
Sparsity in Multiple Kernel Learning

Vladimir Koltchinskii‡

School of Mathematics

Georgia Institute of Technology

Atlanta, GA 30332-0160 USA

vlad@math.gatech.edu

and

Ming Yuan§

School of Industrial and Systems Engineering

Georgia Institute of Technology

Atlanta, GA 30332-0205 USA

myuan@isye.gatech.edu

(April 28, 2010)

‡ The research of this author was supported in part by NSF grants MPSA-MCS-0624841, DMS-0906880

and CCF-0808863
§ The research of this author was supported in part by NSF grants MPSA-MCS-0624841 and DMS-

0846234

1



Abstract

The problem of multiple kernel learning based on penalized empirical risk mini-

mization is discussed. The complexity penalty is determined jointly by the empirical

L2 norms and the reproducing kernel Hilbert space (RKHS) norms induced by the

kernels with a data-driven choice of regularization parameters. The main focus is on

the case when the total number of kernels is large, but only a relatively small number

of them is needed to represent the target function, so that the problem is sparse. The

goal is to establish oracle inequalities for the excess risk of the resulting prediction rule

showing that the method is adaptive both to the unknown design distribution and to

the sparsity of the problem.

1 Introduction

Let (Xi, Yi), i = 1, . . . , n be independent copies of a random couple (X, Y ) with values in

S × T, where S is a measurable space with σ-algebra A (typically, S is a compact subset of

a finite-dimensional Euclidean space) and T is a Borel subset of R. In what follows, P will

denote the distribution of (X, Y ) and Π the distribution of X. The corresponding empirical

distributions, based on (X1, Y1), . . . (Xn, Yn) and on (X1, . . . , Xn), will be denoted by Pn and

Πn, respectively. For a measurable function g : S × T 7→ R, we denote

Pg :=

∫
S×T

gdP = Eg(X, Y ) and Png :=

∫
S×T

gdPn = n−1

n∑
j=1

g(Xj, Yj).

Similarly, we use the notations Πf and Πnf for the integrals of a function f : S 7→ R with

respect to the measures Π and Πn.

The goal of prediction is to learn “a reasonably good” prediction rule f : S → R from

the empirical data {(Xi, Yi) : i = 1, 2, . . . , n}. To be more specific, consider a loss function

` : T × R → R+ and define the risk of a prediction rule f as

P (` ◦ f) = E`(Y, f(X)),

where (`◦f)(x, y) = `(y, f(x)). An optimal prediction rule with respect to this loss is defined

as

f∗ = argmin
f :S 7→R

P (` ◦ f),
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where the minimization is taken over all measurable functions and, for simplicity, it is as-

sumed that the minimum is attained. The excess risk of a prediction rule f is defined

as

E(` ◦ f) := P (` ◦ f)− P (` ◦ f∗).

Throughout the paper, the notation a � b means that there exists a numerical constant

c > 0 such that c−1 ≤ a
b
≤ c. By “numerical constants” we usually mean real numbers whose

precise values are not necessarily specified, or, sometimes, constants that might depend on

the characteristics of the problem that are of little interest to us (for instance, some constants

that depend only on the loss function).

1.1 Learning in Reproducing Kernel Hilbert Spaces

Let HK be a reproducing kernel Hilbert space (RKHS) associated with a symmetric non-

negatively definite kernel K : S × S → R such that for any x ∈ S, Kx(·) := K(·, x) ∈ HK

and f(x) = 〈f, Kx〉HK
for all f ∈ HK (Aronszajn (1950)). If it is known that if f∗ ∈ HK

and ‖f∗‖HK
≤ 1, then it is natural to estimate f∗ by a solution f̂ of the following empirical

risk minimization problem:

f̂ := argmin‖f‖HK
≤1

1

n

n∑
i=1

`(Yi, f(Xi)). (1)

The size of the excess risk E(`◦ f̂) of such an empirical solution depends on the “smoothness”

of functions in the RKHS HK . A natural notion of “smoothness” in this context is related to

the unknown design distribution Π. Namely, let TK be the integral operator from L2(Π) into

L2(Π) with kernel K. Under a standard assumption that the kernel K is square integrable (in

the theory of RKHS it is usually even assumed that S is compact and K is continuous), the

operator TK is compact and its spectrum is discrete. If {λk} is the sequence of the eigenvalues

(arranged in decreasing order) of TK and {φk} is the corresponding L2(Π)-orthonormal

sequence of eigenfunctions, then it is well known that the RKHS-norms of functions from

the linear span of {φk} can be written as

‖f‖2
HK

=
∑
k≥1

|〈f, φk〉L2(Π)|2

λk

,
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which means that the “smoothness” of functions in HK depends on the rate of decay of

eigenvalues λk that, in turn, depends on the design distribution Π. It is also clear that the

unit balls in the RKHS HK are ellipsoids in the space L2(Π) with “axes”
√

λk.

It was shown by Mendelson (2002) that the following function

γ̆n(δ) :=

(
n−1

∑
k≥1

(λk ∧ δ2)

)1/2

, δ ∈ [0, 1]

provides tight upper and lower bounds (up to constants) on localized Rademacher complex-

ities of the unit ball in HK and plays an important role in the analysis of the empirical risk

minimization problem (1). It is easy to see that the function γ̆2
n(
√

δ) is concave, γ̆n(0) = 0

and, as a consequence, γ̆n(δ)/δ is a decreasing function of δ and γ̆n(δ)/δ2 is strictly decreas-

ing. Hence, there exists unique positive solution of the equation γ̆n(δ) = δ2. If δ̄n denotes

this solution, then the results of Mendelson (2002) imply that with some constant C > 0

and with probability at least 1− e−t

E(` ◦ f̂) ≤ C

(
δ̄2
n +

t

n

)
.

The size of the quantity δ̄2
n involved in this upper bound on the excess risk depends on

the rate of decay of the eigenvalues λk as k → ∞. In particular, if λk � k−2β for some

β > 1/2, then it is easy to see that γ̆n(δ) � n−1/2δ1− 1
2β and δ̄2

n � n−2β/(2β+1). Recall that

unit balls in HK are ellipsoids in L2(Π) with “axes” of the order k−β and it is well known

that, in a variety of estimation problems, n−2β/(2β+1) represents minimax convergence rates

of the squared L2-risk for functions from such ellipsoids (for instance, from Sobolev balls of

smoothness β), as in famous Pinsker’s Theorem (see, e.g., Tsybakov (2009), Chapter 3).

Example. Sobolev spaces W α,2(G), G ⊂ Rd of smoothness α > d/2 is a well known

class of concrete examples of RKHS. Let Td, d ≥ 1 denote the d-dimensional torus and let

Π be the uniform distribution in Td. It is easy to check that, for all α > d/2, the Sobolev

space W α,2(Td) is an RKHS generated by the kernel K(x, y) = k(x− y), x, y ∈ T, where the

function k ∈ L2(Td) is defined by its Fourier coefficients

k̂n = (|n|2 + 1)−α, n = (n1, . . . , nd) ∈ Zd, |n|2 := n2
1 + · · ·+ n2

d.

In this case, the eigenfunctions of the operator TK are the functions of the Fourier basis and

its eigenvalues are the numbers {(|n|2 + 1)−α : n ∈ Zd}. For d = 1 and α > 1/2, we have

4



λk � k−2α (recall that {λk} are the eigenvalues arranged in decreasing order) so, β = α and

δ̄2
n � n−2α/(2α+1), which is a minimax nonparametric convergence rate for Sobolev balls in

W α,2(T) (see, e.g., Tsybakov (2009), Theorem 2.9). More generally, for arbitrary d ≥ 1 and

α > d/2, we get β = α/d and δ̄2
n � n−2α/(2α+d), which is also a minimax optimal convergence

rate in this case. Suppose now that the distribution Π is uniform in a torus Td′ ⊂ Td of

dimension d′ < d. We will use the same kernel K, but restrict the RKHS HK to the torus

Td′ of smaller dimension. Let d
′′

= d − d
′
. For n ∈ Zd, we will write n = (n

′
, n

′′
) with

n
′ ∈ Zd′ , n

′′ ∈ Zd
′′
. It is easy to prove that the eigenvalues of the operator TK become in this

case ∑
n′′∈Zd

′′

(|n′|2 + |n′′|2 + 1)−α � (|n′|2 + 1)−(α−d
′′

/2).

Due to this fact, the norm of the space HK (restricted to Td
′
) is equivalent to the norm

of the Sobolev space W α−d
′′

/2,2(Td′). Since the eigenvalues of the operator TK coincide, up

to a constant, with the numbers {(|n′|2 + 1)−(α−d
′′

/2) : n
′ ∈ Zd′}, we get δ̄2

n � n
− 2α−d

′′

2α−d
′′

+d
′

(which is again the minimax convergence rate for Sobolev balls in W α−d
′′

/2,2(Td′)). In the

case of more general design distributions Π, the rate of decay of the eigenvalues λk and the

corresponding size of the excess risk bound δ̄2
n depends on Π. If, for instance, Π is supported

in a submanifold S ⊂ Td of dimension dim(S) < d, the rate of convergence of δ̄2
n to 0 depends

on the dimension of the submanifold S rather than on the dimension of the ambient space

Td.

Using the properties of the function γ̆n, in particular, the fact that γ̆n(δ)/δ is decreasing,

it is easy to observe that γ̆n(δ) ≤ δ̄nδ + δ̄2
n, δ ∈ (0, 1]. Moreover, if ε̆ = ε̆(K) denotes the

smallest value of ε such that the linear function εδ + ε2, δ ∈ (0, 1] provides an upper bound

for the function γ̆n(δ), δ ∈ (0, 1], then ε̆ ≤ δ̄n ≤ 2(
√

5− 1)−1ε̆. Note that ε̆ also depends on

n, but we do not have to emphasize this dependence in the notations since, in what follows,

n is fixed. Based on the observations above, the quantity δ̄n coincides (up to a numerical

constant) with the slope ε̆ of the “smallest linear majorant” of the form εδ+ε2 of the function

γ̆n(δ). This interpretation of δ̄n is of some importance in the design of complexity penalties

used in this paper.
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1.2 Sparse Recovery via Regularization

Instead of minimizing the empirical risk over an RKHS-ball (as in problem (1)), it is very

common to define the estimator f̂ of the target function f∗ as a solution of the penalized

empirical risk minimization problem of the form

f̂ := argminf∈H

[
1

n

n∑
i=1

`(Yi, f(Xi)) + ε‖f‖α
HK

]
, (2)

where ε > 0 is a tuning parameter that balances the tradeoff between the empirical risk

and the “smoothness” of the estimate and, most often, α = 2 (sometimes, α = 1). The

properties of the estimator f̂ has been studied extensively. In particular, it was possible to

derive probabilistic bounds on the excess risk E(` ◦ f̂) (oracle inequalities) with the control

of the random error in terms of the rate of decay of the eigenvalues {λk}, or, equivalently,

in terms of the function γ̆n (see, e.g., Blanchard, Bousquet and Massart (2008)).

In the recent years, there has been a lot of interest in a data dependent choice of kernel

K in this type of problems. In particular, given a finite (possibly large) dictionary {Kj : j =

1, 2, . . . , N} of symmetric nonnegatively definite kernels on S, one can try to find a “good”

kernel K as a convex combination of the kernels from the dictionary:

K ∈ K :=

{
N∑

j=1

θjKj : θj ≥ 0, θ1 + . . . + θN = 1

}
. (3)

The coefficients of K need to be estimated from the training data along with the prediction

rule. Using this approach for problem (2) with α = 1 leads to the following optimization

problem:

f̂ := argminf∈HK
K∈K

(Pn(` ◦ f) + ε‖f‖HK
) . (4)

This learning problem, often referred to as the multiple kernel learning, has been studied

recently by Bousquet and Herrmann (2003), Cramer, Keshet and Singer (2003), Lanckriet,

Cristianini, Bartlett, Ghaoui and Jordan (2004), Micchelli and Pontil (2005), Lin and Zhang

(2006), Srebro and Ben-David (2006), Bach (2008) and Koltchinskii and Yuan (2008) among

others. In particular, (see, e.g., Micchelli and Pontil (2005)), problem (4) is equivalent to

the following:

(f̂1, . . . , f̂N) := argminfj∈HKj
, j=1,...,N

(
Pn(` ◦ (f1 + · · ·+ fN)) + ε

N∑
j=1

‖fj‖HKj

)
, (5)
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which is an infinite-dimensional version of LASSO-type penalization. Koltchinskii and Yuan

(2008) studied this method in the case when the dictionary is large, but the target function

f∗ has a “sparse representation” in terms of a relatively small subset of kernels {Kj : j ∈ J}.
It was shown that this method is adaptive to sparsity extending well known properties of

LASSO to this infinite dimensional framework.

In this paper, we study a different approach to the multiple kernel learning. It is closer

to the recent work on “sparse additive models” (see, e.g., Ravikumar, Liu, Lafferty and

Wasserman (2008) and Meier, van de Geer and Bühlmann (2009)) and it is based on a “dou-

ble penalization” with a combination of empirical L2-norms (used to enforce the sparsity

of the solution) and RKHS-norms (used to enforce the “smoothness” of the components).

Moreover, we suggest a data-driven method of choosing the values of regularization parame-

ters that is adaptive to unknown smoothness of the components (determined by the behavior

of distribution dependent eigenvalues of the kernels).

Let Hj := HKj
, j = 1, . . . , N. Denote H := l.s.

(⋃N
j=1Hj

)
(“l.s.” meaning “the linear

span”), and

H(N) :=

{
(h1, . . . , hN) : hj ∈ Hj, j = 1, . . . , N

}
.

Note that f ∈ H if and only if there exists an additive representation (possibly, non-unique)

f = f1 + · · · + fN , where fj ∈ Hj, j = 1, . . . , N. Also, H(N) has a natural structure of a

linear space and it can be equipped with the following inner product

〈(f1, . . . , fN), (g1, . . . , gN)〉H(N) :=
N∑

j=1

〈fj, gj〉Hj

to become the direct sum of Hilbert spaces Hj, j = 1, . . . , N.

Given a convex subset D ⊂ H(N), consider the following penalized empirical risk mini-

mization problem:(
f̂1, . . . , f̂N

)
= argmin

(f1,...,fN )∈D

[
Pn(` ◦ (f1 + · · ·+ fN)) +

N∑
j=1

(
εj‖fj‖L2(Πn) + ε2

j‖fj‖Hj

)]
. (6)

Note that for special choices of set D, for instance, for D := {(f1, . . . , fN) : fj ∈ Hj, ‖fj‖Hj
≤

Rj} for some Rj > 0, j = 1, . . . , N, one can replace each component fj involved in the

optimization problem by its orthogonal projections inHj onto the linear span of the functions

{Kj(·, Xi), i = 1, . . . , n} and reduce the problem to a convex optimization over a finite

dimensional space (of dimension nN).
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The complexity penalty in the problem (6) is based on two norms of the components fj of

an additive representation: the empirical L2-norm, ‖fj‖L2(Πn), with regularization parameter

εj, and an RKHS-norm, ‖fj‖Hj
, with regularization parameter ε2

j . The empirical L2-norm

(the lighter norm) is used to enforce the sparsity of the solution whereas the RKHS norms

(the heavier norms) are used to enforce the “smoothness” of the components. This is similar

to the approach taken in Meier, van de Geer and Bühlmann (2009) in the context of classical

additive models, i.e., in the case when S := [0, 1]N , Hj := W α,2([0, 1]) for some smoothness

α > 1/2 and the space Hj is a space of functions depending on the j-th variable. In this case,

the regularization parameters εj are equal (up to a constant) to n−α/(2α+1). The quantity ε2
j ,

used in the “smoothness part” of the penalty, coincides with the minimax convergence rate

in a one component smooth problem. At the same time, the quantity εj, used in the “sparsity

part” of the penalty, is equal to the square root of the minimax rate (which is similar to the

choice of regularization parameter in standard sparse recovery methods such as LASSO).

This choice of regularization parameters results in the excess risk of the order dn−2α/(2α+1),

where d is the number of components of the target function (the degree of sparsity of the

problem).

The framework of multiple kernel learning considered in this paper includes many gen-

eralized versions of classical additive models. For instance, one can think of the case when

S := [0, 1]m1 × · · · × [0, 1]mN and Hj = W α,2([0, 1]mj) is a space of functions depending on

the j-th block of variables. In this case, a proper choice of regularization parameters (for

uniform design distribution) would be εj = n−α/(2α+mj), j = 1, . . . , N (so, these parameters

and the error rates for different components of the model are different). It should be also

clear from the discussion in Section 1.1 that, if the design distribution Π is unknown, the

minimax convergence rates for the one component problems are also unknown. For instance,

if the projections of design points on the cubes [0, 1]mj are distributed in lower dimensional

submanifolds of these cubes, then the unknown dimensions of the submanifolds rather than

the dimensions mj would be involved in the minimax rates and in the regularization param-

eters εj. Because of this, data driven choice of regularization parameters εj that provides

adaptation to the unknown design distribution Π and to the unknown “smoothness” of the

components (related to this distribution) is a major issue in multiple kernel learning. From

this point of view, even in the case of classical additive models, the choice of regularization
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parameters that is based only on Sobolev type smoothness and ignores the design distribu-

tion is not adaptive. Note that, in the infinite dimensional LASSO studied in Koltchinskii

and Yuan (2008), the regularization parameter ε is chosen the same way as in the classical

LASSO (ε �
√

log N
n

), so, it is not related to the smoothness of the components. However, the

oracle inequalities proved in Koltchinskii and Yuan (2008) give correct size of the excess risk

only for special choices of kernels that depend on unknown “smoothness” of the components

of the target function f∗, so, this method is not adaptive either.

1.3 Adaptive Choice of Regularization Parameters

Denote

K̂j :=

(
Kj(Xl, Xk)

n

)
l,k=1,n

.

This n × n Gram matrix can be viewed as an empirical version of the integral operator

TKj
from L2(Π) into L2(Π) with kernel Kj. Denote λ̂

(j)
k , k = 1, 2, . . . the eigenvalues of K̂j

arranged in decreasing order. We also use the notation λ
(j)
k , k = 1, 2, . . . for the eigenvalues

of the operator TKj
: L2(Π) 7→ L2(Π) with kernel Kj arranged in decreasing order. Define

functions γ̆
(j)
n , γ̂

(j)
n ,

γ̆(j)
n (δ) :=

(
1

n

n∑
k=1

(λ
(j)
k ∧ δ2)

)1/2

and γ̂(j)
n (δ) :=

(
1

n

n∑
k=1

(λ̂
(j)
k ∧ δ2)

)1/2

,

and, for a fixed given A ≥ 1, let

ε̂j := inf

{
ε ≥

√
A log N

n
: γ̂(j)

n (δ) ≤ εδ + ε2, ∀δ ∈ (0, 1]

}
. (7)

One can view ε̂j as an empirical estimate of the quantity ε̆j = ε̆(Kj) that (as we have

already pointed out) plays a crucial role in the bounds on the excess risk in empirical risk

minimization problems in the RKHS context. In fact, since most often ε̆j ≥
√

A log N/n,

we will redefine this quantity as

ε̆j := inf

{
ε ≥

√
A log N

n
: γ̆(j)

n (δ) ≤ εδ + ε2, ∀δ ∈ (0, 1]

}
. (8)

We will use the following values of regularization parameters in problem (6): εj = τ ε̂j,

where τ is a sufficiently large constant.
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It should be emphasized that the structure of complexity penalty and the choice of

regularization parameters in (6) are closely related to the following bound on Rademacher

processes indexed by functions from an RKHS HK : with a high probability, for all h ∈ HK ,

|Rn(h)| ≤ C

[
ε̆(K)‖h‖L2(Π) + ε̆2(K)‖h‖HK

]
.

Such bounds follow from the results of Section 3 and they provide a way to prove sparsity

oracle inequalities for the estimators (6). The Rademacher process is defined as

Rn(f) := n−1

n∑
j=1

εjf(Xj),

where {εj} is a sequence of i.i.d. Rademacher random variables (taking values +1 and −1

with probability 1/2 each) independent of {Xj}.
We will use several basic facts of the empirical processes theory throughout the pa-

per. They include symmetrization inequalities and contraction (comparison) inequalities for

Rademacher processes that can be found in the books of Ledoux and Talagrand (1991) and

van der Vaart and Wellner (1996). We also use Talagrand’s concentration inequality for

empirical processes (see, Talagrand (1996), Bousquet (2002)).

The main goal of the paper is to establish oracle inequalities for the excess risk of the

estimator f̂ = f̂1 + . . . + f̂N . In these inequalities, the excess risk of f̂ is compared with the

excess risk of an oracle f := f1 + . . .+fN , (f1, . . . , fN) ∈ D with an error term depending on

the degree of sparsity of the oracle, i.e., on the number of non-zero components fj ∈ Hj in

its additive representation. The oracle inequalities will be stated in the next section. Their

proof relies on probabilistic bounds for empirical L2-norms and data dependent regularization

parameters ε̂j. The results of Section 3 show that they can be bounded by their respective

population counterparts. Using these tools and some bounds on empirical processes derived

in Section 5, we prove in Section 4 the oracle inequalities for the estimator f̂ .

2 Oracle Inequalities

Considering the problem in the case when the domain D of (6) is not bounded, say, D = H(N),

leads to additional technical complications and might require some changes in the estimation

procedure. To avoid this, we assume below that D is a bounded convex subset of H(N). It
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will be also assumed that, for all j = 1, . . . , N, supx∈S Kj(x, x) ≤ 1, which, by elementary

properties of RKHS, implies that ‖fj‖L∞ ≤ ‖fj‖Hj
, j = 1, . . . , N. Because of this,

RD := sup
(f1,...,fN )∈D

‖f1 + · · ·+ fN‖L∞ < +∞.

Denote R∗
D := RD ∨ ‖f∗‖L∞ . We will allow the constants involved in the oracle inequalities

stated and proved below to depend on the value of R∗
D (so, implicitly, it is assumed that this

value is not too large).

We shall also assume that N is large enough, say, so that log N ≥ 2 log log n. This

assumption is not essential to our development and is in place to avoid an extra term of the

order n−1 log log n in our risk bounds.

2.1 Loss Functions of Quadratic Type

We will formulate the assumptions on the loss function `. The main assumption is

that, for all y ∈ T , `(y, ·) is a nonnegative convex function. In addition, we will assume

that `(y, 0), y ∈ T is uniformly bounded from above by a numerical constant. Moreover,

suppose that, for all y ∈ T, `(y, ·) is twice continuously differentiable and its first and second

derivatives are uniformly bounded in T × [−R∗
D, R∗

D]. Denote

m(R) :=
1

2
inf
y∈T

inf
|u|≤R

∂2`(y, u)

∂u2
, M(R) :=

1

2
sup
y∈T

sup
|u|≤R

∂2`(y, u)

∂u2
(9)

and let m∗ := m(R∗
D), M∗ := M(R∗

D). We will assume that m∗ > 0.

Denote

L∗ := sup
|u|≤R∗D,y∈T

∣∣∣∣ ∂`

∂u
(y, u)

∣∣∣∣ .
Clearly, for all y ∈ T, the function `(y, ·) satisfies Lipschitz condition with constant L∗.

The constants m∗, M∗, L∗ will appear in a number of places in what follows. Without

loss of generality, we can also assume that m∗ ≤ 1 and L∗ ≥ 1 (otherwise, m∗ and L∗ can

be replaced by a lower bound and an upper bound, respectively).

The loss functions satisfying the assumptions stated above will be called the losses of

quadratic type.

If ` is a loss of quadratic type and f = f1 + · · ·+ fN , (f1, . . . , fN) ∈ D, then

m∗‖f − f∗‖2
L2(Π) ≤ E(` ◦ f) ≤ M∗‖f − f∗‖2

L2(Π). (10)
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This bound easily follows from a simple argument based on Taylor expansion and it will be

used later in the paper. If H is dense in L2(Π), then (10) implies that

inf
f∈H

P (` ◦ f) = inf
f∈L2(Π)

P (` ◦ f) = P (` ◦ f∗). (11)

The quadratic loss `(y, u) := (y − u)2 in the case when T ⊂ R is a bounded set is

one of the main examples of such loss functions. In this case, m(R) = 1 for all R > 0. In

regression problems with a bounded response variable, more general loss functions of the form

`(y, u) := φ(y−u) can be also used, where φ is an even nonnegative convex twice continuously

differentiable function with φ′′ uniformly bounded in R, φ(0) = 0 and φ′′(u) > 0, u ∈ R. In

classification problems, the loss functions of the form `(y, u) = φ(yu) are commonly used,

with φ being a nonnegative decreasing convex twice continuously differentiable function

such that, again, φ′′ is uniformly bounded in R and φ′′(u) > 0, u ∈ R. The loss function

φ(u) = log2(1 + e−u) (often referred to as the logit loss) is a specific example.

2.2 Geometry of the Dictionary

Now we introduce several important geometric characteristics of dictionaries consisting of

kernels (or, equivalently, of RKHS). These characteristics are related to the degree of “de-

pendence” of spaces of random variables Hj ⊂ L2(Π), j = 1, . . . , N and they will be involved

in the oracle inequalities for the excess risk E(` ◦ f̂).

First, for J ⊂ {1, . . . , N} and b ∈ [0, +∞], denote

C
(b)
J :=

{
(h1, . . . , hN) ∈ H(N) :

∑
j 6∈J

‖hj‖L2(Π) ≤ b
∑
j∈J

‖hj‖L2(Π)

}
.

Clearly, the set C
(b)
J is a cone in the space H(N) that consists of vectors (h1, . . . , hN) whose

components corresponding to j ∈ J “dominate” the rest of the components. This family of

cones increases as b increases. For b = 0, C
(b)
J coincides with the linear subspace of vectors

for which hj = 0, j 6∈ J. For b = +∞, C
(b)
J is the whole space H(N).

The following quantity will play the most important role:

β2,b(J ; Π) := β2,b(J) := inf

{
β > 0 :

(∑
j∈J

‖hj‖2
L2(Π)

)1/2

≤ β
∥∥∥ N∑

j=1

hj

∥∥∥
L2(Π)

, (h1, . . . , hN) ∈ C
(b)
J

}
.
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Clearly, β2,b(J ; Π) is a nondecreasing function of b. In the case of “simple dictionary” that

consists of one-dimensional spaces similar quantities have been used in the literature on

sparse recovery (see, e.g., Koltchinskii (2008), (2009a,b,c)).

The quantity β2,b(J ; Π) can be upper bounded in terms of some other geometric char-

acteristics that describe how “dependent” the spaces of random variables Hj ⊂ L2(Π) are.

These characteristics will be introduced below.

Given hj ∈ Hj, j = 1, . . . , N, denote by κ({hj : j ∈ J}) the minimal eigenvalue of the

Gram matrix (〈hj, hk〉L2(Π))j,k∈J . Let

κ(J) := inf
{

κ({hj : j ∈ J}) : hj ∈ Hj, ‖hj‖L2(Π) = 1
}

. (12)

We will also use the notation

HJ = l.s.

(⋃
j∈J

Hj

)
. (13)

The following quantity is the maximal cosine of the angle in the space L2(Π) between the

vectors in the subspaces HI and HJ for some I, J ⊂ {1, . . . , N} :

ρ(I, J) := sup

{
〈f, g〉L2(Π)

‖f‖L2(Π)‖g‖L2(Π)

: f ∈ HI , g ∈ HJ , f 6= 0, g 6= 0

}
. (14)

Denote ρ(J) := ρ(J, J c). The quantities ρ(I, J) and ρ(J) are very similar to the notion of

canonical correlation in the multivariate statistical analysis.

There are other important geometric characteristics, frequently used in the theory of

sparse recovery, including so called “restricted isometry constants” by Candes and Tao

(2006). Define δd(Π) to be the smallest δ > 0 such that for all (h1, . . . , hN) ∈ H(N) and all

J ⊂ {1, . . . , N} with card(J) = d,

(1− δ)

(∑
j∈J

‖hj‖2
L2(Π)

)1/2

≤
∥∥∥∥∑

j∈J

hj

∥∥∥∥
L2(Π)

≤ (1 + δ)

(∑
j∈J

‖hj‖2
L2(Π)

)1/2

.

This condition with a sufficiently small value of δd(Π) means that for all choices of J with

card(J) = d the functions in the spaces Hj, j ∈ J are “almost orthogonal” in L2(Π).

The following simple proposition easily follows from some statements in Koltchinskii

(2009a,b), (2008) (where the case of simple dictionaries consisting of one-dimensional spaces

Hj was considered).
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Proposition 1 For all J ⊂ {1, . . . , N},

β2,∞(J ; Π) ≤ 1√
κ(J)(1− ρ2(J))

.

Also, if card(J) = d and δ3d(Π) ≤ 1
8b

, then β2,b(J ; Π) ≤ 4.

Thus, such quantities as β2,∞(J ; Π) or β2,b(J ; Π), for finite values of b, are reasonably small

provided that the spaces of random variables Hj, j = 1, . . . , N satisfy proper conditions of

“weakness of correlations”.

2.3 Excess Risk Bounds

We are now in a position to formulate our main theorems that provide oracle inequalities

for the excess risk E(` ◦ f̂). In these theorems, E(` ◦ f̂) will be compared with the excess risk

E(`◦f) of an oracle (f1, . . . , fN) ∈ D. Here and in what follows, f := f1 + · · ·+fN ∈ H. This

is a little abuse of notation: we are ignoring the fact that such an additive representation

of a function f ∈ H is not necessarily unique. In some sense, f denotes both the vector

(f1, . . . , fN) ∈ H(N) and the function f1 + · · ·+ fN ∈ H. However, this is not going to cause

a confusion in what follows. We will also use the following notations:

Jf := {1 ≤ j ≤ N : fj 6= 0} and d(f) := card(Jf ).

The error terms of the oracle inequalities will depend on the quantities ε̆j = ε̆(Kj) related

to the “smoothness” properties of the RKHS and also on the geometric characteristics of the

dictionary introduced above. In the first theorem, we will use the quantity β2,∞(Jf ; Π) to

characterize the properties of the dictionary. In this case, there will be no assumptions on

the quantities ε̆j : these quantities could be of different order for different kernel machines,

so, different components of the additive representation could have different “smoothness”. In

the second theorem, we will use a smaller quantity β2,b(J ; Π) for a proper choice of parameter

b < ∞. In this case, we will have to make an additional assumption that ε̆j, j = 1, . . . , N

are all of the same order (up to a constant).

In both cases, we consider penalized empirical risk minimization problem (6) with data-

dependent regularization parameters εj = τ ε̂j, where ε̂j, j = 1, . . . , N are defined by (7)

with some A ≥ 4 and τ ≥ BL∗ for a numerical constant B.

14



Theorem 2 There exist numerical constants C1, C2 > 0 such that, for all all oracles (f1, . . . , fN) ∈
D, with probability at least 1− 3N−A/2,

E(` ◦ f̂) + C1

(
τ

N∑
j=1

ε̆j‖f̂j − fj‖L2(Π) + τ 2

N∑
j=1

ε̆2
j‖f̂j‖Hj

)

≤ 2E(` ◦ f) + C2τ
2
∑
j∈Jf

ε̆2
j

(
β2

2,∞(Jf , Π)

m∗
+ ‖fj‖Hj

)
. (15)

This result means that if there exists an oracle (f1, . . . , fN) ∈ D such that

(a) the excess risk E(` ◦ f) is small;

(b) the spaces Hj, j ∈ Jf are not strongly correlated with the spaces Hj, j 6∈ Jf ;

(c) Hj, j ∈ Jf are “well posed” in the sense that κ(Jf ) is not too small;

(d) ‖fj‖Hj
, j ∈ Jf are all bounded by a reasonable constant,

then the excess risk E(`◦f̂) is essentially controlled by
∑

j∈Jf
ε̆2
j . At the same time, the oracle

inequality provides a bound on the L2(Π)-distances between the estimated components f̂j

and the components of the oracle (of course, everything is under the assumption that the

loss is of quadratic type and m∗ is bounded away from 0).

Not also that the constant 2 in front of the excess risk of the oracle E(` ◦ f) can be

replaced by 1 + δ for any δ > 0 with minor modifications of the proof (in this case, the

constant C2 depends on δ and is of the order 1/δ).

Suppose now that there exists ε̆ > 0 and a constant Λ > 0 such that

Λ−1 ≤ ε̆j

ε̆
≤ Λ, j = 1, . . . , N.

Theorem 3 There exist numerical constants C1, C2, b > 0 such that, for all oracles (f1, . . . , fN) ∈
D, with probability at least 1− 3N−A/2,

E(` ◦ f̂) +
C1

Λ

(
τ ε̆

N∑
j=1

‖f̂j − fj‖L2(Π) + τ 2ε̆2

N∑
j=1

‖f̂j‖Hj

)

≤ 2E(` ◦ f) + C2Λτ 2ε̆2

(
β2

2,bΛ2(Jf , Π)

m∗
d(f) +

∑
j∈Jf

‖fj‖Hj

)
. (16)
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As before, the constant 2 in the upper bound can be replaced by 1 + δ, but, in this case,

the constants C2 and b would be of the order 1
δ
. The meaning of this result is that if there

exists an oracle (f1, . . . , fN) ∈ D such that

(a) the excess risk E(` ◦ f) is small;

(b) the “restricted isometry” constant δ3d(Π) is small for d = d(f);

(c) ‖fj‖Hj
, j ∈ Jf are all bounded by a reasonable constant,

then the excess risk E(`◦ f̂) is essentially controlled by d(f)ε̆2. At the same time, the distance∑N
j=1 ‖f̂j−fj‖L2(Π) between the estimator and the oracle is controlled by d(f)ε̆. In particular,

this implies that the empirical solution (f̂1, . . . , f̂N) is “approximately sparse” in the sense

that
∑

j 6∈Jf
‖f̂‖L2(Π) is of the order d(f)ε̆.

Remarks. 1. It is easy to check that theorems 2 and 3 hold also if one replaces N in

the definitions (7) of ε̂j and (8) of ε̆j by an arbitrary N̄ ≥ N such that log N̄ ≥ 2 log log n (a

similar condition on N introduced early in Section 2 is not needed here). In this case, the

probability bounds in the theorems become 1− 3N̄−A/2. This change might be of interest if

one uses the results for a dictionary consisting of just one RKHS (N = 1), which is not the

focus of this paper.

2. If the distribution dependent quantities ε̆j, j = 1, . . . , N are known and used as

regularization parameters in (6), the oracle inequalities of theorems 2 and 3 also hold (with

obvious simplifications of their proofs). For instance, in the case when S = [0, 1]N , the design

distribution Π is uniform and, for each j = 1, . . . , N, Hj is a Sobolev space of functions of

smoothness α > 1/2 depending only on the j-th variable, we have ε̆j � n−α/(2α+1). Taking

in this case

εj = τ

(
n−α/(2α+1)

∨√
A log N

n

)
would lead to oracle inequalities for sparse additive models is spirit of Meier, van de Geer

and Bühlmann (2009). More precisely, if Hj := {h ∈ W α,2[0, 1] :
∫ 1

0
h(x)dx = 0}, then, for

uniform distribution Π, the spaces Hj are orthogonal in L2(Π) (recall that Hj is viewed as

a space of functions depending on the j-th coordinate). Assume, for simplicity, that ` is

the quadratic loss and that the regression function f∗ can be represented as f∗ =
∑

j∈J f∗,j,

where J is a subset of {1, . . . , N} of cardinality d and ‖f∗,j‖Hj
≤ 1. Then it easily follows
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from the bound of Theorem 3 that with probability at least 1− 3N−A/2

E(f) = ‖f − f∗‖2
L2(Π) ≤ Cτ 2d

(
n−2α/(2α+1)

∨ A log N

n

)
.

Note that, up to a constant, this essentially coincides with the minimax lower bound in this

type of problems obtained recently by Raskutti, Wainwright and Yu (2009). Of course, if the

design distribution is not necessarily uniform, an adaptive choice of regularization parameters

might be needed even in such simple examples and the approach described above leads to

minimax optimal rates.

3 Preliminary Bounds

In this section, the case of a single RKHS HK associated with a kernel K is considered. We

assume that K(x, x) ≤ 1, x ∈ S. This implies that, for all h ∈ HK , ‖h‖L2(Π) ≤ ‖h‖L∞ ≤
‖h‖HK

.

3.1 Comparison of ‖ · ‖L2(Πn) and ‖ · ‖L2(Π)

First, we study the relationship between the empirical and the population L2 norms for

functions in HK .

Theorem 4 Assume that A ≥ 1 and log N ≥ 2 log log n. Then there exists a numerical

constant C > 0 such that with probability at least 1−N−A for all h ∈ HK

‖h‖L2(Π) ≤ C
(
‖h‖L2(Πn) + ε̄‖h‖HK

)
; (17)

‖h‖L2(Πn) ≤ C
(
‖h‖L2(Π) + ε̄‖h‖HK

)
, (18)

where

ε̄ = ε̄(K) := inf

{
ε ≥

√
A log N

n
: E sup

‖h‖HK
=1

‖h‖L2(Π)≤δ

|Rn(h)| ≤ εδ + ε2,∀δ ∈ (0, 1]

}
. (19)

Proof. Observe that the inequalities hold trivially when h = 0. We shall therefore consider

only the case when h 6= 0. By symmetrization inequality,

E sup
‖h‖HK

=1

2−j<‖h‖L2(Π)≤2−j+1

∣∣(Πn − Π)h2
∣∣ ≤ 2E sup

‖h‖HK
=1

2−j<‖h‖L2(Π)≤2−j+1

∣∣Rn(h2)
∣∣ , (20)
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and, by contraction inequality, we further have

E sup
‖h‖HK

=1

2−j<‖h‖L2(Π)≤2−j+1

∣∣(Πn − Π)h2
∣∣ ≤ 8E sup

‖h‖HK
=1

2−j<‖h‖L2(Π)≤2−j+1

|Rn(h)| . (21)

The definition of ε̄ implies that

E sup
‖h‖HK

=1

2−j<‖h‖L2(Π)≤2−j+1

∣∣(Πn − Π)h2
∣∣ ≤ 8E sup

‖h‖HK
=1

‖h‖L2(Π)≤2−j+1

|Rn(h)| ≤ 8
(
ε̄2−j+1 + ε̄2

)
. (22)

An application of Talagrand’s concentration inequality yields

sup
‖h‖HK

=1

2−j<‖h‖L2(Π)≤2−j+1

∣∣(Πn − Π)h2
∣∣ ≤ 2

(
E sup

‖h‖HK
=1

2−j<‖h‖L2(Π)≤2−j+1

∣∣(Πn − Π)h2
∣∣

+2−j+1

√
t + 2 log j

n
+

t + 2 log j

n

)
≤ 32

(
ε̄2−j + ε̄2 + 2−j

√
t + 2 log j

n
+

t + 2 log j

n

)

with probability at least 1− exp(−t− 2 log j) for any natural number j. Now, by the union

bound, for all j such that 2 log j ≤ t,

sup
‖h‖HK

=1

2−j<‖h‖L2(Π)≤2−j+1

∣∣(Πn − Π)h2
∣∣ ≤ 32

(
ε̄2−j + ε̄2 + 2−j

√
t + 2 log j

n
+

t + 2 log j

n

)
(23)

with probability at least

1−
∑

j:2 log j≤t

exp(−t− 2 log j) = 1− exp(−t)
∑

j:2 log j≤t

j−2 ≥ 1− 2 exp(−t). (24)

Recall that ε̄ ≥ (A log N/n)1/2 and ‖h‖L2(Π) ≤ ‖h‖HK
. Taking t = A log N + log 4, we easily

get that, for all h ∈ HK such that ‖h‖HK
= 1 and ‖h‖L2(Π) ≥ exp{−NA/2},∣∣(Πn − Π)h2
∣∣ ≤ C

(
ε̄‖h‖L2(Π) + ε̄2

)
(25)

with probability at least 1− 0.5N−A and with a numerical constant C > 0. In other words,

with the same probability, for all h ∈ HK such that
‖h‖L2(Π)

‖h‖HK

≥ exp{−NA/2},∣∣(Πn − Π)h2
∣∣ ≤ C

(
ε̄‖h‖L2(Π)‖h‖HK

+ ε̄2‖h‖2
HK

)
. (26)
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Therefore, for all h ∈ HK such that

‖h‖L2(Π)

‖h‖HK

> exp(−NA/2) (27)

we have

‖h‖2
L2(Π) = Πh2 ≤ ‖h‖2

L2(Πn) + C
(
ε̄‖h‖L2(Π)‖h‖HK

+ ε̄2‖h‖2
HK

)
,

‖h‖2
L2(Πn) = Πnh

2 ≤ ‖h‖2
L2(Π) + C

(
ε̄‖h‖L2(Π)‖h‖HK

+ ε̄2‖h‖2
HK

)
.

It can be now deduced that, for a proper value of numerical constant C,

‖h‖L2(Π) ≤ C
(
‖h‖L2(Πn) + ε̄‖h‖HK

)
and ‖h‖L2(Πn) ≤ C

(
‖h‖L2(Π) + ε̄‖h‖HK

)
. (28)

It remains to consider the case when

‖h‖L2(Π)

‖h‖HK

≤ exp(−NA/2). (29)

Following a similar argument as before, with probability at least 1− 0.5N−A,

sup
‖h‖HK

=1

‖h‖L2(Π)≤exp(−NA/2)

∣∣(Πn − Π)h2
∣∣ ≤ 16

(
ε̄ exp(−NA/2) + ε̄2

+ exp(−NA/2)

√
A log N

n
+

A log N

n

)
.

Under the conditions A ≥ 1, log N ≥ 2 log log n,

ε̄ ≥
(

A log N

n

)1/2

≥ exp(−NA/2). (30)

Then

sup
‖h‖HK

=1

‖h‖L2(Π)≤exp(−NA/2)

∣∣(Πn − Π)h2
∣∣ ≤ Cε̄2. (31)

with probability at least 1−0.5N−A, which also implies (17) and (18), and the result follows.

Theorem 4 shows that the two norms ‖h‖L2(Πn) and ‖h‖L2(Π) are of the same order up to

an error term ε̄‖h‖HK
.
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3.2 Comparison of ε̂(K), ε̄(K), ε̆(K) and ε̌(K)

Recall the definitions

γ̆n(δ) :=

(
n−1

∞∑
k=1

(λk ∧ δ2)

)1/2

, δ ∈ (0, 1]

where {λk} are the eigenvalues of the integral operator TK from L2(Π) into L2(Π) with kernel

K, and, for some A ≥ 1,

ε̆(K) := inf

{
ε ≥

√
A log N

n
: γ̆n(δ) ≤ εδ + ε2,∀δ ∈ (0, 1]

}
.

It follows from Lemma 42 of Mendelson (2002) (with an additional application of Cauchy-

Schwarz inequality for the upper bound and Hoffmann-Jørgensen inequality for the lower

bound, see also Koltchinskii (2008)) that, for some numerical constants C1, C2 > 0,

C1

(
n−1

n∑
k=1

(λk ∧ δ2)

)1/2

− n−1 ≤ E sup
‖h‖HK

=1

‖h‖L2(Π)≤δ

|Rn(h)| ≤ C2

(
n−1

n∑
k=1

(λk ∧ δ2)

)1/2

, (32)

This fact and the definitions of ε̆(K), ε̄(K) easily imply the following result.

Proposition 5 Under the condition K(x, x) ≤ 1, x ∈ S, there exist numerical constants

C1, C2 > 0 such that

C1ε̆(K) ≤ ε̄(K) ≤ C2ε̆(K). (33)

If K is the kernel of the projection operator onto a finite-dimensional subspace HK of

L2(Π), it is easy to check that ε̆(K) �
√

dim(HK)
n

(recall the notation a � b, which means

that there exists a numerical constant c > 0 such that c−1 ≤ a/b ≤ c). If the eigenvalues λk

decay at a polynomial rate, i.e., λk � k−2β for some β > 1/2, then ε̆(K) � n−β/(2β+1).

Recall the notation

ε̂(K) := inf

{
ε ≥

√
A log N

n
:

(
1

n

n∑
k=1

(
λ̂k ∧ δ2

))1/2

≤ εδ + ε2,∀δ ∈ (0, 1]

}
, (34)

where {λ̂k} denote the eigenvalues of the Gram matrix K̂ :=

(
K(Xi, Xj)

)
i,j=1,...,n

. It follows

again from the results of Mendelson (2002) [namely, one can follow the proof of Lemma 42
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in the case when the RKHS HK is restricted to the sample X1, . . . , Xn and the expecta-

tions are conditional on the sample; then one uses Cauchy-Schwarz and Hoffmann-Jørgensen

inequalities as in the proof of (32)] that for some numerical constants C1, C2 > 0

C1

(
n−1

n∑
k=1

(λ̂k ∧ δ2)

)1/2

− n−1 ≤ Eε sup
‖h‖HK

=1

‖h‖L2(Πn)≤δ

|Rn(h)| ≤ C2

(
n−1

n∑
k=1

(λ̂k ∧ δ2)

)1/2

, (35)

where Eε indicates that the expectation is taken over the Rademacher random variables only

(conditionally on X1, . . . , Xn). Therefore, if we denote by

ε̃(K) := inf

{
ε ≥

√
A log N

n
: Eε sup

‖h‖HK
=1

‖h‖L2(Πn)≤δ

|Rn(h)| ≤ εδ + ε2,∀δ ∈ (0, 1]

}
(36)

the empirical version of ε̄(K), then ε̂(K) � ε̃(K). We will now show that ε̃(K) � ε̄(K) with

a high probability.

Theorem 6 Suppose that A ≥ 1 and log N ≥ 2 log log n. There exist numerical constants

C1, C2 > 0 such that

C1ε̄(K) ≤ ε̃(K) ≤ C2ε̄(K), (37)

with probability at least 1−N−A.

Proof. Let t := A log N + log 14. It follows from Talagrand concentration inequality that

E sup
‖h‖HK

=1

2−j<‖h‖L2(Π)≤2−j+1

|Rn(h)|

≤ 2

 sup
‖h‖HK

=1

2−j<‖h‖L2(Π)≤2−j+1

|Rn(h)|+ 2−j+1

√
t + 2 log j

n
+

t + 2 log j

n

 .

with probability at least 1− exp(−t− 2 log j). On the other hand, as derived in the proof of

Theorem 4 (see (23))

sup
‖h‖HK

=1

2−j<‖h‖L2(Π)≤2−j+1

∣∣(Πn − Π)h2
∣∣ ≤ 32

(
ε̄2−j + ε̄2 + 2−j

√
t + 2 log j

n
+

t + 2 log j

n

)
(38)
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with probability at least 1 − exp(−t − 2 log j). We will use these bounds only for j such

that 2 log j ≤ t. In this case, the second bound implies that, for some numerical constant

c > 0 and all h satisfying the conditions ‖h‖HK
= 1, 2−j < ‖h‖L2(Π) ≤ 2−j+1, we have

‖h‖L2(Πn) ≤ c(2−j + ε̄) (again, see the proof of Theorem 4). Combining these bounds, we get

that with probability at least 1− 2 exp(−t− 2 log j),

E sup
‖h‖HK

=1

2−j<‖h‖L2(Π)≤2−j+1

|Rn(h)| ≤ 2

(
sup

‖h‖HK
=1

‖h‖L2(Πn)≤cδj

|Rn(h)|+ 2−j+1

√
t + 2 log j

n
+

t + 2 log j

n

)
.

where δj = ε̄ + 2−j.

Applying now Talagrand concentration inequality to the Rademacher process condition-

ally on the observed data X1, . . . , Xn yields

sup
‖h‖HK

=1

‖h‖L2(Πn)≤cδj

|Rn(h)| ≤ 2

(
Eε sup

‖h‖HK
=1

‖h‖L2(Πn)≤cδj

|Rn(h)|+ Cδj

√
t + 2 log j

n
+

t + 2 log j

n

)
,

with conditional probability at least 1− exp(−t− 2 log j). From this and from the previous

bound it is not hard to deduce that, for some numerical constants C, C ′ and for all j such

that 2 log j ≤ t,

E sup
‖h‖HK

=1

2−j<‖h‖L2(Π)≤2−j+1

|Rn(h)|

≤ C ′
(

Eε sup
‖h‖HK

=1

‖h‖L2(Πn)≤cδj

|Rn(h)|+ δj

√
t + 2 log j

n
+

t + 2 log j

n

)

≤ C(ε̃δj + ε̃2) ≤ C(ε̃2−j + ε̃ε̄ + ε̃2)

with probability at least 1−3 exp(−t−2 log j). In obtaining the second inequality, we used the

definition of ε̃ and the fact that, for t = A log N + log 14, 2 log j ≤ t, c1ε̃ ≥ (t + 2 log j/n)1/2,

where c1 is a numerical constant. Now, by the union bound, the above inequality holds with

probability at least

1− 3
∑

j:2 log j≤t

exp(−t− 2 log j) ≥ 1− 6 exp(−t) (39)

for all j such that 2 log j ≤ t simultaneously. Similarly, it can be shown that

E sup
‖h‖HK

=1

‖h‖L2(Π)≤exp(−NA/2)

|Rn(h)| ≤ C
(
ε̃ exp(−NA/2) + ε̃ε̄ + ε̃2

)
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with probability at least 1− exp(−t).

For t = A log N + log 14, we get

E sup
‖h‖HK

=1

‖h‖L2(Π)≤δ

|Rn(h)| ≤ C
(
ε̃δ + ε̃ε̄ + ε̃2

)
, (40)

for all 0 < δ ≤ 1, with probability at least 1−7 exp(−t) = 1−N−A/2. Now by the definition

of ε̄, we obtain

ε̄ ≤ C max{ε̃, (ε̃ε̄ + ε̃2)1/2}, (41)

which implies that ε̄ ≤ Cε̃ with probability at least 1−N−A/2.

Similarly one can show that

Eε sup
‖h‖HK

=1

‖h‖L2(Π)≤δ

|Rn(h)| ≤ C
(
ε̄δ + ε̃ε̄ + ε̄2

)
, (42)

for all 0 < δ ≤ 1, with probability at least 1 − N−A/2, which implies that ε̃ ≤ Cε̄ with

probability at least 1−N−A/2. The proof can then be completed by the union bound.

Define

ε̌ := ε̌(K) := inf

ε ≥
√

A log N

n
: sup
‖h‖HK

=1

‖h‖L2(Π)≤δ

|Rn(h)| ≤ εδ + ε2,∀δ ∈ (0, 1]

 . (43)

The next statement can be proved similarly to Theorem 6.

Theorem 7 There exist numerical constants C1, C2 > 0 such that

C1ε̄(K) ≤ ε̌(K) ≤ C2ε̄(K), (44)

with probability at least 1−N−A.

Suppose now that {K1, . . . , KN} is a dictionary of kernels. Recall that ε̄j = ε̄(Kj),

ε̂j = ε̂(Kj) and ε̌j = ε̌(Kj).
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It follows from theorems 4, 6, 7 and the union bound that with probability at least

1− 3N−A+1 for all j = 1, . . . , N

‖h‖L2(Π) ≤ C
(
‖h‖L2(Πn) + ε̄j‖h‖HK

)
, ‖h‖L2(Πn) ≤ C

(
‖h‖L2(Π) + ε̄j‖h‖HK

)
, h ∈ Hj, (45)

C1ε̄j ≤ ε̂j ≤ C2ε̄j and C1ε̄j ≤ ε̌j ≤ C2ε̄j. (46)

Note also that

3N−A+1 = exp{−(A− 1) log N + log 3} ≤ exp{−(A/2) log N} = N−A/2,

provided that A ≥ 4 and N ≥ 3. Thus, under these additional constraints, (45) and (46)

hold for all j = 1, . . . , N with probability at least 1−N−A/2.

4 Proofs of the Oracle Inequalities

For an arbitrary set J ⊆ {1, . . . , N} and b ∈ (0, +∞), denote

K(b)
J :=

(f1, . . . , fN) ∈ H(N) :
∑
j /∈J

ε̄j‖fj‖L2(Π) ≤ b
∑
j∈J

ε̄j‖fj‖L2(Π)

 (47)

and let

βb(J) = inf

{
β ≥ 0 :

∑
j∈J

ε̄j‖fj‖L2(Π) ≤ β‖f1 + · · ·+ fN‖L2(Π), (f1, . . . , fN) ∈ K(b)
J

}
. (48)

It is easy to see that, for all nonempty sets J, βb(J) ≥ maxj∈J ε̄j ≥
√

A log N
n

.

Theorems 2 and 3 will be easily deduced from the following technical result.

Theorem 8 There exist numerical constants C1, C2, B > 0 and b > 0 such that, for all

τ ≥ BL∗ in the definition of εj = τ ε̂j, j = 1, . . . , N and for all oracles (f1, . . . , fN) ∈ D,

E(` ◦ f̂) + C1

(
N∑

j=1

τ ε̄j‖f̂j − fj‖L2(Π) +
N∑

j=1

τ 2ε̄2
j‖f̂j‖Hj

)
(49)

≤ 2E(` ◦ f) + C2τ
2

∑
j∈Jf

ε̄2
j‖fj‖Hj

+
β2

b (Jf )

m∗

 (50)

with probability at least 1− 3N−A/2. Here A ≥ 4 is a constant involved in the definitions of

ε̄j, ε̂j, j = 1, . . . , N.
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Proof. Recall that

(
f̂1, . . . , f̂N

)
:= argmin

(f1,...,fN )∈D

[
Pn(` ◦ (f1 + · · ·+ fN)) +

N∑
j=1

(
τ ε̂j‖fj‖L2(Πn) + τ 2ε̂2

j‖fj‖Hj

)]
,

and that we write f := f1 + · · ·+ fN , f̂ := f̂1 + · · ·+ f̂N . Hence, for all (f1, . . . , fN) ∈ D,

Pn(` ◦ f̂) +
N∑

j=1

(
τ ε̂j‖f̂j‖L2(Πn) + τ 2ε̂2

j‖f̂j‖Hj

)
≤ Pn(` ◦ f) +

N∑
j=1

(
τ ε̂j‖fj‖L2(Πn) + τ 2ε̂2

j‖fj‖Hj

)
.

By a simple algebra,

E(` ◦ f̂) +
N∑

j=1

(
τ ε̂j‖f̂j‖L2(Πn) + τ 2ε̂2

j‖f̂j‖Hj

)
≤ E(` ◦ f) +

N∑
j=1

(
τ ε̂j‖fj‖L2(Πn) + τ 2ε̂2

j‖fj‖Hj

)
+
∣∣∣(Pn − P )

(
` ◦ f̂ − ` ◦ f

)∣∣∣
and, by the triangle inequality,

E(` ◦ f̂) +
∑
j /∈Jf

τ ε̂j‖f̂j‖L2(Πn) +
N∑

j=1

τ 2ε̂2
j‖f̂j‖Hj

≤ E(` ◦ f) +
∑
j∈Jf

τ ε̂j‖f̂j − fj‖L2(Πn) +
∑
j∈Jf

τ 2ε̂2
j‖fj‖Hj

+
∣∣∣(Pn − P )

(
` ◦ f̂ − ` ◦ f

)∣∣∣ .
We now take advantage of (45) and (46) to replace ε̂js by ε̄js and ‖ · ‖L2(Πn) by ‖ · ‖L2(Π).

Specifically, there exists a numerical constant C > 1 and an event E of probability at least

1−N−A/2 such that

1

C
≤ min

{
ε̂j

ε̄j

: j = 1, . . . , N

}
≤ max

{
ε̂j

ε̄j

: j = 1, . . . , N

}
≤ C (51)

and, for all j = 1, . . . , N ,

1

C
‖f̂j‖L2(Π) − ε̄j‖f̂j‖Hj

≤ ‖f̂j‖L2(Πn) ≤ C
(
‖f̂j‖L2(Π) + ε̄j‖f̂j‖Hj

)
. (52)
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Taking τ ≥ C/(C − 1), we have that, on the event E,

E(` ◦ f̂) +
∑
j /∈Jf

τ ε̂j‖f̂j‖L2(Πn) +
N∑

j=1

τ 2ε̂2
j‖f̂j‖Hj

≥ E(` ◦ f̂) +
1

C2

∑
j /∈Jf

τ ε̄j‖f̂j‖L2(Πn) +
N∑

j=1

τ 2ε̄2
j‖f̂j‖Hj


≥ E(` ◦ f̂) +

1

C2

∑
j /∈Jf

τ ε̄j

(
1

C
‖f̂j‖L2(Π) − ε̄j‖f̂j‖Hj

)
+

N∑
j=1

τ 2ε̄2
j‖f̂j‖Hj


≥ E(` ◦ f̂) +

1

C3

∑
j /∈Jf

τ ε̄j‖f̂j‖L2(Π) +
N∑

j=1

τ 2ε̄2
j‖f̂j‖Hj

 .

Similarly,

E(` ◦ f) +
∑
j∈Jf

(
τ ε̂j‖fj − f̂j‖L2(Πn) + τ 2ε̂2

j‖fj‖Hj

)
≤ E(` ◦ f) + C2

∑
j∈Jf

(
τ ε̄j‖fj − f̂j‖L2(Πn) + τ 2ε̄2

j‖fj‖Hj

)
≤ E(` ◦ f) + C3

∑
j∈Jf

τ ε̄j

(
‖fj − f̂j‖L2(Π) + ε̄j‖fj − f̂j‖Hj

)
+ C2

∑
j∈Jf

τ 2ε̄2
j‖fj‖Hj

≤ E(` ◦ f) + C3
∑
j∈Jf

τ ε̄j

(
‖fj − f̂j‖L2(Π) + ε̄j‖fj‖Hj

+ ε̄j‖f̂j‖Hj

)
+ C2

∑
j∈Jf

τ 2ε̄2
j‖fj‖Hj

≤ E(` ◦ f) + 2C3
∑
j∈Jf

(
τ ε̄j‖fj − f̂j‖L2(Π) + τ 2ε̄2

j‖fj‖Hj

)
+ C3

∑
j∈Jf

τ ε̄2
j‖f̂j‖Hj

.

Therefore, by taking τ large enough, namely τ ≥ C
C−1

∨(2C6), we can find numerical constants

0 < C1 < 1 < C2 such that, on the event E,

E(` ◦ f̂) + C1

∑
j /∈Jf

τ ε̄j‖f̂j‖L2(Π) +
N∑

j=1

τ 2ε̄2
j‖f̂j‖Hj


≤ E(` ◦ f) + C2

∑
j∈Jf

(
τ ε̄j‖fj − f̂j‖L2(Π) + τ 2ε̄2

j‖fj‖Hj

)
+
∣∣∣(Pn − P )

(
` ◦ f̂ − ` ◦ f

)∣∣∣ .
We now bound the empirical process

∣∣∣(Pn − P )
(
` ◦ f̂ − ` ◦ f

)∣∣∣ , where we use the fol-

lowing result that will be proved in the next section. Suppose that f =
∑N

j=1 fj, fj ∈ Hj
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and ‖f‖L∞ ≤ R (we will need it with R = R∗
D). Denote

G(∆−, ∆+, R) =

{
g :

N∑
j=1

ε̄j‖gj − fj‖L2(Π) ≤ ∆−,

N∑
j=1

ε̄2
j‖gj − fj‖Hj

≤ ∆+, ‖
N∑

j=1

gj‖L∞ ≤ R

}
.

Lemma 9 There exists a numerical constant C > 0 such that for an arbitrary A ≥ 1

involved in the definition of ε̄j, j = 1, . . . , N with probability at least 1− 2N−A/2, for all

∆− ≤ eN , ∆+ ≤ eN , (53)

the following bound holds

sup
g∈G(∆−,∆+,R∗D)

|(Pn − P ) (` ◦ g − ` ◦ f)| ≤ CL∗
(
∆− + ∆+ + e−N

)
. (54)

Assuming that

N∑
j=1

ε̄j‖f̂j − fj‖L2(Π) ≤ eN ,
N∑

j=1

ε̄2
j‖f̂j − fj‖Hj

≤ eN (55)

and using the lemma, we get

E(` ◦ f̂) + C1

∑
j /∈Jf

τ ε̄j‖f̂j‖L2(Π) +
N∑

j=1

τ 2ε̄2
j‖f̂j‖Hj


≤ E(` ◦ f) + C2

∑
j∈Jf

(
τ ε̄j‖fj − f̂j‖L2(Π) + τ 2ε̄2

j‖fj‖Hj

)

+C3L∗

N∑
j=1

(
ε̄j‖f̂j − fj‖L2(Π) + ε̄2

j‖f̂j − fj‖Hj

)
+ C3L∗e

−N

≤ E(` ◦ f) + C2

∑
j∈Jf

(
τ ε̄j‖fj − f̂j‖L2(Π) + τ 2ε̄2

j‖fj‖Hj

)

+C3L∗

N∑
j=1

(
ε̄j‖f̂j − fj‖L2(Π) + ε̄2

j‖f̂j‖Hj
+ ε̄2

j‖fj‖Hj

)
+ C3L∗e

−N

for some numerical constant C3 > 0. By choosing a numerical constant B properly, τ can be

made large enough so that 2C3L∗ ≤ τC1 ≤ τC2. Then, we have

E(` ◦ f̂) +
1

2
C1

∑
j /∈Jf

τ ε̄j‖f̂j‖L2(Π) +
N∑

j=1

τ 2ε̄2
j‖f̂j‖Hj


≤ E(` ◦ f) + 2C2

∑
j∈Jf

(
τ ε̄j‖fj − f̂j‖L2(Π) + τ 2ε̄2

j‖fj‖Hj

)
+ (C2/2)τe−N , (56)
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which also implies

E(` ◦ f̂) +
1

2
C1

(
N∑

j=1

τ ε̄j‖f̂j − fj‖L2(Π) +
N∑

j=1

τ 2ε̄2
j‖f̂j‖Hj

)

≤ E(` ◦ f) +
(
2C2 +

C1

2

)∑
j∈Jf

τ ε̄j‖fj − f̂j‖L2(Π)

+ 2C2τ
2
∑
j∈Jf

ε̄2
j‖fj‖Hj

+ (C2/2)τe−N . (57)

We first consider the case when

4C2

∑
j∈Jf

τ ε̄j‖fj − f̂j‖L2(Π) ≥ E(` ◦ f) + 2C2

∑
j∈Jf

τ 2ε̄2
j‖fj‖Hj

+ (C2/2)τe−N . (58)

Then (56) implies that

E(` ◦ f̂) +
1

2
C1

∑
j /∈Jf

τ ε̄j‖f̂j‖L2(Π) +
N∑

j=1

τ 2ε̄2
j‖f̂j‖Hj

 ≤ 6C2

∑
j∈Jf

τ ε̄j‖fj − f̂j‖L2(Π), (59)

which yields ∑
j /∈Jf

τ ε̄j‖f̂j‖L2(Π) ≤
12C2

C1

∑
j∈Jf

τ ε̄j‖fj − f̂j‖L2(Π). (60)

Therefore, (f̂1 − f1, . . . , f̂N − fN) ∈ K(b)
Jf

with b := 12C2/C1. Using the definition of βb(Jf ),

it follows from (57), (58) and the assumption C1 < 1 < C2 that

E(` ◦ f̂) +
1

2
C1

(
N∑

j=1

τ ε̄j‖f̂j − fj‖L2(Π) +
N∑

j=1

τ 2ε̄2
j‖f̂j‖Hj

)

≤
(
6C2 +

C1

2

)
τβb(Jf )‖f − f̂‖L2(Π)

≤ 7C2τβb(Jf )
(
‖f − f∗‖L2(Π) + ‖f∗ − f̂‖L2(Π)

)
.

Recall that for losses of quadratic type

E(` ◦ f) ≥ m∗‖f − f∗‖2
L2(Π) and E(` ◦ f̂) ≥ m∗‖f̂ − f∗‖2

L2(Π). (61)

Then

E(` ◦ f̂) +
1

2
C1

(
N∑

j=1

τ ε̄j‖f̂j − fj‖L2(Π) +
N∑

j=1

τ 2ε̄2
j‖f̂j‖Hj

)
≤ 7τC2m

−1/2
∗ βb(Jf )

(
E1/2(` ◦ f) + E1/2(` ◦ f̂)

)
.

28



Using the fact that ab ≤ (a2 + b2)/2, we get

7τC2m
−1/2
∗ βb(Jf )E1/2(` ◦ f) ≤ (49/2)τ 2C2

2m
−1
∗ β2

b (Jf ) +
1

2
E(` ◦ f), (62)

and

7τC2m
−1/2
∗ βb(Jf )E1/2(` ◦ f̂) ≤ (49/2)τ 2C2

2m
−1
∗ β2

b (Jf ) +
1

2
E(` ◦ f̂). (63)

Therefore,

E(` ◦ f̂) + C1

N∑
j=1

τ ε̄j‖f̂j‖L2(Π) + C1

N∑
j=1

τ 2ε̄2
j‖f̂j‖Hj

≤ E(` ◦ f) + 100τ 2C2
2m

−1
∗ β2

b (Jf ). (64)

We now consider the case when

4C2

∑
j∈Jf

τ ε̄j‖fj − f̂j‖L2(Π) < E(` ◦ f) + 2C2

∑
j∈Jf

τ 2ε̄2
j‖fj‖Hj

+ (C2/2)τe−N . (65)

It is easy to derive from (57) that in this case

E(` ◦ f̂) +
1

2
C1

(
N∑

j=1

τ ε̄j‖f̂j − fj‖L2(Π) +
N∑

j=1

τ 2ε̄2
j‖f̂j‖Hj

)

≤
(

3

2
+

C1

8C2

)(
E(` ◦ f) + 2C2

∑
j∈Jf

τ 2ε̄2
j‖fj‖Hj

+ (C2/2)τe−N

)
. (66)

Since βb(Jf ) ≥
√

A log N
n

(see the comment after the definition of βb(Jf )), we have

τe−N ≤ τ 2

√
A log N

n
≤ τ 2β2

b (Jf ),

where we also used the assumptions that log N ≥ 2 log log n and A ≥ 4. Substituting this

in (66) and then combining the resulting bound with (64) concludes the proof of (49) in the

case when conditions (55) hold.

It remains to consider the case when (55) does not hold. The main idea is to show that

in this case the right hand side of the oracle inequality is rather large while we still can

control the left hand side, so, the inequality becomes trivial. To this end, note that, by the

definition of f̂ , for some numerical constant c1,

Pn(` ◦ f̂) +
N∑

j=1

(
τ ε̂j‖f̂j‖L2(Πn) + τ 2ε̂2

j‖f̂j‖Hj

)
≤ n−1

n∑
j=1

`(Yj; 0) ≤ c1
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(since the value of the penalized empirical risk at f̂ is not larger than its value at f = 0 and,

by the assumptions on the loss, `(y, 0) is uniformly bounded by a numerical constant). The

last equation implies that, on the event E defined earlier in the proof (see (51), (52)), the

following bound holds:

N∑
j=1

τ

C
ε̄j

(
1

C
‖f̂j‖L2(Π) − ε̄j‖f̂j‖Hj

)
+

N∑
j=1

τ 2

C2
ε̄2
j‖f̂j‖Hj

≤ c1.

Equivalently,

τ

C2

N∑
j=1

ε̄j‖f̂j‖L2(Π) +

(
τ 2

C2
− τ

C

) N∑
j=1

ε̄2
j‖f̂j‖Hj

≤ c1.

As soon as τ ≥ 2C, so that τ 2/C2 − τ/C ≥ τ 2/(2C2), we have

τ

N∑
j=1

ε̄j‖f̂j‖L2(Π) + τ 2

N∑
j=1

ε̄2
j‖f̂j‖Hj

≤ 2c1C
2. (67)

Note also that, by the assumptions on the loss function,

E(` ◦ f̂) ≤ P (` ◦ f̂) ≤ E`(Y ; 0) + |P (` ◦ f̂)− P (` ◦ 0)| ≤ c1 + L∗‖f̂‖L2(Π) ≤

c1 + L∗

N∑
j=1

‖f̂‖L2(Π) ≤ c1 + 2c1C
2L∗

1

τ

√
n

A log N
, (68)

where we used the Lipschitz condition on `, and also bound (67) and the fact that ε̄j ≥√
A log N/n (by its definition).

Recall that we are considering the case when (55) does not hold. We will consider two

cases: (a) when eN ≤ c3, where c3 ≥ c1 is a numerical constant, and (b) when eN > c3.

The first case is very simple since N and n are both upper bounded by a numerical constant

(recall the assumption log N ≥ 2 log log n). In this case, βb(Jf ) ≥
√

A log N
n

is bounded from

below by a numerical constant. As a consequence of these observations, bounds (67) and

(68) imply that

E(` ◦ f̂) + C1

(
N∑

j=1

τ ε̄j‖f̂j‖L2(Π) +
N∑

j=1

τ 2ε̄2
j‖f̂j‖Hj

)
≤ C2τ

2β2
b (Jf )

for some numerical constant C2 > 0. In the case (b), we have

N∑
j=1

ε̄j‖f̂j − fj‖L2(Π) +
N∑

j=1

ε̄2
j‖f̂j − fj‖Hj

≥ eN
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and, in view of (67), this implies

N∑
j=1

ε̄j‖fj‖L2(Π) +
N∑

j=1

ε̄2
j‖fj‖Hj

≥ eN − c1/2 ≥ eN/2.

So, either we have

N∑
j=1

ε̄2
j‖fj‖Hj

≥ eN/4, or
N∑

j=1

ε̄j‖fj‖L2(Π) ≥ eN/4.

Moreover, in the second case, we also have

N∑
j=1

ε̄2
j‖fj‖Hj

≥
√

A log N

n

N∑
j=1

ε̄j‖fj‖L2(Π) ≥ (eN/4)

√
A log N

n
.

In both cases we can conclude that, under the assumption that log N ≥ 2 log log n and

eN > c3 for a sufficiently large numerical constant c3,

E(` ◦ f̂) +
N∑

j=1

(
τ ε̄j‖f̂j‖L2(Π) + τ 2ε̄2

j‖f̂j‖Hj

)
≤

c1 + 2c1C
2L∗

1

τ

√
n

A log N
+ 2c1C

2 ≤ τ 2eN

4

√
A log N

n
≤ τ 2

∑
j∈Jf

ε̄2
j‖fj‖Hj

.

Thus, in both cases (a) and (b), the following bound holds:

E(` ◦ f̂) + C1

(
N∑

j=1

τ ε̄j‖f̂j‖L2(Π) +
N∑

j=1

τ 2ε̄2
j‖f̂j‖Hj

)
≤ C2τ

2

(∑
j∈Jf

ε̄2
j‖fj‖Hj

+ β2
b (Jf )

)
. (69)

To complete the proof, observe that

E(` ◦ f̂) + C1

(
N∑

j=1

τ ε̄j‖f̂j − fj‖L2(Π) +
N∑

j=1

τ 2ε̄2
j‖f̂j‖Hj

)

≤ E(` ◦ f̂) + C1

(
N∑

j=1

τ ε̄j‖f̂j‖L2(Π) +
N∑

j=1

τ 2ε̄2
j‖f̂j‖Hj

)
+ C1

∑
j∈Jf

τ ε̄j‖f̂j − fj‖L2(Π)

≤ C2τ
2

(∑
j∈Jf

ε̄2
j‖fj‖Hj

+ β2
b (Jf )

)
+ C2

∑
j∈Jf

τ ε̄j‖f̂j − fj‖L2(Π). (70)

Note also that, by the definition of βb(Jf ), for all b > 0,∑
j∈Jf

τ ε̄j‖f̂j − fj‖L2(Π) ≤ τβb(Jf )

∥∥∥∥∑
j∈Jf

(f̂j − fj)

∥∥∥∥
L2(Π)

≤

τβb(Jf )‖f̂ − f‖L2(Π) + τβb(Jf )

√
n

A log N

∑
j 6∈Jf

ε̄j‖f̂j‖L2(Π) ≤

τβb(Jf )‖f̂ − f‖L2(Π) + τβb(Jf )
2c1C

2

τ

√
n

A log N
. (71)
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where we used the fact that, for all j, ε̄j ≥
√

A log N
n

and also bound (67). By an argument

similar to (61)-(64), it is easy to deduce from the last bound that

C2

∑
j∈Jf

τ ε̄j‖f̂j − fj‖L2(Π)

≤ 3

2

C2
2τ

2

m∗
β2

b (Jf ) +
1

2
E(` ◦ f̂) +

1

2
E(` ◦ f) +

2c2
1C

4

τ 2

n

A log N
. (72)

Substituting this in bound (70), we get

1

2
E(` ◦ f̂) + C1

(
N∑

j=1

τ ε̄j‖f̂j − fj‖L2(Π) +
N∑

j=1

τ 2ε̄2
j‖f̂j‖Hj

)

≤ C2τ
2

(∑
j∈Jf

ε̄2
j‖fj‖Hj

+ β2
b (Jf )

)

+
3

2

C2
2τ

2

m∗
β2

b (Jf ) +
1

2
E(` ◦ f) +

2c2
1C

4

τ 2

n

A log N

≤ 1

2
E(` ◦ f) + C ′

2τ
2

(∑
j∈Jf

ε̄2
j‖fj‖Hj

+
β2

b (Jf )

m∗

)
+

2c2
1C

2

τ 2

n

A log N
, (73)

with some numerical constant C ′
2. It is enough now to observe (considering again the cases (a)

and (b), as it was done before), that either the last term is upper bounded by
∑

j∈Jf
ε̄j‖fj‖Hj

,

or it is upper bounded by β2
b (Jf ), to complete the proof.

Now, to derive Theorem 2, it is enough to check that, for a numerical constant c > 0,

βb(Jf ) ≤
(∑

j∈Jf

ε̄2
j

)1/2

β2,∞(Jf ) ≤ c

(∑
j∈Jf

ε̆2
j

)1/2

β2,∞(Jf )

which easily follows from the definitions of βb and β2,∞. Similarly, the proof of Theorem 3

follows from the fact that, under the assumption that Λ−1 ≤ ε̆j

ε̆
≤ Λ, we have K(b)

J ⊂ K
(b′)
J ,

where b′ = cΛ2b, c being a numerical constant. This easily implies the bound βb(Jf ) ≤
c1Λβ2,b′(Jf )

√
d(f)ε̆, where c1 is a numerical constant.

5 Bounding the Empirical Process

We now proceed to prove Lemma 9 that was used to bound
∣∣∣(Pn − P )

(
` ◦ f̂ − ` ◦ f

)∣∣∣. To

this end, we begin with a fixed pair (∆−, ∆+). Throughout the proof, we write R := R∗
D. By
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Talagrand’s concentration inequality, with probability at least 1− e−t

sup
g∈G(∆−,∆+,R)

|(Pn − P ) (` ◦ g − ` ◦ f)| ≤ 2

(
E

[
sup

g∈G(∆−,∆+,R)

|(Pn − P ) (` ◦ g − ` ◦ f)|

]

+‖` ◦ g − ` ◦ f‖L2(P )

√
t

n
+ ‖` ◦ g − ` ◦ f‖L∞

t

n

)
.

Now note that

‖` ◦ g − ` ◦ f‖L2(P ) ≤ L∗‖g − f‖L2(Π)

≤ L∗

N∑
j=1

‖gj − fj‖L2(Π) ≤ L∗

(
min

j
ε̄j

)−1 N∑
j=1

ε̄j‖gj − fj‖L2(Π),

where we used the fact that the Lipschitz constant of the loss ` on the range of functions

from G(∆−, ∆+, R) is bounded by L∗. Together with the fact that ε̄j ≥ (A log N/n)1/2 for all

j, this yields

‖` ◦ g − ` ◦ f‖L2(P ) ≤ L∗

√
n

A log N
∆−. (74)

Furthermore,

‖` ◦ g − ` ◦ f‖L∞ ≤ L∗‖g − f‖L∞

≤ L∗

N∑
j=1

‖gj − fj‖Hj

≤ L∗
n

A log N
∆+.

In summary, we have

sup
g∈G(∆−,∆+,R)

|(Pn − P ) (` ◦ g − ` ◦ f)|

≤ 2

(
E

[
sup

g∈G(∆−,∆+,R)

|(Pn − P ) (` ◦ g − ` ◦ f)|

]
+

L∗∆−

√
t

A log N
+ L∗∆+

t

n

n

A log N

)
.

Now, by symmetrization inequality,

E

[
sup

g∈G(∆−,∆+,R)

|(Pn − P ) (` ◦ g − ` ◦ f)|

]
≤ 2E sup

g∈G(∆−,∆+,R)

|Rn(` ◦ g − ` ◦ f)| . (75)
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An application of Rademacher contraction inequality further yields

E

[
sup

g∈G(∆−,∆+,R)

|(Pn − P ) (` ◦ g − ` ◦ f)|

]
≤ CL∗E sup

g∈G(∆−,∆+,R)

|Rn(g − f)| (76)

where C > 0 is a numerical constant (again, it was used here that the Lipschitz constant

of the loss ` on the range of functions from G(∆−, ∆+, R) is bounded by L∗). Applying

Talagrand’s concentration inequality another time, we get that with probability at least

1− e−t

E sup
g∈G(∆−,∆+,R)

|Rn(g − f)|

≤ C

(
sup

g∈G(∆−,∆+,R)

|Rn(g − f)|+ ∆−

√
t

A log N
+ ∆+

t

n

n

A log N

)
for some numerical constant C > 0.

Recalling the definition of ε̌j := ε̌(Kj), we get

|Rn(hj)| ≤ ε̌j‖hj‖L2(Π) + ε̌2
j‖hj‖Hj

, hj ∈ Hj (77)

Hence, with probability at least 1− 2e−t and with some numerical constant C > 0

sup
g∈G(∆−,∆+,R)

|(Pn − P ) (` ◦ g − ` ◦ f)|

≤ CL∗

(
sup

g∈G(∆−,∆+,R)

|Rn(g − f)|+ ∆−

√
t

A log N
+ ∆+

t

n

n

A log N

)

≤ CL∗

(
sup

g∈G(∆−,∆+,R)

N∑
j=1

|Rn(gj − fj)|+ ∆−

√
t

A log N
+ ∆+

t

n

n

A log N

)

≤ CL∗

(
sup

g∈G(∆−,∆+,R)

N∑
j=1

(
ε̌j‖gj − fj‖L2(Π) + ε̌2

j‖gj − fj‖Hj

)
+∆−

√
t

A log N
+ ∆+

t

n

n

A log N

)
.

Using (46), ε̌j can be upper bounded by cε̄j with some numerical constant c > 0 on an

event E of probability at least 1−N−A/2. Therefore, the following bound is obtained:

sup
g∈G(∆−,∆+,R)

|(Pn − P ) (` ◦ g − ` ◦ f)|

≤ CL∗

(
∆− + ∆+ + ∆−

√
t

A log N
+ ∆+

t

n

n

A log N

)
.
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It holds on the event E ∩ F (∆−, ∆+, t), where P(F (∆−, ∆+, t)) ≥ 1− 2e−t.

We will now choose t = A log N +4 log N +4 log(2/ log 2) and obtain a bound that holds

uniformly over

e−N ≤ ∆− ≤ eN and e−N ≤ ∆+ ≤ eN . (78)

To this end, consider

∆−
j = ∆+

j := 2−j. (79)

For any ∆−
j and ∆+

k satisfying (78), we have

sup
g∈G(∆−

j ,∆+
k ,R)

|(Pn − P ) (` ◦ g − ` ◦ f)|

≤ CL∗

(
∆−

j + ∆+
k + ∆−

j

√
t

A log N
+ ∆+

k

t

n

n

A log N

)
on the event E ∩F (∆−

j , ∆+
k , t). Therefore, simultaneously for all ∆−

j and ∆+
k satisfying (78),

we have

sup
g∈G(∆−

j ,∆+
k ,R)

|(Pn − P ) (` ◦ g − ` ◦ f)|

≤ CL∗

(
∆−

j + ∆+
k + ∆−

j

√
A log N + 4 log N + 4 log(2/ log 2)

A log N

+∆+
A log N + 4 log N + 4 log(2/ log 2)

n

n

A log N

)
on the event E ′ := E

⋂(⋂
j,k F (∆−

j , ∆+
k , t)

)
. The last intersection is over all j, k such that

conditions (78) hold for ∆−
j , ∆+

k . The number of the events in this intersection is bounded

by (2/ log 2)2N2. Therefore,

P(E ′) ≥ 1− (2/ log 2)2N2 exp (−A log N − 4 log N − 4 log(2/ log 2))− P(E) ≥ 1− 2N−A/2.

(80)

Using monotonicity of the functions of ∆−, ∆+ involved in the inequalities, the bounds can

be extended to the whole range of values of ∆−, ∆+ satisfying (78), so, with probability at

least 1− 2N−A/2 we have for all such ∆−, ∆+

sup
g∈G(∆−,∆+,R)

|(Pn − P ) (` ◦ g − ` ◦ f)| ≤ CL∗ (∆− + ∆+) . (81)
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If ∆− ≤ e−N , or ∆+ ≤ e−N , it follows by monotonicity of the left hand side that with the

same probability

sup
g∈G(∆−,∆+,R)

|(Pn − P ) (` ◦ g − ` ◦ f)| ≤ CL∗
(
∆− + ∆+ + e−N

)
, (82)

which completes the proof.
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