura-
cies with respect to the number of iterations. While
there are usually some fluctuations during the itera-
tion process, the curves with random projections are
more smooth because they are averaged curves. We no-
tice that it is not always the case that the clustering
accuracy increases with increasing iterations. In other
words, more iterations would not necessarily lead to bet-
ter clustering results. Interestingly, for this data set,
random projection may even produce better clustering
results.

0 200 400 600 800 1000
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

dimensionality (k)

re
la

tiv
e

lo
ss

(a) Initialization 1

0 200 400 600 800 1000
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

dimensionality (k)

re
la

tiv
e

lo
ss

(b) Initialization 2

0 200 400 600 800 1000
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

dimensionality (k)

re
la

tiv
e

lo
ss

(c) Initialization 3

0 200 400 600 800 1000
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

dimensionality (k)

re
la

tiv
e

lo
ss

(d) Initialization 4

Figure 3: Relative loss on Harvard Microarray data

using Multiplicative Semi-NMF using 4 different random

initializations of G. The y-axis corresponds to the final

relative loss after 500 multiplicative update iterations, and

the x-axis represents different projected dimensions k (50 to

1000). The solid lines are averaged 100 independent runs

with the standard deviation shown as error bars.

Fig.3 shows the final (after T = 500 iterations)
relative loss (averaged over 100 independent runs with
standard deviation shown as error bars) vs. projected
dimensionality. Here, the relative loss after T iterations
at a specific projected dimension is computed as

(4.32) r(T) = J ′(F′(T), G̃(T))/J(F(T),G(T))

Clearly, the closer r(T) to 1, the better the approxi-
mation will be. From Fig.3 we can see that using more
projected dimensions will lead to better and more stable
approximations, and the gap between J ′(F′(T), G̃(T))
(T = 500, k = 1000) and the original J(F(T),G(T)) is
very small (less than 0.5%× J(F(T),G(T))).

0 50 100 150 200
2

2.5

3

3.5

4

4.5

5
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

50

(a) Initialization 1

0 50 100 150 200
2

2.5

3

3.5

4

4.5

5
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

50

(b) Initialization 2

0 50 100 150 200
2

2.5

3

3.5

4

4.5

5
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

50

(c) Initialization 3

0 50 100 150 200
2

2.5

3

3.5

4

4.5

5
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

50

(d) Initialization 4

Figure 4: Frobenius loss over 200 iterations on Harvard

Microarray data using Active Set Semi-NMF with 4

different random initializations of G. Dotted line is the

plot of original semi-NMF. Solid lines are the averaged

(over 100 independent runs) plots of semi-NMF with random

projections (k = 50 to 1000 from top to bottom).

0 50 100 150 200
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

number of iterations

cl
us

te
rin

g
ac

cu
ra

cy

50

(a) Initialization 1

0 50 100 150 200
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

number of iterations

cl
us

te
rin

g
ac

cu
ra

cy

50

(b) Initialization 2

0 50 100 150 200
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

number of iterations

cl
us

te
rin

g
ac

cu
ra

cy 50

(c) Initialization 3

0 50 100 150 200
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

number of iterations

cl
us

te
rin

g
ac

cu
ra

cy

50

1000

(d) Initialization 4

Figure 5: Clustering accuracy variation over 200 itera-

tions on the Harvard Microarray data using Active Set

Semi-NMF with 4 different random initializations of G.

The dotted line is the plot of original semi-NMF. The solid

lines are the averaged (over 100 independent runs) plots of

semi-NMF with random projections (k = 50 to 1000).

0 200 400 600 800 1000
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

dimensionality (k)

re
la

tiv
e

lo
ss

(a) Initialization 1

0 200 400 600 800 1000
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

dimensionality (k)

re
la

tiv
e

lo
ss

(b) Initialization 2

0 200 400 600 800 1000
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

dimensionality (k)

re
la

tiv
e

lo
ss

(c) Initialization 3

0 200 400 600 800 1000
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

dimensionality (k)

re
la

tiv
e

lo
ss

(d) Initialization 4

Figure 6: Relative loss on Harvard Microarray data

using Active Set Semi-NMF with 4 different random

initializations of G. The y-axis denotes the final relative loss

after 500 alternative nonnegative least squares iterations,

and the x-axis represents different projected dimensions k

(50 to 1000). The solid lines are averaged 100 independent

runs with the standard deviation shown as error bars.

Fig.4 to Fig.6 demonstrate the performances of
semi-NMF (with/without random projections) using
the active set method [20] (referred to as Active Set
semi-NMF). We use the same initializations as in
multiplicative semi-NMF methods. Comparing Fig.4
with Fig.1 confirms that the active set method converges
much faster than the multiplicative method, as claimed
in [20]. Usually less than 50 steps is enough for the
Harvard microarray data set. Moreover, Fig.4 and Fig.6
demonstrate that our random projection method can
perform sufficiently well after k = 600 as the relative
Frobenius loss is less than 0.5%.

4.1.2 NMF with Random Projections We test
the performance of NMF algorithm with random pro-
jections. The NMF algorithm with multiplicative up-
dates (which is referred to as Multiplicative NMF)
and alternating least squares using active set [20] (which
is abbreviated as Active Set NMF) are both tested.

For multiplicative NMF, we randomly initialize F
and G and perform updates for 500 iterations. Note
that there are two types of rules for multiplicative NMF,
i.e., using Lee and Seung’s rules Eq.(3.21) and Eq.(3.20)
[21] (denoted as LS Multiplicative NMF) or the

square root rules Eq.(3.25) and Eq.(3.24) (denoted as
Square-Root Multiplicative NMF). For the conve-
nience of comparison, we use the same initializations for
different methods. For active set NMF, we first ran-
domly initialize G (using the same initializations as in
multiplicative NMF), and then alternatingly solve prob-
lem (3.27) and problem (3.26) for 200 iterations.

We first compare the convergence rates of the above
3 different NMF methods in Fig.7, which suggests that
active set NMF converges the fastest, followed by LS
multiplicative NMF (which is also consistent with
the claim in [20]). The square-root multiplicative
NMF converges the slowest.

0 20 40 60 80 100
2

3

4

5

6

7

8
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

Square−Root Multiplicative NMF
LS Multiplicative NMF
Active Set NMF

(a) Initialization 1

0 20 40 60 80 100
2

3

4

5

6

7

8
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

Square−Root Multiplicative NMF
LS Multiplicative NMF
Active Set NMF

(b) Initialization 2

0 20 40 60 80 100
2

3

4

5

6

7

8
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

Square−Root Multiplicative NMF
LS Multiplicative NMF
Active Set NMF

(c) Initialization 3

0 20 40 60 80 100
2

3

4

5

6

7

8
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

Square−Root Multiplicative NMF
LS Multiplicative NMF
Active Set NMF

(d) Initialization 4

Figure 7: Comparisons of Frobenius norm variations of

different NMF algorithms on Harvard Microarray data.

Curves in the same figure use the same initializations.

We also test the performances of multiplicative and
active set NMF with random projections methods, using
the same initializations as in original NMF algorithms.
In our experiments, we only reduce the scale of the prob-
lem when solving G, and leave the problem of solving F
in its original scale. This is because this gene data set
is highly imbalanced, where there are only 203 samples
but with dimension 12600. Since G is only with size
203 × 5, we do not need to compress it when solving
F. As mentioned in Section 3.2, applying Eq.(3.28) and
Eq.(3.29) iteratively to update G and F iteratively can
be viewed as an approximation of the square-root mul-
tiplicative NMF algorithm. Therefore we compare our
multiplicative NMF with random projection algorithm
with the original square root multiplicative NMF.

0 100 200 300 400 500
2

3

4

5

6
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

50
100

(a) Initialization 1

0 100 200 300 400 500
2

3

4

5

6
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

50

100

(b) Initialization 2

0 100 200 300 400 500
2

3

4

5

6
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

50

(c) Initialization 3

0 100 200 300 400 500
2

3

4

5

6
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

50

(d) Initialization 4

Figure 8: Frobenius loss variation over 500 iterations

on the Harvard Microarray data set using Square-Root

Multiplicative NMF with 4 different random initializa-

tions of F and G. The dotted line is the plot of original

NMF. The solid lines are the averaged (over 100 indepen-

dent runs) plots of NMF with random projections (k1 = 50

to 1000 from top to bottom).

0 200 400 600 800 1000
1

1.02
1.04
1.06
1.08

1.1
1.12
1.14
1.16
1.18

1.2
1.22

dimensionality (k)

re
la

tiv
e

lo
ss

(a) Initialization 1

0 200 400 600 800 1000
1

1.02
1.04
1.06
1.08

1.1
1.12
1.14
1.16
1.18

1.2
1.22

dimensionality (k)

re
la

tiv
e

lo
ss

(b) Initialization 2

0 200 400 600 800 1000
1

1.02
1.04
1.06
1.08

1.1
1.12
1.14
1.16
1.18

1.2
1.22

dimensionality (k)

re
la

tiv
e

lo
ss

(c) Initialization 3

0 200 400 600 800 1000
1

1.02
1.04
1.06
1.08

1.1
1.12
1.14
1.16
1.18

1.2
1.22

dimensionality (k)

re
la

tiv
e

lo
ss

(d) Initialization 4

Figure 9: Relative loss on Harvard Microarray data

using Square-Root Multiplicative NMF with 4 different

random initializations of G. The y-axis corresponds to the

final relative loss after 500 multiplicative update iterations,

and the x-axis represents different projected dimensions k

(50 to 1000). The solid lines are averaged 100 independent

runs with the standard deviation shown as error bars.

0 50 100 150 200
2

3

4

5

6
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

50

(a) Initialization 1

0 50 100 150 200
2

3

4

5

6
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

50

(b) Initialization 2

0 50 100 150 200
2

3

4

5

6
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

50

(c) Initialization 3

0 50 100 150 200
2

3

4

5

6
x 10

10

number of iterations

F
ro

be
ni

us
 lo

ss

(d) Initialization 4

Figure 10: Frobenius loss variation over 500 iterations

on Harvard Microarray data using Active Set NMF

with 4 different random initializations of F and G. The

dotted line is the plot of original NMF. The solid lines are

the averaged (over 100 independent runs) plots of NMF with

random projections (k1 = 50 to 1000 from top to bottom).

The Frobenius loss variation is plotted in Fig.8
(where the solid curves are averaged over 100 indepen-
dent runs), and the relative loss curve is shown in Fig.11.
When k1 approaches 1000 (usually k1 = 500 is enough),
the performance would be quite close for multiplicative
NMF with and without random projections. The same
conclusion can also be drawn from the results of active
set NMF with/without random projections, which are
shown in Fig.10 and Fig.9. Moreover, comparing Fig.9
with Fig.11, we can find that the active set NMF with
random projection method is more stable as the stan-
dard deviation is smaller.

4.2 Gisette Data Set Gisette [15] is a handwritten
digit recognition problem. The task is to separate
the highly confusable digits “4” and “9”. The digits
have been size-normalized and centered. The original
data were modified and the final data set contains
3000 positive examples and 3000 negative examples with
dimension 5000.

4.2.1 Semi-NMF with Random Projections
Similar to the experiments in the last section, we first
compare the performances of the multiplicative/active
set semi-NMF algorithm with and without random pro-
jections under 2 different random initializations of G.
The Frobenius norm variations and relative loss are

0 200 400 600 800 1000
1

1.02

1.04

1.06

1.08

1.1

1.12

dimensionality (k)

re
la

tiv
e

lo
ss

(a) Initialization 1

0 200 400 600 800 1000
1

1.02

1.04

1.06

1.08

1.1

1.12

dimensionality (k)

re
la

tiv
e

lo
ss

(b) Initialization 2

0 200 400 600 800 1000
1

1.02

1.04

1.06

1.08

1.1

1.12

dimensionality (k)

re
la

tiv
e

lo
ss

(c) Initialization 3

0 200 400 600 800 1000
1

1.02

1.04

1.06

1.08

1.1

1.12

dimensionality (k)

re
la

tiv
e

lo
ss

(d) Initialization 4

Figure 11: Relative loss on the Harvard Microarray

data set using Active Set NMF with 4 different random

initializations of G. The y-axis corresponds to the final

relative loss after 500 multiplicative update iterations, and

the x-axis represents different projected dimensions k (50 to

1000). The solid lines are averaged 100 independent runs

with the standard deviation shown as error bars.

shown in Fig.12 and Fig.13 for multiplicative semi-NMF
with random projections, and Fig.14, Fig.15 for active
set semi-NMF with random projections (after 200 it-
erations). The solid random projection related curves
are averaged over 100 independent runs. From the fig-
ures we can also observe that the semi-NMF algorithms
with random projections would perform very close to
the original algorithms when k > 500.

0 50 100 150 200
1.8

1.82

1.84

1.86

1.88

1.9

1.92

1.94

1.96
x 10

12

number of iterations

F
ro

be
ni

us
 lo

ss

50

100

200

(a) Initialization 1

0 50 100 150 200
1.8

1.82

1.84

1.86

1.88

1.9

1.92

1.94

1.96
x 10

12

number of iterations

F
ro

be
ni

us
 lo

ss

50

100

200

(b) Initialization 2

Figure 12: Frobenius loss variation over 200 iterations

on the Gisette data set using Multiplicative Semi-NMF

with 2 different random initializations of G. Dotted line is

the plot of original semi-NMF. Solid lines are the averaged

(over 100 independent runs) plots of semi-NMF with random

projections (k = 50 to 1000 from top to bottom).

0 200 400 600 800 1000
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

dimensionality (k)

re
la

tiv
e

lo
ss

(a) Initialization 1

0 200 400 600 800 1000
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

dimensionality (k)

re
la

tiv
e

lo
ss

(b) Initialization 2

Figure 13: Relative loss on the Gisette data set using

Multiplicative Semi-NMF with 2 different random ini-

tializations of G. The y-axis denotes the final relative loss

after 200 multiplicative update iterations, and the x-axis rep-

resents different projected dimensions k (50 to 1000). The

solid lines are averaged 100 independent runs with the stan-

dard deviation shown as error bars.

0 50 100 150 200
1.8

1.82

1.84

1.86

1.88

1.9

1.92

1.94

1.96
x 10

12

number of iterations

F
ro

be
ni

us
 lo

ss

50

100
200

(a) Initialization 1

0 50 100 150 200
1.8

1.82

1.84

1.86

1.88

1.9

1.92

1.94

1.96
x 10

12

number of iterations

F
ro

be
ni

us
 lo

ss

50

100

200

(b) Initialization 2

Figure 14: Frobenius loss variation over 200 iterations on

the Gisette data set using Active Set Semi-NMF with 2

different random initializations of G. The dotted line is the

plot of original semi-NMF. The solid lines are the averaged

(over 100 independent runs) plots of semi-NMF with random

projections (k = 50 to 1000 from top to bottom).

0 200 400 600 800 1000
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

dimensionality (k)

re
la

tiv
e

lo
ss

(a) Initialization 1

0 200 400 600 800 1000
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

dimensionality (k)

re
la

tiv
e

lo
ss

(b) Initialization 2

Figure 15: Relative loss on the Gisette data set using

Active Set Semi-NMF with 2 different random initializa-

tions of G. The y-axis denotes the final relative loss after

200 multiplicative update iterations, and the x-axis repre-

sents different projected dimensions k (50 to 1000). The

solid lines are averaged 100 independent runs with the stan-

dard deviation shown as error bars.

4.2.2 NMF with Random Projections We per-
form the same testing of NMF series algorithms on
Gisette data as on Harvard microarray data in Section
4.1.2. Fig.16 compares the convergence rates of different
NMF algorithms (over 100 iterations), and the result is
consistent with the results in Fig.7. For the random
projection based methods, we set k1 = k2 = k for sim-
plicity, i.e., the column dimensionality are set to the
same when updating G and F. Fig.17 and Fig.18 show
the Frobenius loss variation of the square-root multi-
plicative NMF and active set NMF with random pro-
jection method. We can also observe that using k > 500
projections would be enough for the random projec-
tion method to perform sufficiently well as their original
counterparts.

0 20 40 60 80 100
1.8

1.85

1.9

1.95

x 10
12

number of iterations

F
ro

be
ni

us
 lo

ss

Square−Root Multiplicative NMF
LS Multiplicative NMF
Active Set NMF

(a) Initialization 1

0 20 40 60 80 100
1.8

1.85

1.9

1.95

x 10
12

number of iterations

F
ro

be
ni

us
 lo

ss

Square−Root Multiplicative NMF
LS Multiplicative NMF
Active Set NMF

(b) Initialization 2

Figure 16: Comparisons of Frobenius norm variations of

different NMF algorithms on Gisette data over 100 itera-

tions. Curves in the same figure use the same initializations.

0 50 100 150 200
1.8

2

2.2

2.4

2.6
x 10

12

number of iterations

F
ro

be
ni

us
 lo

ss

50

(a) Initialization 1

0 50 100 150 200
1.8

2

2.2

2.4

2.6
x 10

12

number of iterations

F
ro

be
ni

us
 lo

ss

50

(b) Initialization 2

Figure 17: Frobenius loss variation over 200 iterations on

the Gisette data set using Square-Root Multiplicative

NMF with 2 different random initializations of G. Dotted

line is the plot of original NMF. Solid lines are the averaged

(over 100 independent runs) plots of NMF with random

projections (k1 = k2 = k = 50 to 1000 from top to bottom).

0 50 100 150 200
1.8

1.9

2

2.1

2.2
x 10

12

number of iterations

F
ro

be
ni

us
 lo

ss

50

100

(a) Initialization 1

0 50 100 150 200
1.8

1.9

2

2.1

2.2
x 10

12

number of iterations

F
ro

be
ni

us
 lo

ss

50

100

(b) Initialization 2

Figure 18: Frobenius loss variation over 200 iterations

on the Gisette data set using Active Set NMF with 2

different random initializations of G. The dotted line is

the plot of original NMF. The solid lines are the averaged

(over 100 independent runs) plots of NMF with random

projections (k1 = k2 = 50 to 1000 from top to bottom).

4.3 COIL Data Set COIL-100 [31] is an object
recognition data set, which contains the pictures of 100
different objects. Each object has 72 pictures taken
from different angles. All pictures are of size 128x128,
with a total of 16384 pixels.

We only tested multiplicative semi-NMF and NMF
with/without random projections on this data set, as we
found that the active set method is too time consuming
on this data set. Fig.19 and Fig.20 show the results
of Frobenius loss variation and relative loss of semi-
NMF and NMF methods respectively with one random
initialization of F and G. From the figures we can see
that even for this large data set, random projection with
k = 500 (for NMF with random projection, we also set
k1 = k2 = k) can still generate satisfactory results.

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3
x 10

6

number of iterations

F
ro

be
ni

us
 lo

ss

50
100

(a) Frobenius loss

0 200 400 600 800 1000
1

1.2

1.4

1.6

1.8

2

2.2

dimensionality (k)

re
la

tiv
e

lo
ss

(b) Relative loss

Figure 19: Frobenius loss variation over 500 iterations

and relative loss on the COIL data set using Multiplica-

tive Semi-NMF with G randomly initialized. The pro-

jected dimensions k1 = k2 = k (50 to 1000). The solid lines

are averaged 100 independent runs.

0 100 200 300 400 500
0

1

2

3

4

5
x 10

6

number of iterations

F
ro

be
ni

us
 lo

ss

50

100

(a) Frobenius loss

0 200 400 600 800 1000
1

1.5

2

2.5

3

3.5

4

dimensionality (k)

re
la

tiv
e

lo
ss

(b) Relative loss

Figure 20: Frobenius loss variation over 500 iterations

and relative loss on the COIL data set using Square-

Root Multiplicative NMF with G randomly initialized.

The projected dimensions k1 = k2 = k (50 to 1000). The

solid lines are averaged 100 independent runs.

5 Conclusions and Discussions

In this paper we propose to apply the random projection
strategy to make nonnegative matrix factorization more
efficient. Extensive experimental results are provided to
validate the effectiveness of the proposed strategy.

However, methods based on random projections do
not take into account data sparsity, while many real-
world large-scale data sets are highly sparse. We are
currently exploring sampling/sketching methods (e.g.,
Conditional Random Sampling (CRS) [25][26]) which
were specifically designed for sparse data.

Acknowledgement

Fei Wang is supported by ONR and Microsoft. Ping
Li is partially supported by NSF (DMS-0808864), ONR
(N000140910911, Young Investigator Award), and Mi-
crosoft. The authors thank Haesun Park for her insight-
ful explanation why the “active set” method can be very
inefficient in certain data sets.

Appendix I: Proof of Theorem 2.2

Using Corollary 2.1, let ξ = ε/3, we have that with the
probability of at least 1− e−(ξ2−ξ3) k

4

(1−ξ)J(F(0),Gopt) 6 J̃(F̃(0),Gopt) 6 (1+ξ)J(F(0),Gopt)

(1−ξ)J(F(0), G̃opt) 6 J̃(F̃(0), G̃opt) 6 (1+ξ)J(F(0), G̃opt)

Therefore

J(F(0), G̃opt) 6 1
1− ξ

J̃(F̃(0), G̃opt)

6 1
1− ξ

J̃(F̃(0),Gopt) 6 1 + ξ

1− ξ
J(F(0),Gopt)

6 (1 + 3ξ)J(F(0),Gopt) 6 (1 + ε)J(F(0),Gopt) ¤

References

[1] D. Achlioptas. Database-friendly random projections:
Johnson-lindenstrauss with binary coins. Journal of
Computer and System Sciences, 66(4):671–687, 2003.

[2] R. I. Arriaga and S. Vempala. An algorithmic theory
of learning: Robust concepts and random projection.
In FOCS, 1999.

[3] M. H. Van Benthem and M. R. Keenan. Fast al-
gorithm for the solution of large-scale non-negativity
constrained least squares problems. J. Chemometrics,
18:441–450, 2004.

[4] M. W. Berry, M. Browne, A. N. Langville, P. V. Pauca,
and R. J. Plemmons. Algorithms and applications for
approximate nonnegative matrix factorization. Com-
put. Stat. & Data Analysis, 52(1):155–173, 2007.

[5] D. P. Bertsekas. Nonlinear Programming. Belmont,
MA, 1999.

[6] A. Bhattacharjee, W. G. Richards, J. Staunton, and
et al. Classification of human lung carcinomas by
mrna expression profiling reveals distinct adenocarci-
noma subclasses. Proceedings of National Academy of
Sciences, 98(24):13790–13795, 2001.

[7] E. Bingham and H. Mannila. Random projection in
dimensionality reduction: applications to image and
text data. In SIGKDD, pages 245–250, 2001.

[8] P. Drineas C. Boutsidis. Random projections for the
nonnegative least-squares problem. Linear Algebra and
Its Applications, 431:760–771, 2009.

[9] G. Chen, F. Wang, and C. Zhang. Collabora-
tive filtering using orthogonal nonnegative matrix tri-
factorization. Journal of Information Processing and
Management, 45(3):368–379, 2009.

[10] P. Cui, F. Wang, L. Sun, and S.-Q. Yang. A joint
matrix factorization approach to unsupervised action
categorization. In ICDM, pages 767–772, 2008.

[11] K. Devarajan. Nonnegative matrix factorization: An
analytical and interpretive tool in computational biol-
ogy. PLoS Comput Biol, 4(7):e1000029+, 2008.

[12] C. Ding, T. Li, and M. I. Jordan. Convex and semi-
nonnegative matrix factorizations. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2009.

[13] G. H. Golub and C. F. Van Loan. Matrix Computa-
tions, 3rd ed. Johns Hopkins, 1996.

[14] D. Guillamet, M. Bressan, and J. Vitrià. A weighted
non-negative matrix factorization for local representa-
tions. In CVPR, pages 942–947, 2001.

[15] I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh
(Eds.). Feature Extraction, Foundations and Appli-
cations. Studies in Fuzziness and Soft Computing.
Physica-Verlag, Springer., 2006.

[16] C. Hegde, M. B. Wakin, and R. G. Baraniuk. Random
projections for manifold learning. In Advances in
Neural Information Processing Systems, 2007.

[17] P. Indyk. Stable distributions, pseudorandom genera-
tors, embeddings, and data stream computation. Jour-
nal of the ACM, 53(3):307–323, 2006.

[18] I. T. Jolliffe. Principal Component Analysis, 2nd ed.
Springer, 2002.

[19] H. Kim and H. Park. Sparse non-negative matrix fac-
torizations via alternating non-negativity-constrained
least squares for microarray data analysis. Bioinfor-
matics, 23(12):1495–1502, 2007.

[20] H. Kim and H. Park. Nonnegative matrix factorization
based on alternating nonnegativity constrained least
squares and active set method. SIAM Journal on
Matrix Analysis and Applications, 30(2):713–730, 2008.

[21] D. D. Lee and H. S. Seung. Learning the parts of
objects by nonnegative matrix factorization. Nature,
401:788–791, 1999.

[22] P. Li. Very sparse stable random projections for
dimension reduction in lα (0< α 62) norm. In
SIGKDD, pages 440–449, 2007.

[23] P. Li. Computationally efficient estimators for dimen-
sion reductions using stable random projections. In
ICDM, pages 403–412, 2008.

[24] P. Li. Improving compressed counting. In UAI, 2009.
[25] P. Li and K. W. Church. Using sketches to estimate

associations. In HLT/EMNLP, pages 708–715, 2005.
[26] P. Li, K. W. Church, and T. Hastie. One sketch for

all: Theory and application of conditional random sam-
pling. In Advances in Neural Information Processing
System, pages 953–960, 2008.

[27] P. Li, T. Hastie, and K. W. Church. Very sparse
random projections. In SIGKDD, pages 287–296, 2006.

[28] S. Z. Li, X. W. Hou, H. J. Zhang, and Q. S. Cheng.
Learning spatially localized, parts-based representa-
tion. In CVPR, pages 207–212, 2001.

[29] C. J. Lin. Projected gradient methods for non-
negative matrix factorization. Neural Computation,
19(10):2756–2779, 2007.

[30] O. A. Maillard and R. Munos. Compressed least
square regression. In Advances in Neural Information
Processing Systems, 2009.

[31] S. A. Nene, S. K. Nayar, and H. Murase. Columbia ob-
ject image library (coil-100). Technical Report CUCS-
006-96, 1996.

[32] Q. Qi, Y. Zhao, M. Li, and R. Simon. Non-negative
matrix factorization of gene expression profiles: a plug-
in for brb-arraytools. Bioinformatics, 25(4):545–547,
February 2009.

[33] J. Le Roux, A. de Cheveigne, and L. C. Parra. Adap-
tive template matching with shift-invariant semi-nmf.
In Advances in Neural Information Processing Systems,
pages 921–928. MIT Press, 2008.

[34] S. S. Vempala. The Random Projection Method, vol-
ume 65. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 2004.

[35] F. Wang, T. Li, and C. Zhang. Semi-supervised
clustering via matrix factorization. In SDM, pages 1–
12, 2008.

[36] W. Xu, X. Liu, and Y. Gong. Document clustering
based on non-negative matrix factorization. In SIGIR,
pages 267–273, 2003.

