Learning a Bi-Stochastic Data Similarity Matrix

Fei Wang
Department of Statistical Science
Cornell University
Ithaca, NY 14853, USA
fw83@cornell.edu

Abstract—An idealized clustering algorithm seeks to learn a
cluster-adjacency matrix such that, if two data points belong to
the same cluster, the corresponding entry would be 1; otherwise
the entry would be 0. This integer (1/0) constraint makes it
difficult to find the optimal solution. We propose a relaxation
on the cluster-adjacency matrix, by deriving a bi-stochastic
matrix from a data similarity (e.g., kernel) matrix according
to the Bregman divergence. Our general method is named the
Bregmanian Bi-Stochastication (BBS) algorithm.

We focus on two popular choices of the Bregman divergence:
the Euclidian distance and the KL divergence. Interestingly,
the BBS algorithm using the KL divergence is equivalent to
the Sinkhorn-Knopp (SK) algorithm for deriving bi-stochastic
matrices. We show that the BBS algorithm using the Euclidian
distance is closely related to the relaxed k-means clustering and
can often produce noticeably superior clustering results than
the SK algorithm (and other algorithms such as Normalized
Cut), through extensive experiments on public data sets.

I. INTRODUCTION

Clustering [13], [6], which aims to organize data in an
unsupervised fashion, is one of the fundamental problems
in data mining and machine learning. The basic goal is to
group the data points into clusters such that the data in the
same cluster are “similar” to each other while the data in
different clusters are “different” from each other.

In this paper, we view clustering from the perspective
of matrix approximation. Suppose we are given a data set
X = {x;}—, which comes from k clusters. We can denote
the cluster memberships by an n x k matrix F, such that

L,

where 7; denotes the j-th cluster. It is often more convenient
to proceed with the scaled version F' [17][24], such that

~ 1/ /m;, ifx; €m;
m»j:{ SV : @

otherwise

ifx; e€m j
otherwise

ey

where n; = || is the cardinality of cluster m;. Note that
F has (at least) the following properties (constraints):

- ~ ~T~ T
F>0 (e, F;; >0Vij), F F=I, (FF)1:1,

where 1 € R™*! is an all-one vector, and I € R™*™ is an
identity matrix.

Ping Li
Department of Statistical Science
Cornell University
Ithaca, NY 14853, USA
pingli@cornell.edu

Arnd Christian Konig
Microsoft Research
Microsoft Coopration
Redmond, WA 98052, USA
chrisko @microsoft.com

~T
If we define G = FF , we can hope to discover the
cluster structure of X from G. The constraints on F' can be
transferred to the constraints on G as

G>0, G=G', G1=1 (3)

In other words, G is a symmetric, nonnegative, and bi-
stochastic (also called doubly stochastic) matrix [12].

A. Deriving a Bi-Stochastic Matrix from a Similarity Matrix

The bi-stochastic matrix G, constructed from the cluster-
membership matrix (F or F) can be viewed as a special type
of similarity matrix. Naturally, one might conjecture: If we
relax the integer (0/1) constraint on F, can we still derive
a (useful) bi-stochastic matrix from a similarity matrix?

For example, a popular family of data similarity matrix is
the Gaussian kernel matrix, K € R™*", where each entry

1
Kij = exp (—ani - xjn?) Lm0 @

Here, v is a tuning parameter. Obviously, an arbitrary sim-
ilarity matrix can not be guaranteed to be bi-stochastic. For
a given similarity matrix, there are multiple ways to derive
a bi-stochastic matrix. We first review a straightforward
solution known as the Sinkhorn-Knopp (SK) algorithm.

B. The Sinkhorn-Knopp (SK) Algorithm

The following Sinkhorn-Knopp Theorem [18] says that,
under mild regularity conditions, one can construct a bi-
stochastic matrix from a similarity matrix.

Theorem (Sinkhorn-Knopp) Let A € R"* " be a
nonnegative square matrix. A necessary and sufficient
condition that there exists a bi-stochastic matrix P of the
form: P = UAYV, where U and V are diagonal matrices
with positive main diagonals, is that A has total support.
If P exists, then it is unique. U and V are also unique up
to a scalar multiple if and only if A is fully indecomposable.

Based on this theorem, [18] proposed an method called the
Sinkhorn-Knopp (SK) algorithm to obtain a bi-stochastic ma-
trix from a nonnegative matrix A, by generating a sequence
of matrices whose columns and rows are normalized alter-
natively. The limiting matrix is bi-stochastic. In particular,

if A is symmetric, then the resulting matrix P = UAV is
also symmetric with U and V being equal (up to a constant
multiplier). The following example illustrates the procedure:

1 0.8 0.6
A=| 08 1 04
| 06 04 1
[0.4167 0.3636 0.3000 0.3857 0.3366 0.2777
— | 0.3333 0.4545 0.2000 | — | 0.3374 0.4601 0.2025
| 0.2500 0.1818 0.5000 0.2683 0.1951 0.5366
[0.3886 0.3392 0.2722
— | 0.3392 0.4627 0.1980 | =P
| 0.2722 0.1980 0.5297

The SK algorithm is not the unique construction. In
statistics, this procedure is also known as the iterative
proportional scaling algorithm [5], [20].

C. Connection to the Normalized Cut (Ncut) Algorithm

Interestingly, the well-known Normalized Cut (Ncut) algo-
rithm [17] can be viewed as a one-step construction towards
producing bi-stochastic matrices. The Ncut algorithm nor-
malizes a similarity matrix K € R"*" with D = diag(K1),
where 1 € R™"*! is an all-one vector, to be

K =D '/?KD~1/2 (5)
[23] showed that if one keeps normalizing K with
KD — (D(t))—l/2K(t)(D(t))—l/27 (6)
then K will be bi-stochastic.

D. Our Proposed General Framework: BBS

In this paper, we propose to obtain a bi-stochastic matrix
G € R™*™ from some initial similarity matrix K € R"*",
by solving the following optimization problem

minG D¢(G, K) = Zij D¢(Gij, K,’j) (7)
st. G>0, G=G', G1=1
where

Dy(z,y) = ¢(z) — o(y) —Vo(y)(z —y), (8)

is the Bregman divergence between x and y with ¢ being
a strictly convex function. The problem (7) is a standard
convex optimization program. We name the solution G the
Bregmanian Bi-Stochastication (BBS) of K.!
Two choices of the Bregman divergence Dy are popular:
1) ¢(x) = 2%/2: (squared) Euclidian distance,

2) ¢(z) = xlogx—x: Kullback-Leibler (KL) divergence.

It can be shown that the SK algorithm is equivalent to
BBS using KL divergence. We will demonstrate that BBS
with ¢(z) = 22/2 often produces superior clustering results
over the SK algorithm (and other algorithms such as Ncut).

I'Also see the work on matrix nearness in Bregman divergence without
the bi-stochastic constraint [7].

II. BREGMANIAN BI-STOCHASTICATION (BBS)

The BBS algorithm seeks a bi-stochastic matrix G which
optimally approximates K in the Bregman divergence sense,
by solving the optimization problem (7). For the two popular
choices of the Bregman divergence Dy in Eq. (8), we study
specially designed optimization strategies, for better insights.

A p(x) = x2/2

For this choice of ¢(x), we have

Dy(G,K) = ZU Dy(Gij, Kij)

1 2 IP(Z
N Zz‘j §G“ A
_ 1 2 71 T
= 51G — K]} = Sir ((G—K) (G—K))

K;j(Gij — Kij)

- %tr (KTK +GTG - 2KTG) 9)
Thus, the BBS problem with ¢(z) = x2/2 is equivalent to
ming #r (GTG _ 2KTG) (10)

st. G>0, G=G', G1=1

Problem (10) is a Quadratic Programming program [2], [16]
and can be solved by standard methods such as the interior
point algorithm. Here, we adopt a simple cyclic constraint
projection approach, known as the Dykstra algorithm [10].
First we split the constraints into two sets C; and Ca:

C: {GIG=G', G1=1} (11)
Cy: {G|G >0} (12)

where C; defines an affine set and C, defines a convex set.
For the constraint set C;, we need to solve?

ming #r (GG - 2K'G) (13)
st. G=G', Gl1=1,
for which we first introduce a Lagrangian function
LG) = tr (GTG - zKTG) —ul(G1-1)
—k3 (G'1-1) (14)

where puy, s € R™ ! are Lagrangian multipliers. By the
constraint G = G|, we know Hy = py = p. Thus

VeLl(G)=2(G-K)—pul" —1p" 15)
Setting Ve L£(G) = 0 yields

1 1
G:K+§N1T+§IMT (16)

Since G must satisfy the constraint G1 = 1, we can right-
multiply 1 on the both sides of Eq. (16) as

|
1:G1:K1+%u+§11Tu 17)

2It may be also formulated as an instance of the Least Norm problem [2].

Then we obtain
p=2nI+117) 7 (I1-K)1 (18)
By making use of the Woodbury formula [11], we obtain

- 1 1
(nI+117) "' == (I = 11T) (19)
n 2n
We can then write the solution in a closed form:

1 1 11K 1
G:K+(I—K+ 5)11T—11TK (20)
n n n n

For the constraint set C,, we need to solve another
optimization problem:

ming %HG—KII% (€20
st. G=0
whose solution is simply
G=K" (22)

where K denotes the positive part of K.

The overall algorithm of BBS with ¢(z) = 2%/2 is
summarized in Alg. 1. The total computational complexity
of Alg. 1is O(Tn?) with T being the number of iterations
needed for the algorithm to converge.

Algorithm 1 BBS WITH ¢(z) = 2%/2
Require: An initial similarity matrix K
11 t=0,G" =K.
: repeat
t—t+1

. until Some convergence condition is satisfied
: Output GW

B. ¢(x) = xzlogx — x

Dy(G,K) = Dy(Gyj, Kij)

ij

Gy
= ZG” log K‘j‘ + K;; — Gij = KL(G|K)
ij K

(23)

The BBS problem becomes

ming KL(G|K)
st. G>0,G=G', G1=1

(24)

We construct the following Lagrangian
L(G) = KL(G|K) — p{ (G'1 = 1) — py (G1 — 1), (25)

where we drop the constraint G > 0 for the time being, and
we will later show it is automatically satisfied. Therefore

VoL(G)=1logG —logK — pu; 17 — 1pg (26)

2
3
4 @Y @D 4 (1-gUh plel=l) 4T gy T gt
5
6

where log represents the elementwise logarithm. Setting
VeL(G) =0 yields

log Gy —log Kij — p1s — poj =0 27
Thus the solution satisfies
Gij = e Ky;et'? (28)
Next, we define the following two vectors
m o= [err etz ... etn]T ¢ RPXE (29)
wy = [eM2 et ... ehan]T ¢ RX1 (30)

and two diagonal matrices diag(my) € R™*", diag(msy) €
R™ ™. This way, we can express the solution to be

G = diag(m;) x K x diag(ms) 31)

As G is symmetric, we know p; = py, = p and m; =
o = 7. By comparing with the Sinkhorn-Knopp Theorem,
we can immediately see that the BBS algorithm with ¢(z) =
xlogx — x actually recovers the symmetric SK algorithm,
and diag(7r) is used for scaling K to be bi-stochastic.

We should mention that, it appears that the fact that the
symmetric SK algorithm minimizes the KL divergence was
essentially discovered in statistics [4], [19].

III. EXPERIMENTS
A. Data Sets

Table I summarizes the data sets used in our experiments:

o MNIST?: We randomly sampled 6000 data points from

the original training set. We also created a smaller data

set, MNIST (0-4), using digits 0, 1, 2, 3, 4.

« ISOLET*: We took the original UCI training set and

+ divided it into three smaller data sets so that the number
of classes (clusters) for each set is not too large.

o LETTERS: We divided the original data into five sets.

o NEWS20°: The test set from the LibSVM site.

o OPTDIGIT’: We combined the original (UCI) training
and test sets, as this data set is not too large.

o PENDIGIT?: The original (UCI) training set.

o SATIMAGE’: The original (UCI) training set.

o SHUTTLE'?: The test set from the LibSVM site.

o VEHICLE!': The version from the LibSVM site.

o ZIPCODE'?: We used the training set and also con-
structed a smaller data set using digits 0, 1, 2, 3, 4.

3 http://yann.lecun.com/exdb/mnist/

4http://archive.ics.uci.edu/ml/machine— learning-databases/isolet/isolet1+2+3+4.
data.Z

3 http://archive.ics.uci.edu/ml/machine-learning-databases/letter-recognition/
letter-recognition.data

6http://www.csie.ntu.edu.tw/chlin/IibsvmtooIs/datasets/multiclass/newsZO.t.scale.
bz2

7http://archive.ics.uci4edu/ml/datasets/Optical+Recognilion+0f+Handwritten+
Digits

8http://archive.ics.uci.edu/ml/machine— learning-databases/pendigits/pendigits.tra

9 http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/satimage/sat.trn

10http://wwwx:sie‘ntuAeduAtw/N cjlin/libsvmtools/datasets/multiclass/shuttle.scale.t

1 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/vehicle.scale

! 2http://www- stat.stanford.edu/~tibs/ElemStatLearn/datasets/zip.train.gz

Table I

DATA SETS
Data Set # Samples (n) # Dimensions (d) # Classes (k)
MNIST 6000 784 10
MNIST (0-4) 3031 784 5
ISOLET (A-I) 2158 617 9
ISOLET (J-R) 2160 617 9
ISOLET (S-2) 1920 617 8
LETTER (A-E) 3864 16 5
LETTER (F-J) 3784 16 5
LETTER (K-O) 3828 16 5
LETTER (P-T) 3888 16 5
LETTER (U-Z) 4636 16 6
NEWS20 3993 62060 20
OPTDIGIT 5620 64 10
PENDIGIT 7494 16 10
SATIMAGE 4465 36 6
SHUTTLE 14500 9 7
VEHICLE 846 18 4
ZIPCODE 7291 256 10
ZIPCODE (0-4) 4240 256 5

B. Experiment Procedure

For all data sets, we always normalized each data point
(vector) to have a unit /o norm, and we always used the
Gaussian kernel Eq. (4) to form the initial similarity matrix
K. For the tuning parameter 7 in Eq. (4), we experimented
with v € {1024, 256, 64, 32,16,8,4,2,1,0.5,0.25}.

We ran the BBS algorithm with ¢(z) = 22/2 for 1000
iterations at each . We also ran the SK algorithm (i.e., BBS
with ¢(x) = xlogx —) for 1000 iterations at each ~.

We eventually used spectral clustering [17], [3], [8], [15]
to evaluate the quality of the produced bi-stochastic matrices.
In particular, we used the procedure described in [15]. That
is, we computed the top-k eigenvectors of the bi-stochastic
matrix to form a new n X k£ matrix and normalized each
row to have a unit /5 norm. Denote the resulting new “data
matrix” by Z. We then used Matlab kmeans function:

kmeans (Z, k,’MaxIter’,1000,’EmptyAction’,’singleton’)

We ran kmeans 100 times and reported both the average and
maximum clustering results.

However, we would like to first introduce two measures
that may allow us to directly assess the quality of the bi-
stochastic matrices independent of the clustering algorithms.

C. Quality Measurements of the Bi-Stochastic Matrices

After we have generated a (hopefully) bi-stochastic matrix
P € R™ "™ from a similarity matrix K, we can compute:

MB:%Z > pj-1, (32)
k n
MC:Z;TlLZ > p;-1 33)

Basically, Mp measures how far P is from being a bi-
stochastic matrix, and M roughly measures the potential of
producing good clustering results. Lower values of Mp and
M are more desirable. We use the M measure because
it is independent of the specific clustering algorithms.

10 2

10 10
MNIST MB: y=0.25 MNIST MC: y=0.25
) N N)
10" M55 10
° o BBS
s s
107 10° SK
h_SK
10 10"
1 200 400 600 800 1000 1 200 400 600 800 1000
10 10°
MNIST Mg y=1 MNIST Mg y=1
)
10
0 \\
10 BBS
2m §u 10° SK
1079 .
10
SK BBS
107 107
1 200 400 600 800 1000 1 200 400 600 800 1000
10% 10° —
MNIST Mg y=2 MNIST M y=2
1
10° _\ 10
BES
Em Eu 10° SK
-10
10
.
10
SK BBS
107 107
1 200 400 600 800 1000 1 200 400 600 800 1000
10 10°
MNIST Mg y=4 MNIST M. y=4
1
10
w’ BBS
) L1 SK
107 B BBS
10
SK
10 107
1 200 400 600 800 1000 1 200 400 600 800 1000
10 10°
MNIST Mg y=8 MNIST M. y=8
)
10
10°
BBS
) L1100 SK
107 .
sk 10 BBS
10 107
1 200 400 600 800 1000 1 200 400 600 800 1000
10 I 10"
MNIST Cy= MNIST Cy=
Mg: Y= 16 M: y=16
10°
= BBS L100 LSK
10*10
SK -
BBS
107 10
1 200 400 600 800 1000 1 200 400 600 800 1000
10 10"
MNIST Mg: V=64 MNIST M. y=64
10°
SK
0,0
s BBS =10
10*10
sk BBS
107 10"
1 200 400 600 800 1000 1 200 400 600 800 1000
Iteration Iteration

Figure 1. Quality measurements M p (32) and M (33) (lower is better),
on MNIST data, for up to 1000 iterations. ~y is the kernel tuning parameter
in Eq. (4). “BBS” labels the curves produced by the BBS algorithm with
¢(z) = 22/2 (i.e., Alg. 1) and “SK” the curves by the SK algorithm.

Fig. 1 presents the quality measurements on the MNIST
data set, for a wide range of ~y values. Fig. 2 presents the
measurements on a variety of data sets for v = 1:

o In terms of Mp, the SK algorithm performs well in
producing good bi-stochastic matrices.

¢ In terms of M¢, the BBS algorithm using the Euclidian
distance (Alg. 1) has noticeably better potential of pro-
ducing good clustering results than the SK algorithm.

10 2

10 10
LETTER (U-2) Mg y=1 LETTER (U-2) Mg y=1
)
10
10°
) BBS 2 10° SK
10 .
SK 10 BBS
107 107
1 200 400 600 800 1000 1 200 400 600 800 1000
10'° 10°
NEWS20 Mgiy=1 NEWS20 Mg y=1
)
10
O e s
Em 5() 10° SK
1079 .
sk 10 BBS
A S — |
107 107
1 200 400 600 800 1000 1 200 400 600 800 1000
10 10°
OPTDIGIT My y=1 OPTDIGIT M y=1
)
10
10° Es\
SK
= < 10° .
10719 .
« 10 BBS
107 107
1 200 400 600 800 1000 1 200 400 600 800 1000
10° 10
PENDIGIT Move1 PENDIGIT M y=1
gt V= 3
) 10
10 \\
BBS
) = 10° SK
107 .
SK 10 BBS
107 107
1 200 400 600 800 1000 1 200 400 600 800 1000
10'° 10°
SATIMAGE Mg y=1 SATIMAGE My=1
.
10
10°
— K
§m BBS \\\ 20 10° 3!
107 B BBS
sk 10
10 107
1 200 400 600 800 1000 1 200 400 600 800 1000
10'° 10°
VEHICLE Mg y=1 VEHICLE M y=1
.
10
10°
BBS
Em §u 10° SK
1) -
10 o BBS
| sk
107 107
1 200 400 600 800 1000 1 200 400 600 800 1000
10 10°
ZIPCODE MBZ y=1 ZIPCODE MCZ y=1
1
10
0 —
BBS
Ecu EU 10° SK
10719 .
SK 10 BBS
—20| -2

10

1 200 400 600 800 1000 10 1 200 400 600 800 1000
Iteration Iteration

Figure 2. Quality measurements, M p, M, on a variety of data sets.
D. Comparing Clustering Results

We ultimately rely on the standard clustering procedure,
e.g., [15], to assess clustering quality. Tables II to V provide
the results for BBS (Alg. 1), SK, and three other methods:

o K-means: We directly used the original data sets (after
normalizing each data point to have a unit /5 norm) and
ran Matlab kmeans 100 times.

o RA: We ran spectral clustering directly on the similarity
matrix K (4). It is called Ratio Association [6].

e Ncut: We ran spectral clustering on the normalized
similarity matrix K =D '?KD /2 asin Eq. (5).

We report the clustering results on two metrics:

1) Clustering Accuracy:

1
A =— E w0l], 34
ccuracy - max | i (34)

i, T

where 7; denotes the j-th cluster in the output, 7; is

the true ¢-th class, and |m; N 7| is the number of data

points from the ¢-th class are assigned to j-th cluster.
2) Normalized Mutual Information (NMI) [21]:

k k ~ | N
Sy Sy Imi 0 g og ()

\/(Zle |mi| log %) (Z?:l 75| log %)
(35)

NMI =

We still need to address two more issues:

o For each case, we always ran kmeans 100 times. We
report both the average and maximum measures of
clustering quality (Accuracy and NMI). In practice,
the maximum clustering performance may be quite
attainable by tuning and running kmeans many times
with different (random) initial starts.

o For RA, Ncut, SK and BBS, we experimented with
the similarity matrices K (4) generated from a series
of v values (from 0.25 to 1024). Tables II to V report
the best results among all +4’s. Again, the rationale is
that, in practice, the best performance may be attainable
by careful tuning. In addition, we believe it is also
informative to present the results for all v values, as
in the Appendix; although due to the space limit, we
could not present the results for all data sets.

Tables II to V demonstrate that, for many data sets,

BBS (Alg. 1) can achieve considerably better clustering
results than other methods, especially when evaluated using
maximum accuracy and maximum NMI.

Table II
AVERAGE ACCURACY
Data K-means RA Ncut SK BBS
MNIST 0.536 0.552 0.545 0542 0.633
MNIST (0-4) 0.744 0.722 0722 0.721 0.805
ISOLET (A-I) 0.621 0.737 0.735 0.709 0.713
ISOLET (J-R) 0.662 0.706 0.705 0.702 0.708
ISOLET (S-Z) 0.703 0.787 0.739 0.742 0.773
LETTER (A-E) 0.462 0516 0.516 0513 0.539
LETTER (F-J) 0.514 0.490 0492 0495 0.619
LETTER (K-O) 0.390 0.474 0.473 0.470 0.502
LETTER (P-T) 0.426 0.554 0.554 0.555 0.554
LETTER (U-Z) 0.467 0.511 0.517 0512 0.505
NEWS20 0.273 0244 0.245 0244 0.378
OPTDIGIT 0.750 0.791 0.767 0762 0.848
PENDIGIT 0.703 0.730 0.732 0.733 0.756
SATIMAGE 0.607 0.565 0.569 0573 0.617
SHUTTLE 0.464 0.384 0448 0453 0.647
VEHICLE 0.366 0.389 0.371 0.374 0.409
ZIPCODE 0.650 0.678 0.678 0.674 0.747

ZIPCODE (0-4) 0.760 0.686 0.680 0.684 0.908

Table III
AVERAGE NMI

Data K-means RA Ncut SK BBS
MNIST 0.523 0.517 0524 0507 0.711
MNIST (0-4) 0.670 0.638 0.652 0.667 0.850
ISOLET (A-I) 0.711 0.756 0.755 0.746 0.808
ISOLET (J-R) 0.762 0.760 0.760 0.745 0.832
ISOLET (S-2) 0.790 0.803 0.788 0.781 0.843
LETTER (A-E) 0.320 0.348 0350 0347 0.397
LETTER (F-J) 0.379 0.337 0342 0352 0.469

LETTER (K-O) 0.265 0260 0262 0254 0379
LETTER (P-T) 0.263 0371 0372 0373 0417
LETTER (U-Z) 0.344 0.397 0403 0399 0437

NEWS20 0.319 0241 0.241 0238 0422
OPTDIGIT 0.728 0.748 0.725 0.709 0.874
PENDIGIT 0.691 0.693 0.693 0.705 0.776
SATIMAGE 0.549 0473 0491 0494 0.603
SHUTTLE 0.496 0396 0429 0448 0.542
VEHICLE 0.116 0.108 0.124 0.123 0.168
ZIPCODE 0.631 0.625 0.625 0.624 0.815

ZIPCODE (0-4) 0.716 0.703 0.712 0.700 0.913

Table IV
MAXIMUM ACCURACY
Data K-means RA Ncut SK BBS
MNIST 0.588 0.608 0.603 0.603 0.738
MNIST (0-4) 0.853 0.756 0.790 0.827 0.960
ISOLET (A-I) 0.738 0.798 0.798 0.798 0.819
ISOLET (J-R) 0.760 0.750 0.746 0.746 0.781
ISOLET (S-Z) 0.861 0.846 0.870 0.794 0.933
LETTER (A-E) 0.518 0.589 0.589 0.589 0.595
LETTER (F-J) 0.590 0.584 0.584 0.546 0.649
LETTER (K-O) 0.463 0487 0500 0510 0.560
LETTER (P-T) 0.496 0.604 0556 0.556 0.621
LETTER (U-Z) 0.532 0.567 0.558 0.558 0.585
NEWS20 0.284 0264 0262 0259 0419
OPTDIGIT 0.875 0.814 0.824 0.801 0911
PENDIGIT 0.778 0.795 0.794 0.820 0.857
SATIMAGE 0.632 0.582 0.588 0.590 0.639
SHUTTLE 0.598 0474 0.506 0510 0.861
VEHICLE 0.402 0395 0.382 0.382 0479
ZIPCODE 0.756 0.740 0.739 0.731 0.897

ZIPCODE (0-4) 0.891 0.813 0.808 0.809 0.991

Table V
MAXIMUM NMI
Data K-means RA Ncut SK BBS
MNIST 0.567 0.542 0.567 0.541 0.741
MNIST (0-4) 0.696 0.641 0.659 0.680 0.897
ISOLET (A-I) 0.788 0.779 0.781 0.770 0.862
ISOLET (J-R) 0.812 0.800 0.792 0.786 0.883
ISOLET (S-2) 0.874 0.843 0.878 0.806 0.897
LETTER (A-E) 0.392 0422 0422 0422 0.468
LETTER (F-J) 0.435 0412 0412 0406 0.524
LETTER (K-O) 0.306 0.288 0.301 0.298 0.430
LETTER (P-T) 0.378 0.422 0.375 0.377 0.499
LETTER (U-Z) 0.395 0445 0437 0437 0.502
NEWS20 0.336 0254 0.254 0252 0.433
OPTDIGIT 0.786 0.758 0.755 0.750 0.897
PENDIGIT 0.718 0.717 0.719 0.734 0.826
SATIMAGE 0.627 0483 0.511 0.511 0.623
SHUTTLE 0.563 0.516 0507 0489 0.705
VEHICLE 0.172 0.125 0.150 0.144 0.234
ZIPCODE 0.665 0.652 0.649 0.645 0.871

ZIPCODE (0-4) 0.755 0.705 0.712 0.706 0.964

IV. RELATIONSHIP TO k-MEANS

It is beneficial to gain some intuitive understanding on
why the BBS algorithm with ¢(z) = 2%/2 (i.e., Alg. 1) can
perform well in clustering. We show that it is closely related
to various relaxed k-means algorithms.

The k-means clustering aims to minimize the objective

1= Z; inewc lIxi = pee|? (36)

where pi. is the mean of cluster m.. Some algebra can show
that the minimizing .J; is equivalent to minimizing .Js:

Jy = —tr (EN‘TXXTf) 37)

where F is the scaled partition matrix introduced at the
beginning of the paper and X = [x;,Xs, - ,%,]T € R»*¢
is the data matrix. Let G = FF and K = XX'.
Then J; = —tr (KG), which in fact can be viewed as a
special case of the objective of BBS defined in Eq. (10):
tr (GTG — 2KTG>, because the term tr (GTG) can be
treated as a constant in this case:

tr (GTG) =tr (ffTﬁﬁT) =tr (fﬁT) =tr(G)=k

In addition, K = XXT is the linear kernel, which may
be replaced by more flexible kernels, e.g., Eq. (4) as we use.

There are more than one way to formulate the relaxed
k-means algorithm. For example,

ming Dy(G, K), (where ¢(x) = z?) (38)
st. G>0, G=G', G1=1,
G’ =G, tr(G)=kF, (39)

which is quite similar to our formulation of the BBS problem
with the Euclidian distance. Our formulation discards the
constraints (39) and hence its optimization task is easier.

V. EXTENSION: MULTIPLE BBS (MBBYS)

Our detailed experiments reported in the Appendix illus-
trate that the clustering performance of the BBS algorithm
(as well as other algorithms), to an extent, depends on the
initial similarity matrix K. This section extends BBS to
combine the power of multiple input similarity matrices, e.g.,
a series of kernel matrices (4) using different ~ values, to
boost the performance. We name this scheme Multiple BBS
or MBBS. This is in spirit related to cluster ensemble [21]
and Generalized Cluster Aggregation [22].

Suppose we have m similarity matrices {K;)}iZ,;. We
would like to obtain a bi-stochastic similarity matrix G by
solving the following optimization problem:

minga Y @Dy (G.Kp) +A2) (40)
st. G=0, G=G', G1=1,
. m
Vi, a; =20, Zizlai—l

We constrain the weight coefficients & = {a;}"; to be in a
simplex. Q(a) is some regularizer to avoid trivial solutions.

There are two groups of variables a and G. Although the
problem (40) is not jointly convex, it is convex with respect
to one group of variables with the other group being fixed.
Thus, it is reasonable to apply block coordinate descent [1].

A. Fix o, Solve G

At the ¢-th iteration, if « is fixed to be a = a(t=1), the
problem (40) becomes

ming Z::l agtfl)Dd) (G, K(l))
st. G>0, G=G', G1=1.

(41)

Note that Q(cv) is irrelevant at this point. This is similar to

problem (7) except for the summation form in the objective.

The solution procedures are consequently also similar.
Here we assume ¢(x) = 2% /2 for the illustration purpose.

S ol YD, (G K)

1 (S DT T (D) T

i=1
(t=1)

i

= 1. As the term

Dy agtfl)Kg)K(i) is irrelevant, the problem becomes

m T
ming tr (GTG —9 (Z 1 aiK(i)> G) (42)
1=
st. G>=0, G=G', G1=1

where we use the fact Y " «

which is the same as Problem (10) if we make

_ N\ D
K= 2121 a; K(z)

B. Fix G, Solve o

When G is fixed with G = G and for simplicity we
only consider Q(a) = ||a||? = a" «, the problem becomes

minga Y. Dy (GO K:) + Maf? @4
s.t. Vi, a; >0, Znil a; =1,

(43)

which is a standard Quadratic Programming (QP) problem.
Here we will reformulate this problem to facilitate more
efficient solutions. For the notational convenience, we denote

g® = (g1",", -, gl)T with
¥ =D, (G(t), K(i)) (45)
We first rewrite the objective of Problem (44) as
aTg® + Aaf? = H\aa IR0 oL (gm)T o
V2X

As 5 (g(’f))T g® is irrelevant, (44) can be rewritten to be

2
Ir(llin Ha - ﬁg(t)H , st a>0, a'l=1, (46)

which is an Euclidian projection problem under the simplex
constraint and can be solved efficiently, e.g., [9][14].

We will report extensive experiment results of Multiple
BBS in a more comprehensive technical report.

VI. CONCLUSIONS

We present BBS (Bregmanian Bi-Stochastication), a gen-
eral framework for learning a bi-stochastic data similarity
matrix from an initial similarity matrix, by minimizing the
Bregmanian divergences such as the Euclidian distance or
the KL divergence. The resultant bi-stochastic matrix can be
used as input to clustering algorithms. The BBS framework
is closely related to the relaxed k-means algorithms. Our
extensive experiments on a wide range of public data sets
demonstrate that the BBS algorithm using the Euclidian
distance can often produce noticeably superior clustering
results than other well-known algorithms including the SK
algorithm and the Ncut algorithm.

ACKNOWLEDGEMENT

This work is partially supported by NSF (DMS-0808864),
ONR (YIP-N000140910911), and a grant from Microsoft.

REFERENCES

[1] D. P. Bertsekas. Nonlinear Programming: 2nd Edition.
Athena Scientific, 1999.

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, Cambridge, UK., 2004.

[3] P. K. Chan, D. F. Schlag, and J. Y. Zien. Spectral k-way ratio-
cut partitioning and clustering. IEEE Trans. Computer-Aided
Design, 13:1088-1096, 1994.

[4] J. N. Darroch and D. Ratcliff. Generalized iterative scaling
for log-linear models. The Annals of Mathematical Statistics,
43(5):1470-1480, 1972.

[5] W. E. Deming and F. F. Stephan. On a least squares
adjustment of a sampled frequency table when the expected
marginal totals are known. The Annals of Mathematical
Statistics, 11(4):427-444, 1940.

[6] 1. S. Dhillon, Y. Guan, and B. Kulis. A unified view of
kernel k-means, spectral clustering and graph cuts. Technical
report, Department of Computer Science, University of Texas
at Austin. TR-04-25, 2004.

[7] 1. S. Dhillon and J. A. Tropp. Matrix nearness problems with
bregman divergences. In SIAM Journal on Matrix Analysis
and Applications, volume 29, pages 1120-1146, 2008.

[8] C. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-
max cut algorithm for graph partitioning and data clustering.
In Proceedings of the st International Conference on Data
Mining, pages 107-114, 2001.

[9] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra.
Efficient projections onto the L1-ball for learning in high di-
mensions. In Proceedings of the 25th international conference
on Machine learning, pages 272-279, 2008.

[10] R. Escalante and M. Raydan. Dykstra’s algorithm for a
constrained least-squares matrix problem. Numerical Linear
Algebra with Applications, 3(6):459-471, 1998.

[11] W. W. Hager. Updating the inverse of a matrix. SIAM Review,
31(2):221-239, 1989.

[12] A. Horn. Doubly stochastic matrices and the diagonal of
a rotation matrix. The American Journal of Mathematics,
76:620-630, 1954.

[13] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data.
Prentice Hall, 1988.

[14] J. Liu and J. Ye. Efficient Euclidean projections in linear
time. In International Conference on Machine Learning,
pages 657-664, 2009.

[15] A. Y. Ng, M. L. Jordan, and Y. Weiss. On spectral clustering:
analysis and an algorithm. In Advances in Neural Information
Processing Systems 14, pages 849-856, 2001.

[16] J. Nocedal and S. J. Wright. Numerical Optimization (2nd
ed.). Springer-Verlag, Berlin, New York, 2006.

[17] J. Shi and J. Malik. Normalized cuts and image segmentation.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
22(8):888-905, 2000.

[18] R. Sinkhorn and P. Knopp. Concerning nonnegative matrices
and doubly stochastic matrices. Pacific J. Math., 21:343-348,
1967.

[19] G. W. Soules. The rate of convergence of Sinkhorn balancing.
Linear Algebra and its Applications, 150:3 — 40, 1991.

[20] FE. E Stephan. An iterative method of adjusting sample
frequency tables when expected marginal totals are known.
The Annals of Mathematical Statistics, 13(2):166—178, 1942.

[21] A. Strehl and J. Ghosh. Cluster ensembles - a knowledge
reuse framework for combining multiple partitions. Journal
of Machine Learning Research, 3:583—-617, 2002.

[22] F. Wang, X. Wang, and T. Li. Generalized cluster aggregation.
In Proceedings of The 21st International Joint Conference on
Artificial Intelligence, pages 1279-1284, 2009.

[23] R. Zass and A. Shashua. A unifying approach to hard
and probabilistic clustering. In Proceedings of International
Conference on Computer Vision, pages 294-301, 2005.

[24] H. Zha, X. He, C. Ding, M. Gu, and H. Simon. Spectral
relaxation for k-means clustering. In Advances in Neural
Information Processing Systems 14, 2001.

APPENDIX

We generated the base similarity matrix K using the
Gaussian kernel (4) which has a tuning parameter v > 0.
The clustering performance can be, to an extent, sensitive to
~; and hence we would like to present the clustering results
for v values ranging from 272 = 0.25 to 2! = 1024, for
four algorithms: RA, Necut, SK, and BBS (using Euclidian
distance), and two performance measures: Accuracy and
NMI, as defined in Eq. (34) and Eq (35), respectively.

In the tables, each entry contains the average and maxi-
mum (in parentheses) clustering results from 100 runs of the
Matlab kmeans program. Due to the space limit, we could
not present the experiments for all the data sets.

MNIST: Accuracy
~ RA Neut SK BBS
1024 0.532 (0.595) 0.533 (0.596) 0.536 (0.595) 0.553 (0.606)
256 0.536 (0.596) 0.537 (0.594) 0.539 (0.594) 0.566 (0.617)
64 0.541 (0.608) 0.540 (0.596) 0.530 (0.600) 0.581 (0.642)
32 0.538 (0.596) 0.537 (0.596) 0.537 (0.596) 0.612 (0.665)
16 0.537 (0.606) 0.532 (0.598) 0.538 (0.600) 0.630 (0.690)
8 0.539 (0.594) 0.536 (0.594) 0.541 (0.598) 0.622 (0.702)
4 0.537 (0.600) 0.542 (0.596) 0.538 (0.598) 0.630 (0.715)
2 0.540 (0.596) 0.542 (0.599) 0.542 (0.603) 0.633 (0.720)
1 0.548 (0.597) 0.545 (0.603) 0.536 (0.597) 0.621 (0.738)
0.5 0.552 (0.601) 0.535 (0.599) 0.521 (0.597) 0.463 (0.519)
0.25 0.527 (0.590) 0.514 (0.595) 0.493 (0.558) 0.451 (0.472)
MNIST: NMI
1024 0.473 (0.512) 0.475 (0.511) 0.476 (0.511) 0.491 (0.522)
256 0.475 (0.512) 0.475 (0.510) 0.476 (0.510) 0.530 (0.564)
64 0.479 (0.512) 0.478 (0.510) 0.474 (0.510) 0.593 (0.620)
32 0.478 (0.512) 0.476 (0.506) 0.476 (0.511) 0.626 (0.648)
16 0.475 (0.504) 0.475 (0.511) 0.476 (0.511) 0.651 (0.675)
8 0.479 (0.511) 0.476 (0.511) 0.477 (0.511) 0.668 (0.692)
4 0.475 (0.507) 0.479 (0.512) 0.479 (0.513) 0.686 (0.705)
2 0.481 (0.516) 0.483 (0.516) 0.485 (0.518) 0.700 (0.724)
1 0494 (0.524) 0493 (0.521) 0.492 (0.511) 0.711 (0.741)
0.5 0.508 (0.526) 0.510 (0.528) 0.507 (0.541) 0.467 (0.489)
0.25 0.517 (0.542) 0.524 (0.567) 0.500 (0.525) 0.386 (0.400)
MNIST 0-4: Accuracy
0% RA Ncut SK BBS
1024 0.721 (0.721) 0719 (0.721) _ 0.720 (0.721) 0.722 (0.724)
256 0.720 (0.721) 0.719 (0.721) 0.719 (0.721) 0.673 (0.780)
64 0.720 (0.722) 0.722 (0.722) 0.721 (0.722) 0.762 (0.896)
32 0.721 (0.722) 0.721 (0.722) ~ 0.721 (0.721) 0.762 (0.879)
16 0.722 (0.722) 0.721 (0.721) ~ 0.720 (0.721) 0.757 (0.885)
8 0.721 (0.721) 0.718 (0.721) 0.715 (0.719) 0.760 (0.881)
4 0.718 (0.718) 0.716 (0.716) 0.714 (0.715) 0.777 (0.907)
2 0.703 (0.707) 0.698 (0.703) 0.692 (0.692) 0.762 (0.921)
1 0.675 (0.705) 0.675 (0.708) 0.675 (0.709) 0.805 (0.960)
0.5 0.661 (0.756) 0.658 (0.757) 0.645 (0.742) 0.438 (0.519)
0.25 0.506 (0.584) 0.708 (0.790) 0.721 (0.827) 0.532 (0.565)
MNIST 0-4: NMI
1024 0.572 (0.575) 0.571 (0.575) 0.572 (0.575) 0.577 (0.579)
256 0.572 (0.576) 0.571 (0.575) 0.571 (0.575) 0.635 (0.637)
64 0.573 (0.576) 0.575 (0.576) 0.574 (0.576) 0.741 (0.779)
32 0.576 (0.576) 0.575 (0.576) 0.575 (0.576) 0.764 (0.789)
16 0.577 (0.577) 0.577 (0.577) 0.576 (0.576) 0.785 (0.811)
8 0.579 (0.579) 0.578 (0.579) 0.577 (0.577) 0.800 (0.823)
4 0.585 (0.585) 0.583 (0.583) 0.580 (0.582) 0.815 (0.837)
2 0.589 (0.590) 0.587 (0.589) 0.590 (0.590) 0.813 (0.853)
1 0.614 (0.614) 0.609 (0.611) 0.602 (0.603) 0.850 (0.897)
0.5 0.638 (0.641) 0.632 (0.640) 0.636 (0.648) 0.346 (0.376)
0.25 0.560 (0.570) 0.652 (0.659) 0.667 (0.680) 0.418 (0.454)
ISOLET A-I: Accuracy
¥ RA Ncut SK BBS
1024 0.695 (0.769) 0.688 (0.768) 0.692 (0.769) 0.691 (0.768)
256 0.694 (0.769) 0.697 (0.769) 0.695 (0.769) 0.681 (0.745)
64 0.692 (0.769) 0.688 (0.769) 0.692 (0.769) 0.657 (0.743)
32 0.699 (0.769) 0.702 (0.769) 0.693 (0.769) 0.658 (0.740)
16 0.687 (0.769) 0.684 (0.769) 0.689 (0.769) 0.682 (0.813)
8 0.697 (0.769) 0.700 (0.769) 0.694 (0.769) 0.679 (0.812)
4 0.695 (0.769) 0.692 (0.769) 0.684 (0.768) 0.674 (0.812)
2 0.732 (0.781) 0.735 (0.777) 0.694 (0.769) 0.678 (0.819)
1 0.737 (0.798) 0.726 (0.798) 0.709 (0.798) 0.678 (0.779)
0.5 0.715 (0.783) 0.705 (0.743) 0.700 (0.748) 0.713 (0.787)
0.25 0.677 (0.747) 0.687 (0.750) 0.552 (0.629) 0.590 (0.639)
ISOLET A-I: NMI
1024 0.677 (0.746) 0.675 (0.746) 0.673 (0.745) 0.680 (0.745)
256 0.681 (0.745) 0.683 (0.745) 0.682 (0.746) 0.727 (0.762)
64 0.679 (0.745) 0.677 (0.745) 0.675 (0.745) 0.720 (0.773)
32 0.681 (0.746) 0.682 (0.745) 0.677 (0.746) 0.731 (0.785)
16 0.678 (0.749) 0.675 (0.745) 0.680 (0.745) 0.762 (0.822)
8 0.686 (0.748) 0.684 (0.748) 0.678 (0.746) 0.773 (0.826)
4 0.690 (0.754) 0.684 (0.747) 0.675 (0.742) 0.773 (0.832)
2 0.732 (0.756) 0.723 (0.749) 0.696 (0.742) 0.771 (0.832)
1 0756 (0.779) 0.751 (0.777) 0.745 (0.769) 0.762 (0.791)
0.5 0.749 (0.777) 0.755 (0.775) 0.746 (0.770) 0.808 (0.862)
0.25 0.722 (0.770) 0.743 (0.781) 0.624 (0.655) 0.586 (0.614)

ISOLET J-R: Accuracy LETTER F-J: Accuracy
v RA Ncut SK BBS ¥ RA Ncut SK BBS
1024 0.700 (0.747) 0.6990 (0.741) 0.702 (0.746) 0.703 (0.739) 1024 0.489 (0.545) 0.486 (0.544) 0.487 (0.546) 0.489 (0.544)
256 0.704 (0.745) 0.7010 (0.742) 0.697 (0.741) 0.695 (0.734) 256 0.489 (0.544) 0.486 (0.544) 0.487 (0.544) 0.460 (0.511)
64 0.698 (0.741) 0.7050 (0.746) 0.699 (0.740) 0.678 (0.743) 64 0.488 (0.545) 0.488 (0.584) 0.488 (0.543) 0.501 (0.564)
32 0.702 (0.741) 0.7010 (0.739) 0.699 (0.741) 0.683 (0.745) 32 0.488 (0.544) 0.489 (0.540) 0.491 (0.543) 0.538 (0.595)
16 0.706 (0.741) 0.7010 (0.739) 0.702 (0.742) 0.679 (0.768) 16 0.487 (0.546) 0.489 (0.546) 0.486 (0.543) 0.599 (0.622)
8 0.702 (0.740) 0.7050 (0.742) 0.702 (0.742) 0.708 (0.776) 8 0.489 (0.584) 0.486 (0.543) 0.489 (0.543) 0.619 (0.647)
4 0.701 (0.731) 0.6950 (0.730) 0.699 (0.731) 0.685 (0.779) 4 0.486 (0.532) 0.489 (0.543) 0.488 (0.541) 0.597 (0.632)
2 0.701 (0.734) 0.6940 (0.734) 0.693 (0.731) 0.667 (0.781) 2 0.486 (0.543) 0.486 (0.541) 0.489 (0.540) 0.571 (0.628)
1 0.697 (0.736) 0.6940 (0.735) 0.690 (0.731) 0.661 (0.778) 1 0.489 (0.542) 0.492 (0.540) 0.490 (0.540) 0.589 (0.649)
0.5 0.702 (0.750) 0.6800 (0.741) 0.672 (0.731) 0.675 (0.777) 0.5 0.487 (0.534) 0.489 (0.539) 0.491 (0.540) 0.470 (0.586)
0.25 0.701 (0.748) 0.6860 (0.732) 0.648 (0.702) 0.459 (0.488) 0.25 0.475 (0.507) 0.492 (0.539) 0.495 (0.543) 0.315 (0.393)
ISOLET J-R: NMI LETTER F-J: NMI
1024 0.729 (0.761) 0.728 (0.758) 0.729 (0.761) 0.728 (0.747) 1024 0.337 (0.389) 0.333 (0.406) 0.333 (0.389) 0.334 (0.389)
256 0.730 (0.759) 0.728 (0.756) 0.729 (0.757) 0.745 (0.776) 256 0.336 (0.406) 0.332 (0.389) 0.336 (0.405) 0.286 (0.359)
64 0.728 (0.758) 0.730 (0.759) 0.730 (0.756) 0.746 (0.789) 64 0.333 (0.385) 0.335 (0.412) 0.332 (0.385) 0.377 (0.393)
32 0.729 (0.760) 0.729 (0.759) 0.728 (0.759) 0.754 (0.804) 32 0.334 (0.406) 0.335 (0.404) 0.337 (0.385) 0.405 (0.453)
16 0.728 (0.762) 0.729 (0.759) 0.731 (0.744) 0.782 (0.838) 16 0.334 (0.389) 0.335(0.389) 0.331 (0.384) 0.437 (0.463)
8 0.731 (0.760) 0.730 (0.747) 0.731 (0.757) 0.797 (0.844) 8 0.336 (0.412) 0.333 (0.384) 0.335 (0.406) 0.469 (0.517)
4 0.732 (0.748) 0.729 (0.756) 0.731 (0.765) 0.789 (0.859) 4 0.334 (0.383) 0.334 (0.404) 0.335(0.383) 0.444 (0.505)
2 0.731 (0.762) 0.732 (0.758) 0.737 (0.770) 0.800 (0.875) 2 0.328 (0.384) 0.334 (0.404) 0.339 (0.384) 0.429 (0.506)
1 0.738 (0.772) 0.738 (0.777) 0.740 (0.772) 0.789 (0.866) 1 0.328 (0.384) 0.337 (0.384) 0.341 (0.385) 0.445 (0.524)
0.5 0.760 (0.788) 0.756 (0.790) 0.745 (0.786) 0.832 (0.883) 0.5 0.319 (0.373) 0.336 (0.385) 0.345 (0.386) 0.350 (0.455)
0.25 0.757 (0.800) 0.760 (0.792) 0.723 (0.753) 0.514 (0.540) 0.25 0.303 (0.368) 0.342 (0.386) 0.352 (0.382) 0.153 (0.269)
ISOLET S-Z: Accuracy LETTER K-O: Accuracy
¥ RA Ncut SK BBS y RA Ncut SK BBS
1024 0.732 (0.795) 0.736 (0.793) 0.730 (0.793) 0.732 (0.785) 1024 0.470 (0.481) 0.471 (0.481) 0.467 (0.481) 0.469 (0.480)
256 0.738 (0.794) 0.734 (0.794) 0.727 (0.794) 0.705 (0.749) 256 0.471 (0.481) 0.468 (0.480) 0.465 (0.481) 0.437 (0.437)
64 0.732 (0.794) 0.720 (0.794) 0.737 (0.794) 0.681 (0.747) 64 0.467 (0.481) 0.469 (0.481) 0.470 (0.480) 0.376 (0.421)
32 0.733 (0.795) 0.730 (0.794) 0.733 (0.794) 0.687 (0.783) 32 0.471 (0.480) 0.470 (0.481) 0.469 (0.480) 0.404 (0.502)
16 0.730 (0.794) 0.735 (0.794) 0.742 (0.794) 0.761 (0.881) 16 0.471 (0.481) 0.468 (0.481) 0.468 (0.481) 0.435 (0.487)
8 0.725 (0.793) 0.731 (0.794) 0.730 (0.794) 0.773 (0.897) 8 0.468 (0.481) 0.473 (0.481) 0.468 (0.480) 0.502 (0.556)
4 0.740 (0.795) 0.724 (0.793) 0.727 (0.791) 0.764 (0.933) 4 0.472 (0.481) 0.470 (0.481) 0.467 (0.479) 0.486 (0.555)
2 0.754 (0.804) 0.733 (0.798) 0.718 (0.792) 0.651 (0.743) 2 0.469 (0.479) 0.469 (0.478) 0.469 (0.475) 0.500 (0.560)
1 0.760 (0.808) 0.737 (0.797) 0.711 (0.773) 0.657 (0.765) 1 0.465 (0.476) 0.455 (0.461) 0.432 (0.455) 0.479 (0.512)
0.5 0.754 (0.828) 0.739 (0.798) 0.679 (0.766) 0.615 (0.763) 0.5 0.474 (0.474) 0.443 (0.451) 0.443 (0.510) 0.492 (0.534)
0.25 0.787 (0.846) 0.714 (0.870) 0.695 (0.751) 0.420 (0.432) 0.25 0.473 (0.487) 0.432 (0.500) 0.409 (0.455) 0.436 (0.481)
ISOLET S-Z: NMI LETTER K-O: NMI
1024 0.762 (0.788) 0.760 (0.788) 0.755 (0.784) 0.754 (0.782) 1024 0.224 (0.238) 0.225(0.238) 0.221 (0.238) 0.223 (0.238)
256 0.759 (0.788) 0.761 (0.788) 0.758 (0.783) 0.763 (0.784) 256 0.225 (0.238) 0.221 (0.237) 0.218 (0.238) 0.269 (0.271)
64 0.761 (0.783) 0.759 (0.789) 0.764 (0.783) 0.788 (0.845) 64 0.220 (0.238) 0.224 (0.238) 0.224 (0.238) 0.227 (0.248)
32 0.757 (0.790) 0.759 (0.783) 0.759 (0.786) 0.793 (0.848) 32 0.225 (0.237) 0.225 (0.238) 0.223 (0.237) 0.264 (0.331)
16 0.760 (0.786) 0.759 (0.783) 0.764 (0.784) 0.839 (0.897) 16 0.225 (0.238) 0.221 (0.238) 0.222 (0.238) 0.303 (0.324)
8 0.758 (0.786) 0.758 (0.785) 0.761 (0.787) 0.843 (0.897) 8 0.222 (0.238) 0.227 (0.238) 0.223 (0.235) 0.372 (0.406)
4 0.765 (0.792) 0.762 (0.792) 0.763 (0.789) 0.822 (0.893) 4 0.227 (0.239) 0.224 (0.238) 0.221 (0.233) 0.366 (0.413)
2 0.777 (0.806) 0.766 (0.802) 0.758 (0.802) 0.822 (0.870) 2 0.224 (0.237) 0.222 (0.234) 0.224 (0.229) 0.379 (0.422)
1 0.777 (0.812) 0.778 (0.815) 0.759 (0.806) 0.815 (0.869) 1 0.217 (0.232) 0.215 (0.226) 0.208 (0.242) 0.344 (0.376)
0.5 0.780 (0.817) 0.768 (0.796) 0.758 (0.799) 0.811 (0.861) 0.5 0.234 (0.234) 0.239 (0.250) 0.254 (0.298) 0.347 (0.430)
0.25 0.803 (0.843) 0.788 (0.878) 0.781 (0.797) 0.562 (0.585) 0.25 0.260 (0.288) 0.262 (0.301) 0.223 (0.270) 0.319 (0.390)
LETTER A-E: Accuracy LETTER P-T: Accuracy
5 RA Ncut SK BBS ¥ RA Ncut SK BBS
1024 0.512 (0.589) 0.513 (0.589) 0.512 (0.589) 0.513 (0.589) 1024 0.554 (0.554) 0.552 (0.554) 0.554 (0.554) 0.554 (0.555)
256 0.512 (0.589) 0.513 (0.589) 0.511 (0.588) 0.503 (0.504) 256 0.554 (0.554) 0.554 (0.554) 0.554 (0.554) 0.509 (0.512)
64 0.510 (0.589) 0.514 (0.589) 0.510 (0.589) 0.487 (0.488) 64 0.554 (0.554) 0.554 (0.555) 0.554 (0.554) 0.457 (0.483)
32 0.512 (0.589) 0.516 (0.589) 0.513 (0.589) 0.465 (0.509) 32 0.553 (0.604) 0.554 (0.555) 0.554 (0.555) 0.445 (0.463)
16 0.512 (0.588) 0.511 (0.588) 0.512 (0.589) 0.476 (0.517) 16 0.554 (0.554) 0.552 (0.555) 0.554 (0.555) 0.434 (0.474)
8 0.508 (0.588) 0.512 (0.588) 0.511 (0.588) 0.463 (0.491) 8 0.552 (0.554) 0.554 (0.555) 0.554 (0.554) 0.467 (0.513)
4 0.516 (0.586) 0.510 (0.586) 0.512 (0.587) 0.482 (0.490) 4 0.554 (0.554) 0.554 (0.554) 0.555 (0.555) 0.530 (0.612)
2 0.512 (0.586) 0.513 (0.586) 0.509 (0.585) 0.477 (0.489) 2 0.553 (0.553) 0.553 (0.553) 0.553 (0.556) 0.550 (0.621)
1 0.514 (0.582) 0.513 (0.583) 0.511 (0.583) 0.508 (0.528) 1 0.553 (0.555) 0.552 (0.556) 0.551 (0.555) 0.525 (0.583)
0.5 0.516 (0.567) 0.513 (0.578) 0.505 (0.577) 0.539 (0.585) 0.5 0.550 (0.551) 0.548 (0.553) 0.535 (0.543) 0.524 (0.619)
0.25 0.516 (0.520) 0.502 (0.562) 0.497 (0.501) 0.520 (0.595) 0.25 0.542 (0.542) 0.524 (0.532) 0.498 (0.502) 0.499 (0.543)
LETTER A-E: NMI LETTER P-T: NMI
1024 0.346 (0.422) 0.347 (0.422) 0.346 (0.422) 0.347 (0.422) 1024 0.371 (0.372) 0.370 (0.372) 0.371 (0.372) 0.372 (0.373)
256 0.345 (0.422) 0.347 (0.422) 0.344 (0.422) 0.313 (0.352) 256 0.371 (0.372) 0.371 (0.372) 0.372 (0.373) 0.305 (0.307)
64 0.344 (0.422) 0.348 (0.422) 0.344 (0.421) 0.328 (0.329) 64 0.371 (0.372) 0.372 (0.373) 0.372 (0.373) 0.283 (0.367)
32 0.346 (0.422) 0.350 (0.421) 0.347 (0.421) 0.328 (0.395) 32 0.370 (0.422) 0.372 (0.373) 0.372 (0.373) 0.285 (0.301)
16 0.346 (0.421) 0.345 (0.421) 0.346 (0.421) 0.338 (0.409) 16 0.371 (0.372) 0.370 (0.373) 0.372 (0.373) 0.289 (0.349)
8 0.343 (0.421) 0.346 (0.420) 0.345 (0.420) 0.333 (0.363) 8 0.369 (0.372) 0.372 (0.373) 0.372 (0.372) 0.318 (0.380)
4 0.348 (0.419) 0.344 (0.420) 0.345 (0.420) 0.352 (0.362) 4 0.370 (0.371) 0.372 (0.372) 0.372 (0.372) 0.402 (0.479)
2 0.343 (0.419) 0.344 (0.420) 0.343 (0.420) 0.349 (0.390) 2 0.370 (0.370) 0.372 (0.372) 0.373 (0.377) 0.417 (0.499)
1 0.345 (0.417) 0.344 (0.418) 0.344 (0.418) 0.383 (0.410) 1 0.368 (0.370) 0.370 (0.375) 0.371 (0.374) 0.397 (0.449)
0.5 0.344 (0.414) 0.345 (0.418) 0.342 (0.416) 0.397 (0.468) 0.5 0.364 (0.365) 0.364 (0.372) 0.351 (0.357) 0.396 (0.455)
0.25 0.340 (0.348) 0.328 (0.410) 0.328 (0.331) 0.364 (0.458) 0.25 0.348 (0.348) 0.332 (0.339) 0.309 (0.311) 0.372 (0.438)

LETTER U-Z: Accuracy
¥ RA Ncut SK BBS
1024 0.511 (0.558) 0.517 (0.558) 0.505 (0.558) 0.505 (0.558)
256 0.508 (0.558) 0.515 (0.558) 0.507 (0.558) 0.479 (0.493)
64 0.509 (0.558) 0.503 (0.558) 0.503 (0.558) 0.480 (0.522)
32 0.510 (0.558) 0.502 (0.558) 0.500 (0.558) 0.493 (0.539)
16 0.507 (0.558) 0.504 (0.558) 0.509 (0.557) 0.496 (0.514)
8 0.508 (0.559) 0.504 (0.558) 0.509 (0.557) 0.481 (0.524)
4 0.509 (0.558) 0.513 (0.558) 0.512 (0.557) 0.486 (0.527)
2 0.506 (0.560) 0.496 (0.557) 0.500 (0.557) 0.495 (0.560)
1 0.509 (0.559) 0.495 (0.557) 0.501 (0.555) 0.445 (0.571)
0.5 0.495 (0.562) 0.497 (0.557) 0.492 (0.550) 0.466 (0.551)
0.25 0.498 (0.567) 0.478 (0.550) 0.486 (0.533) 0.481 (0.585)
LETTER U-Z: NMI
1024 0.395 (0.437) 0.403 (0.437) 0.394 (0.437) 0.390 (0.437)
256 0.395 (0.437) 0.402 (0.436) 0.395 (0.437) 0.368 (0.394)
64 0.397 (0.436) 0.389 (0.436) 0.390 (0.436) 0.354 (0.404)
32 0.396 (0.436) 0.391 (0.437) 0.388 (0.435) 0.367 (0.422)
16 0.392 (0.436) 0.391 (0.436) 0.395 (0.437) 0.392 (0.411)
8 0.396 (0.437) 0.391 (0.436) 0.397 (0.436) 0.400 (0.459)
4 0.395 (0.437) 0.401 (0.436) 0.399 (0.436) 0.423 (0.473)
2 0.395 (0.437) 0.386 (0.435) 0.385 (0.435) 0.437 (0.495)
1 0.396 (0.438) 0.383 (0.435) 0.387 (0.432) 0.425 (0.502)
0.5 0.382 (0.436) 0.383 (0.431) 0.378 (0.426) 0.425 (0.471)
0.25 0.389 (0.445) 0.371 (0.428) 0.377 (0.411) 0.426 (0.481)
NEWS20: Accuracy
¥ RA Ncut SK BBS
1024 0.235 (0.248) 0.234 (0.248) 0.236 (0.248) 0.235 (0.248)
256 0.236 (0.250) 0.235 (0.250) 0.235 (0.248) 0.236 (0.251)
64 0.235 (0.246) 0.235 (0.247) 0.236 (0.250) 0.281 (0.307)
32 0.236 (0.249) 0.235 (0.248) 0.236 (0.248) 0.353 (0.386)
16 0.236 (0.251) 0.236 (0.250) 0.236 (0.246) 0.378 (0.419)
8 0.236 (0.251) 0.236 (0.250) 0.236 (0.257) 0.355 (0.382)
4 0.238 (0.252) 0.237 (0.248) 0.238 (0.250) 0.238 (0.254)
2 0.242 (0.256) 0.242 (0.262) 0.241 (0.254) 0.191 (0.206)
1 0.244 (0.264) 0.245 (0.261) 0.244 (0.259) 0.064 (0.068)
0.5 0.198 (0.212) 0.191 (0.205) 0.190 (0.205) 0.090 (0.095)
0.25 0.131 (0.148) 0.135 (0.142) ~ 0.133 (0.146) 0.082 (0.086)
NEWS20: NMI
1024 0.223 (0.238) 0.223 (0.244) 0.224 (0.237) 0.223 (0.238)
256 0.224 (0.236) 0.222 (0.238) 0.222 (0.239) 0.224 (0.244)
64 0.223 (0.236) 0.222 (0.238) 0.223 (0.238) 0.289 (0.310)
32 0.223 (0.241) 0.222 (0.238) 0.223 (0.241) 0.371 (0.394)
16 0.224 (0.241) 0.222 (0.240) 0.225 (0.240) 0.416 (0.430)
8 0.224 (0.239) 0.225 (0.239) 0.224 (0.243) 0.422 (0.433)
4 0.226 (0.240) 0.225 (0.246) 0.225 (0.239) 0.345 (0.362)
2 0.229 (0.242) 0.229 (0.249) 0.229 (0.242) 0.217 (0.224)
1 0.241 (0.254) 0.241 (0.254) 0.238 (0.252) 0.061 (0.066)
0.5 0.219 (0.228) 0.217 (0.226) 0.217 (0.227) 0.029 (0.033)
0.25 0.119 (0.130) 0.109 (0.122) ~ 0.114 (0.127) 0.025 (0.027)
OPTDIGIT: Accuracy
¥ RA Ncut SK BBS
1024 0.759 (0.801) 0.750 (0.801) 0.751 (0.801) 0.766 (0.798)
256 0.763 (0.801) 0.758 (0.798) 0.760 (0.801) 0.733 (0.849)
64 0.756 (0.795) 0.755 (0.801) 0.755 (0.797) 0.790 (0.840)
32 0.763 (0.801) 0.759 (0.798) 0.761 (0.801) 0.797 (0.857)
16 0.764 (0.801) 0.760 (0.801) 0.746 (0.798) 0.798 (0.871)
8 0.751 (0.802) 0.757 (0.797) 0.759 (0.798) 0.816 (0.878)
4 0.754 (0.802) 0.759 (0.798) 0.753 (0.797) 0.829 (0.880)
2 0.769 (0.804) 0.754 (0.800) 0.754 (0.794) 0.848 (0.911)
1 0.764 (0.803) 0.761 (0.800) 0.762 (0.793) 0.807 (0.903)
0.5 0.791 (0.803) 0.767 (0.795) 0.747 (0.793) 0.658 (0.831)
0.25 0.786 (0.814) 0.761 (0.824) 0.704 (0.767) 0.624 (0.708)
OPTDIGIT: NMI
1024 0.698 (0.713) 0.694 (0.713) 0.693 (0.713) 0.707 (0.729)
256 0.699 (0.729) 0.697 (0.711) ~ 0.697 (0.713) 0.713 (0.759)
64 0.696 (0.712) 0.696 (0.714) 0.695 (0.711) 0.768 (0.798)
32 0.699 (0.713) 0.698 (0.728) 0.698 (0.728) 0.796 (0.823)
16 0.699 (0.713) 0.698 (0.730) 0.693 (0.729) 0.811 (0.839)
8 0.694 (0.715) 0.696 (0.717) 0.697 (0.715) 0.830 (0.850)
4 0.696 (0.719) 0.698 (0.731) 0.695 (0.717) 0.845 (0.868)
2 0.704 (0.723) 0.697 (0.715) 0.697 (0.722) 0.874 (0.897)
1 0.707 (0.733) 0.705 (0.744) 0.705 (0.741) 0.862 (0.890)
0.5 0.728 (0.758) 0.718 (0.748) 0.709 (0.750) 0.782 (0.843)
0.25 0.748 (0.758) 0.725 (0.755) 0.694 (0.722) 0.655 (0.672)

PENDIGIT: Accuracy
¥ RA Ncut SK BBS
1024 0.705 (0.792) 0.703 (0.793) 0.706 (0.792) 0.729 (0.785)
256 0.703 (0.795) 0.698 (0.793) 0.694 (0.790) 0.710 (0.788)
64 0.691 (0.791) 0.702 (0.794) 0.707 (0.787) 0.731 (0.830)
32 0.706 (0.790) 0.702 (0.772) 0.707 (0.790) 0.736 (0.833)
16 0.701 (0.789) 0.695 (0.791) 0.701 (0.796) 0.738 (0.837)
8 0.707 (0.771) 0.702 (0.785) 0.708 (0.784) 0.738 (0.841)
4 0.704 (0.783) 0.697 (0.784) 0.710 (0.785) 0.756 (0.847)
2 0.716 (0.786) 0.721 (0.785) 0.712 (0.790) 0.737 (0.857)
1 0.725 (0.768) 0.729 (0.774) 0.730 (0.783) 0.690 (0.793)
0.5 0.730 (0.781) 0.732 (0.787) 0.722 (0.786) 0.566 (0.703)
0.25 0.724 (0.764) 0.726 (0.793) 0.733 (0.820) 0.469 (0.523)
PENDIGIT: NMI
1024 0.681 (0.707) 0.679 (0.719) 0.682 (0.707) 0.687 (0.713)
256 0.679 (0.716) 0.678 (0.716) 0.677 (0.709) 0.678 (0.710)
64 0.677 (0.704) 0.679 (0.718) 0.681 (0.704) 0.713 (0.753)
32 0.681 (0.710) 0.680 (0.717) 0.680 (0.710) 0.734 (0.772)
16 0.679 (0.709) 0.677 (0.717) 0.680 (0.717) 0.744 (0.782)
8 0.680 (0.717) 0.678 (0.709) 0.680 (0.708) 0.753 (0.798)
4 0.672(0.710) 0.671 (0.718) 0.675 (0.709) 0.776 (0.804)
2 0.670 (0.695) 0.672 (0.704) 0.670 (0.703) 0.775 (0.814)
1 0.674 (0.698) 0.679 (0.690) 0.678 (0.697) 0.774 (0.826)
0.5 0.693 (0.710) 0.693 (0.707) 0.689 (0.708) 0.666 (0.730)
0.25 0.679 (0.706) 0.688 (0.709) 0.705 (0.734) 0.491 (0.508)
SATIMAGE: Accuracy
¥ RA Ncut SK BBS
1024 0.514 (0.535) 0.514 (0.534) 0.514 (0.562) 0.516 (0.535)
256 0.514 (0.535) 0.515 (0.562) 0.513 (0.538) 0.523 (0.545)
64 0515 (0.535) 0.512 (0.535) 0.513 (0.534) 0.562 (0.584)
32 0514 (0.562) 0.513 (0.562) 0.515 (0.535) 0.569 (0.609)
16 0.515(0.535) 0.514 (0.535) 0.512 (0.535) 0.578 (0.616)
8 0514 (0.534) 0.514 (0.534) 0.517 (0.561) 0.580 (0.614)
4 0.515(0.535) 0510 (0.559) 0.515(0.533) 0.601 (0.623)
2 0514 (0.559) 0518 (0.534) 0.512 (0.558) 0.608 (0.625)
1 0514 (0.558) 0513 (0.532) 0.519 (0.531) 0.617 (0.628)
0.5 0.521(0.531) 0.521(0.533) 0.522 (0.533) 0.611 (0.639)
0.25 0.565 (0.582) 0.569 (0.588) 0.573 (0.590) 0.609 (0.639)
SATIMAGE: NMI
1024 0.404 (0.422) 0.403 (0.425) 0.404 (0.460) 0.405 (0.425)
256 0.406 (0.425) 0.405 (0.460) 0.404 (0.425) 0.406 (0.431)
64 0.404 (0.424) 0.405 (0.425) 0.406 (0.425) 0.493 (0.511)
32 0405 (0.460) 0.406 (0.460) 0.404 (0.424) 0.492 (0.518)
16 0.406 (0.425) 0.406 (0.424) 0.402 (0.423) 0.503 (0.531)
8 0402 (0.425) 0.405 (0.426) 0.405 (0.459) 0.505 (0.531)
4 0.404 (0.425) 0.406 (0.459) 0.405 (0.427) 0.511 (0.568)
2 0.404 (0.460) 0.405 (0.423) 0.402 (0.460) 0.591 (0.612)
1 0.406 (0.459) 0.405 (0.429) 0.405 (0.424) 0.600 (0.618)
0.5 0406 (0.429) 0.408 (0.428) 0.400 (0.433) 0.598 (0.623)
0.25 0.473(0.483) 0.491 (0.511) 0.494 (0.511) 0.603 (0.622)
SHUTTLE: Accuracy
¥ RA Ncut SK BBS
1024 0.369 (0.457) 0.372 (0.452) 0.368 (0.453) 0.371 (0.428)
256 0.371 (0.452) 0.365 (0.452) 0.368 (0.452) 0.363 (0.465)
64 0.365 (0.464) 0.375 (0.469) 0.364 (0.444) 0.376 (0.479)
32 0.384 (0.463) 0.376 (0.463) 0.376 (0.462) 0.398 (0.521)
16 0.336 (0.431) 0.338 (0.421) 0.339 (0.427) 0.406 (0.553)
8 0.331(0.397) 0.333(0.423) 0.338 (0.422) 0.396 (0.483)
4 0.331(0.420) 0.335(0.425) 0.338 (0.421) 0.565 (0.679)
2 0.329(0.433) 0340 (0.429) 0.346 (0.397) 0.567 (0.861)
1 0.350 (0.474) 0.356 (0.414) 0.362 (0.420) 0.531 (0.679)
0.5 0350 (0.423) 0.366 (0.424) 0.453 (0.506) 0.647 (0.795)
0.25 0.349 (0.416) 0.448 (0.506) 0.423 (0.510) 0.330 (0.362)
SHUTTLE: NMI
1024 0.385 (0.474) 0.384 (0.474) 0.384 (0.481) 0.389 (0.463)
256 0.388 (0.481) 0.383 (0.474) 0.381 (0.469) 0.417 (0.492)
64 0.382(0.471) 0.393 (0.472) 0.383 (0.489) 0.440 (0.559)
32 0.387 (0.484) 0.376 (0.469) 0.379 (0.469) 0.469 (0.563)
16 0.330 (0.507) 0.338 (0.484) 0.339 (0.443) 0.473 (0.561)
8 0.326 (0.444) 0.335(0.450) 0.336 (0.437) 0.468 (0.563)
4 0336 (0.441) 0342 (0.451) 0.345 (0.451) 0.514 (0.595)
2 0.342(0.445) 0361 (0.477) 0.366 (0.453) 0.542 (0.705)
1 0.391(0.473) 0.404 (0.507) 0.403 (0.480) 0.386 (0.452)
0.5 0396 (0.506) 0.417 (0.482) 0.448 (0.483) 0.206 (0.215)
025 0.392 (0.516) 0.429 (0.490) 0.392 (0.404) 0.220 (0.272)

