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ABSTRACT
Many algorithms for shape analysis and shape processing
rely on accurate estimates of differential information such
as normals and curvature. In most settings, however, care
must be taken around non-smooth areas of the shape where
these quantities are not easily defined. This problem is par-
ticularly prominent with point-cloud data, which are dis-
continuous everywhere. In this paper we present an efficient
and robust method for extracting principal curvatures, sharp
features and normal directions of a piecewise smooth surface
from its point cloud sampling, with theoretical guarantees.
Our method is integral in nature and uses convolved co-
variance matrices of Voronoi cells of the point cloud which
makes it provably robust in the presence of noise. We show
analytically that our method recovers correct principal cur-
vatures and principal curvature directions in smooth parts of
the shape, and correct feature directions and feature angles
at the sharp edges of a piecewise smooth surface, with the
error bounded by the Hausdorff distance between the point
cloud and the underlying surface. Using the same analysis
we provide theoretical guarantees for a modification of a pre-
viously proposed normal estimation technique. We illustrate
the correctness of both principal curvature information and
feature extraction in the presence of varying levels of noise
and sampling density on a variety of models.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling
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1. INTRODUCTION
Estimating surface normals, principal curvatures and sharp

edges from a noisy point cloud sampling, has many applica-
tions in computer graphics, geometry processing and reverse
engineering. Principal curvatures are rotation-invariant lo-
cal descriptors, which together with principal curvature di-
rections have proven useful in detecting structural regularity
[22], global matching [1], modeling and rendering of point-
based surfaces [11], and anisotropic smoothing [15] to name
just a few. The location of sharp edges and highly curved
areas of the surface is a precious piece of information in
settings that include feature-aware reconstruction [14], non
photorealistic rendering [21], and industrial metrology.

In practice, one is often interested in recovering curva-
ture information of the underlying surface from point cloud
data. The input in this setting is an unstructured collection
of point coordinates, obtained by a range scanner. These
point clouds can be noisy, and can exhibit strong sampling
bias. The ability to reliably estimate surface normals, prin-
cipal curvatures, and curvature directions as well as sharp
features directly on such point clouds can be used in both ge-
ometry processing algorithms and in surface reconstruction
to improve the quality of the resulting mesh.

Devising a robust curvature estimation method, which can
handle both non-uniform noise, sampling bias and sharp
edges is a challenging task. This is mainly because cur-
vature is a second order differential quantity which is by
nature very sensitive to local perturbations. The lack of a
natural parametrization of point cloud data introduces an-
other challenge by making it difficult to estimate angles and
areas on the surface. Finally, devising a method with theo-
retical guarantees on the approximation quality is not easy
in the absence on a unified framework that would incorpo-
rate both point clouds and piecewise-smooth surfaces.

In this article, we address some of these challenges by
presenting a method for robustly estimating principal cur-
vatures and curvature directions, as well as sharp edges of
the underlying surface from point cloud data. We provide
theoretical guarantees on the robustness of the results, by
deriving a bound on the quality of the estimation based on



the Hausdorff distance between the point cloud and the un-
derlying surface. We also address a certain class of outliers.

Prior work on curvature and feature estimation
Curvature estimation. Estimating curvature information
of the underlying surface from a discrete approximation has
been studied extensively over the past several decades (see
e.g. [18] for a survey dating 2002 and [17] for an extensive
comparison of methods to estimate Gaussian and mean cur-
vatures). Nearly all existing methods for reliably estimat-
ing principal curvatures and curvature directions, however,
rely on meshes. These methods are difficult to extend to
the point cloud setting, because the mesh defines a discrete
parametrization of the surface making angle and area com-
putations easier.

Only recently several methods have been proposed for
computing curvature information directly on point clouds.
Yang and Qian [29] derive analytic expressions for comput-
ing principal curvatures based on the implicit definition of
the Moving Least Squares (MLS) surface by Amenta and
Kil [4]. In [26] the authors propose a sampling framework
that allows sampling curves on the surface through a given
point. This helps to reliably estimate normal curvatures in
different directions, which are in turn used to determine the
principal curvatures at the point. Lange and Polthier [15]
adapt a framework by Taubin [27] to the point cloud set-
ting by incorporating a discrete directional density measure
to the classical discrete shape operator. This requires esti-
mating the density of samples in different directions, which
is challenging in the presence of noise, sampling bias and
regions where separate parts of the shape come in close con-
tact. Huang and Menq [12] propose a least-squares scheme
based on estimating normal curvatures in different directions
and using Euler’s theorem to approximate principal curva-
tures. Tong and Tang [28] similarly estimate the principal
curvatures by first estimating the normals and using them
to compute directional curvatures. They achieve robust-
ness to outliers by using a 3-step tensor voting procedure
and correcting the positions of misaligned points. All of the
above algorithms start by estimating normals to the surface,
and any error made in this estimation is aggravated in the
computation of principal curvatures. This is especially true
around sharp edges of the surface and in the presence of
noise. Our approach computes the normal direction and the
principal curvatures simultaneously and handles both sharp
edges and noise gracefully, by following the feature directions
when they are present and being provably robust.

The most commonly used methods for computing curva-
tures on point clouds in practice, rely on polynomial fitting
(see e.g. Cazals and Pouget [6] and references therein). By
nature, these methods are very sensitive to the sampling
conditions, requiring a rather uniform and noise-free sam-
pling of the underlying surface whereas common real-world
point clouds — like laser scans — often exhibit strong sam-
pling bias and noise, e.g. clusters of points along horizontal
lines. Resampling and denoising a point cloud while not
oversmoothing is not an easy task. Our approach, on the
other hand, makes no assumptions on the nature of the sam-
pling of the surface, as long as the Hausdorff distance to the
point cloud is small.

Feature Estimation. Although extracting sharp edges and
corners is closely related to curvature estimation, research
in these areas has been relatively independent. Fleishman et

al. [10] detect sharp edges and corners by segmenting neigh-
borhoods of points into regions corresponding to the same
part of the surface. They achieve robustness by using a
forward search technique which finds reference planes, corre-
sponding to each segment. This work is extended by Daniels
et al. [13] to extract feature-curves, by locally projecting
onto feature points, and growing smooth polylines through
the projected cloud. Lipman and colleagues [16] extract
sharp edges within the Moving Least Squares (MLS) pro-
jection framework by defining a Singularity Indicator Field
(SIF) based on the error of the MLS surface approxima-
tion, and performing a one dimensional projection of SIF to
approximate feature curves. Jenke et al. [14] detect sharp
features by robustly fitting local surface patches and com-
puting intersections of nearby patches with dissimilar nor-
mals. In a similar spirit, Oztireli et al. [20] define a feature-
preserving MLS projection operator by noting that normal
vectors, rather than point coordinates can be used to discard
points from unrelated parts of a piecewise-smooth surface.

Our method is based on similar intuition as [14] and [20]
that features can be easily detected in the offset of the sur-
face, but differs from all the previously proposed techniques
in that we provide theoretical guarantees on the quality of
the feature approximation. In addition, our method allows
to recover not only the positions of feature points, but also
the directions of sharp edges.

Voronoi-Based Normal Estimation. Our work is also
related to Voronoi-based normal estimation techniques, pi-
oneered by Amenta and Bern [3]. Their algorithm picks
two Voronoi vertices called poles per sample point, which
are then used to estimate the normal direction. Dey and
Sun [9] extend this method to handle noisy data. As re-
marked in [2], the motivation behind Voronoi-based meth-
ods is that the shapes of the Voronoi cells of a point cloud
provide meaningful information about the normal directions
of the underlying surface. Alliez and colleagues [2] extend
this intuition, by noting that noise can cause the Voronoi
cells to become irregular. They rectify this effect by aggre-
gating nearby cells, and computing the covariance matrix of
a union of Voronoi cells.

We formalize this intuition by proving that a modification
of the algorithm in [2] is guaranteed to return not only the
correct normal directions, but also principal curvatures and
principal curvature directions. In addition, we note that this
method can be extended to points on sharp features, such
as edges and corners of a piecewise-smooth surface.

Theoretical guarantees. We measure the robustness of
our curvature estimation method by the difference between
the estimated principal curvatures and principal directions
of the underlying surface. Despite the multitude of methods
for computing curvatures in the discrete setting, very few
theoretical guarantees are known. In [8] Cohen-Steiner and
Morvan prove the robustness of the normal cycle from geo-
metric measure theory and show that it can be used to com-
pute curvature information on Delaunay meshes. Pottmann
et al. [24] introduce an integral-based curvature estimator
on meshes, which uses principal component analysis of the
intersection of balls with the interior of the domain D. The
robustness here follows from the fact that integral quanti-
ties computed for two domains D and D′ can remain close
even though the boundary of these domains are far in the
C1-sense.



Contributions
The main contribution of this article is a framework for esti-
mating curvature and feature information of the underlying
surface from a point cloud C, based on integral quantities.
We modify the method of Alliez and colleagues [2], to com-
pute covariance matrices of the intersection of Voronoi cells
with the offset CR of the point cloud, rather than its bound-
ing box, as done in [2]. Intersecting with an offset allows us
to obtain local information about the variation in shape and
size of the Voronoi cell, which is crucial for curvature estima-
tion. We present two algorithms for computing covariance
matrices of this intersection: a Monte Carlo method, and a
method based on tessellating it with tetrahedra.

The theoretical results are twofold: first, for any compact
set K, we define its Voronoi Covariance Measure (VCM),
through the projection function on K. This allows us to
study the discrete case of point clouds and the underlying
continuous piecewise-smooth surfaces in a single framework.
With this notion at hand, we prove that if K is a piecewise-
smooth submanifold of Rd, then the eigenvalues and eigen-
vectors of its convolved VCM provide information on the
normal directions, principal curvatures and directions, di-
rections of sharp features, and dihedral angles between its
smooth parts. In the second part, we prove that if the point
cloud C is a good Hausdorff approximation of K, then the
convolved VCM of C and K are also uniformly close.

Outline
The rest of the paper is organized as follows: in Section 2
we introduce the Voronoi Covariance Measure (VCM) and
the convolved VCM for an arbitrary compact set K. We
give an expression for the convolved VCM of a point cloud
in Section 2.2. In Sections 2.3 and 2.4 we show that the
convolved VCM of a piecewise smooth surface provides in-
formation about the normal and principal curvatures in the
smooth parts and the feature direction around sharp edges.
In Section 3 we show that the Earthmover distance between
the convolved VCM for two compact sets can be bounded by
a multiple of their Hausdorff distance, implying the conver-
gence of the convolved VCM of the point cloud to that of the
underlying surface. We also note that the convolved VCM
of a point cloud is not influenced by a certain class of out-
liers. In Section 4 we describe two algorithms for computing
the convolved VCM of a point cloud in practice, a Monte
Carlo method, and a method based on tessellating the off-
set with tetrahedra. Finally, Section 5 is dedicated to the
results obtained with our method on a variety of surfaces.

2. VORONOI COVARIANCE MEASURE
In this Section, we review the mathematical background

necessary for the analysis of our method. We then define the
Voronoi Covariance Measure and derive its properties for a
point cloud and for a piecewise smooth surface. The relation
between these two cases is given in Section 3 in the form of
a stability theorem, which implies in particular that prin-
cipal curvatures and curvature directions of the underlying
piecewise-smooth surface can be estimated from its point
cloud sampling.

2.1 Mathematical background
Projection on a compact set and Voronoi cells. If K ⊆
Rd is a compact set, we will denote by dK the distance func-
tion to K, i.e. for any x ∈ Rd, dK(x) = min{‖x− y‖ ; y ∈
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Figure 2.1: Projection function and medial axis of a
compact set K with smooth boundary.

K}. The nearest neighbors of x in K are the points y which
realize this minimum: the set of points for which there exist
more than one nearest neighbor in K is called the medial
axis M(K) of K.

The projection function maps a point x ∈ Rd \M(K) to
its only closest point pK(x) in K ⊆ Rd. It is well known
that the medial axis of any compact set has zero d-volume,
implying that the projection function is well defined almost
everywhere. Since we are only interested in integral proper-
ties, the value of pK onM(K) can be arbitrary, and we will
consider pK as being defined on the whole space Rd.

If K = {p1, . . . , pn} is a point cloud, let Vor(pi) denote
the Voronoi cell of pi : Vor(pi) = {x : d(x,K) = ‖x− pi‖}
i.e. the set of points of Rd that are closer to pi than to any
other point of K. The projection on K maps any x ∈ Rd
to pi such that x ∈ Vor(pi), except on the boundaries of
the Voronoi cells – which constitute the medial axis of K.
By analogy, we will refer to the set p−1

K (B) as the Voronoi
cell of the set B ⊆ K, and to p−1

K ({x}) as the infinitesimal
Voronoi cell of the point x ∈ K, for any compact K.

R-offset and the Reach of a compact set K ⊆ Rd. For
any compact set K, and a positive scalar R, the R-offset of
K is defined as KR = {x ∈ Rd : d(x,K) < R} – the set of
points no more than R away from K.

If K ⊆ Rd the reach of K is defined as the maximum R
such that for all x ∈ KR, pK(x) is well-defined. In other
words, reach(K) = d(K,M(K)).

Symmetric Hausdorff distance. The symmetric Haus-
dorff distance dH(K,K′) between two compact sets K and
K′ is defined as the smallest number R such that K′ ⊆ KR

and K ⊆ K′R.

Covariance matrix. If E ⊆ Rd has finite volume, its co-
variance matrix is a 2-tensor whose eigenvectors capture the
principal axes of E with respect to a base point p.

cov(E, p) =

Z
E

(x− p)(x− p)Tdx

2.2 Voronoi Covariance Measure
General definition. The Voronoi Covariance Measure (or
VCM) is defined for any compact set K of Rd. This can
be a finite point cloud, a (piecewise) smooth manifold, or
an even wilder object. We also need a scale parameter R,
which will be used to define an offset KR of K.

The Voronoi Covariance Measure of K with respect to KR

is a tensor-valued measure denoted by VK,R. Being tensor-
valued means that unlike a usual measure µ in the sense of
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Figure 2.2: Voronoi Covariance Measures VC,R(B) of
a 2D point cloud C and of the underlying curve S,
with respect to the same probing set B.

Lebesgue, which maps each subset B of Rd to a non-negative
number µ(B), the Voronoi Covariance Measure maps every
such B ⊆ Rd to a non-negative definite covariance matrix
VK,R(B). This covariance matrix is defined as follows:

VK,R(B) =

Z
KR∩p−1

K
(B∩K)

(x− pK(x))(x− pK(x))Tdx

Figure 2.2 illustrates the domain of integration in the def-
inition of VK,R(B) when K is a point cloud and when it is
a curve. Intuitively, this definition corresponds to the co-
variance matrix of the set p−1

K (B ∩ K) ∩ KR, but with a
varying base point : one can think of it as the integral over
all p ∈ B ∩K of the covariance matrices of the infinitesimal
Voronoi cell p−1

K ({p}) ∩ E, with base point p.
The set of vectors Np,RK = {x − p; pK(x) = p and x ∈

KR} corresponds in to the normal cone of K at p, at a scale
defined by R. Indeed, if K is smooth and R < reach(K) then
Np,RK is the segment [−R~n(p), R~n(p)] (Figure 2.2). If, on
the other hand, K ⊆ R3 is a convex polyhedron, Np,RK
corresponds to the usual normal cone at p, intersected with
KR; it is a 2-dimensional subset of R3 when p lies on a edge
and 3-dimensional when p is a vertex (cf. Figure 2.3).

If B is a small neighborhood of a point p ∈ K, the co-
variance matrix VK,R(B) is the sum of all the infinitesimal
covariance matrices of the normal cones Np,RK, with p ∈ B.
Therefore, VK,R(B) captures the variation of the normal
cone of K around p, which is related to the curvature at
p, when K is locally smooth.

In the following, we formalize this intuition by computing
the Voronoi Covariance Measure for point clouds, smooth
hypersurfaces and sharp edges of a piecewise smooth surface.

Offset parameter. Note that unlike [2], where the authors
intersected the Voronoi cells with the bounding box, we in-
tegrate over an intersection with the R-offset KR of K. In-
tersecting with the bounding box introduces global effects
in the cells and can cause bias in different directions. This
effect may be acceptable for estimating normal directions
but can hurt the results significantly for feature detection
as well as for curvature estimation. In our experiments we
remarked that choosing an excessively large offset param-
eter prevented the detection of small features (such as the
braiding in Figure 5.4). The same phenomena appear when
the integration domain is a bounding box.

Convolved VCM. Convolving the tensor-valued measure
VK,R by a continuous and integrable function χ : Rd → R
turns it into a (tensor-valued) density function VK,R ∗ χ :

Rd → Sym(Rd), defined by:

VK,R ∗ χ(p) :=

Z
KR

(x− pK(x))(x− pK(x))Tχ(pK(x)− p)dx

The indicator function of the ball B(0, r) is the function χr
defined by χr(p) = 1 if x ∈ B(0, r) and χr(p) = 0 otherwise.
Note that in this case one has:

VK,R ∗ χr(p) = VK,R(B(p, r)) (2.1)

In this work, the convolution kernel is always chosen to be a
Lipschitz approximation of such an indicator function, like
the “hat function” χ(p) = max(0, r − ‖p‖2), for which we
can prove that VK′,R ∗ χ converges to VK,R ∗ χ as K′ con-
verges to K (see Section 3). We also often use the indicator
function itself for which we get good results even though the
theoretical guarantees of convergence do not apply directly.

VCM of a point cloud. Applying the definition of VCM
to a point cloud C = {p1, . . . , pn} ⊆ Rd we obtain:

VC,R({pi}) =

Z
CR∩p−1

C
(pi)

(x− pi)(x− pi)Tdx

Since the inverse image p−1
C (pi) coincides with the Voronoi

cell Vor(pi), we get VC,R({pi}) = cov (Vor(pi) ∩ B(pi, R), pi).
Using the additivity of the integral, we can describe VC,R(B)
for an arbitrary set B ⊆ Rd as VC,R(B) =

P
pi∈B∩C

VC,R({pi})
(cf. Figure 2.2), or:

VC,R(B) =
X

pi∈B∩C

cov (Vor(pi) ∩ B(pi, R), pi) .

Convolved VCM of a point cloud. Using equation 2.1,
and choosing the convolution kernel χ to be the indicator
function of a ball with radius r, we obtain the following
expression:

VC,R ∗ χr(p) =
X

pi∈B(p,r)∩C

cov (Vor(pi) ∩ B(pi, R), pi)

Intuitively, convolving the VCM by a function smoothes the
information contained in the covariance matrices. This is
particularly useful when dealing with point clouds that can
be noisy or that are anisotropically sampled from an under-
lying smooth surface. Note that the effect of the convolution
is not easily predicted, since, for example, the principal di-
rections (eigenvectors) of the sum of two covariance matrices
do not equal, in general, to the sum of the eigenvectors of the
covariance matrices. Nevertheless, one of the main results
of this this paper is Theorem 3.2, which establishes that the
difference between convolved VCM of two compact sets (e.g.
a point cloud and an smooth surface) can be bounded as a
function of their Hausdorff distance.

We describe two practical algorithms to compute the con-
volved VCM of a point cloud in section 4.

2.3 VCM of a smooth hypersurface
VCM of a smooth hypersurface. Let S be a compact
smooth hypersurface embedded in Rd, ~n an oriented normal
vector field on S and RS the reach of S. As before, SR

denotes the R-offset of S.
Let us recall a few facts about the curvature of embedded

hypersurfaces. The map x ∈ S 7→ ~n(x) is called the Gauss
map of S, while its derivative d~n is called the shape opera-
tor of S. If κ1(x), . . . , κd−1(x) denote the (d − 1) principal
curvatures at x and P1(x), . . . , Pd−1(x) is a set of vectors



in the tangent plane spanning the principal curvature direc-
tions, with ‖Pi(x)‖ = 1, one has: ∀v ∈ TxS, d~n(x)(v) =Pd−1
i=1 κi(x)〈Pi(x)|v〉Pi(x).
In the following, we show that the Voronoi Covariance

Measure VS,R evaluated on a subset B ⊆ S can be de-
scribed in terms of the covariance matrix of the normal vec-
tors ~n(x), x ∈ B:

Theorem 2.1. If R < RS , the reach of S, then for every
B ⊆ S one has

VS,R(B) =
2

3
R3 ˆ1 +O(R2/R2

S)
˜ Z

p∈B∩S
~n(p)~n(p)T dp

If S is a curve in the 2-dimensional plane, the error term
vanishes; if S is a hypersurface in 3-dimensions, it is bounded

more explicitly by 3
5
R2

R2
S

.

Proof. If R is smaller than the reach of S, the map ϕ :
S × [−R,R] → SR, (p, t) 7→ p + t~n(p), where SR is the R-
neighborhood of S, is a diffeomorphism. Thus, the change-
of-variable formula yields:

VS,R(B) =

Z
SR∩p−1

S
(B∩S)

(x− pS(x))(x− pS(x))Tdx

=

Z
p∈B∩S

Z R

−R
~n(p)~n(p)T t2 Jϕ(p, t) dt dp

where |Jϕ(p, t)| is the Jacobian determinant of ϕ at (p, t) ∈
S× [−R,R]. In the local frame of the tangent space given by
the d − 1 principal curvature directions P1(p), . . . , Pd−1(p),
the derivative of ϕ is the diagonal matrix with components
1 + tκ1(p), . . . , 1 + tκd−1(p), 1. From this, we are able to
compute the Jacobian determinant:

|Jϕ(p, t)| =
d−1Y
i=1

(1 + tκi(p)) =

d−1X
i=0

tiσi(p)

In this expression, σi(p) =
P
j1<...<ji

κj1(p) . . . κji(p) is the

ith symmetric polynomial of the principal curvatures at p.
Since all terms with odd powers of t vanish when we inte-
grate from −R to R, we get the following polynomial expan-
sion for the VCM:

VS,R(B) =

b(d−1)/2cX
k=0

2R2k+3

2k + 3

Z
p∈B∩S

σ2k(p)~n(p)~n(p)T dp

This implies that for curves in 2-dimensional Euclidean space:

VS,R(B) =
2R3

3

Z
p∈B∩S

~n(p)~n(p)T dp.

In general dimension, the principal curvature radii |κi(p)|−1

are greater than RS = reach(S) at any point p ∈ S. Using
this to evaluate the error made by truncating this polyno-
mial to its first term only yields the desired formula.

Note that although we use one offset parameter, since all
of the operations are local, Theorem 2.1 would also hold if
the offset parameter was chosen locally to be less than local
feature size. Thus, if parts of the surface were known to be
more flat, a higher offset could be chosen there.

Convolved VCM at a smooth point. Let us recall that if
χ is the indicator function of the ball of radius r centered at
the origin, then by equation 2.1 VS,R ∗χ(p) = VS,R(B(p, r)).
The goal of the remainder of this section is to show that the
biggest eigendirection of the matrix VS,R(B(p, r)) is close to
the normal direction at p, and the (d−1) smallest eigendirec-
tions are close to the (d− 1) principal curvature directions.

Convolved VCM of a point on a curve in 2D. We first
compute the convolved VCM of a smooth point on a curve
S in 2-dimensional Euclidean space, when the convolution
kernel is an indicator function of a ball. From the previous
paragraph we have, for any B ⊆ R2:

VS,R(B) =
2R3

3

Z
p∈B∩S

~n(p)~n(p)T dp.

By equation 2.1, to compute the convolved VCM of a point
p0 on the curve, we need to compute VS,R(B(p0, r)), where r

is the kernel radius. Let B̃(0, r) be the projection of B(p, r)
on the tangent line at p0 : Tp0S = s~t(p0), where s ∈ R and
~t(p0) is the unit vector in the tangent direction. Then for
small r, we have:

VS,R(B(p0, r))

' 2R3

3

Z
B̃(0,r)

(~n(p0) + d~n(p0)(p))(~n(p0) + d~n(p0)(p))Tdp

=
2R3

3

Z r

−r

`
~n(p0) + sκ(p0)~t(p0)

´ `
~n(p0) + sκ(p0)~t(p0)

´T
ds

=
4R3r

3

„
~n(p0)~n(p0)T + κ2(p0)

r2

3
~t(p0)~t(p0)T

«
Since the normal and tangent vectors are orthogonal, this
implies that ~n(p0) and~t(p0) are the eigenvectors of VS,R(B(p0, r))
with the corresponding eigenvalues λ0 = 4

3
R3r and λ1 =

4
9
R3r3κ2(p0). In particular, λ1

λ0
= r2

3
κ2(p0).

Convolved VCM of a point on a surface in 3D. A
nearly identical calculation as above can be performed for a
hypersurface in 3D. Now for a point p0 on the surface and
a ball B(p0, r), we denote by B̃(0, r) the projection of this
ball on the tangent plane Tp0S = {~n(p0)}⊥. Then,

VS,R(B(p0, r))

' 2

3
R3

Z
v∈B̃(0,r)

(~n(p0) + d~n(p0)(v))(~n(p0) + d~n(p0)(v))T dv

For a hypersurface in R3, d~n(p0)(v) = κ1(p0)〈P1(x)|v〉P1 +
κ2(p0)〈P2(x)|v〉P2, where κi(p0) and Pi(p0) are the principal
curvatures and principal curvature directions at p0 respec-
tively. In polar coordinates: d~n(p0)(r, θ) = κ1(p0)r cos(θ)P1+
κ2(p0)r sin(θ)P2. Since the integration above is over a cir-
cle, all terms with sin(θ) or cos(θ) will vanish. Therefore, in
polar coordinates:

VS,R(B(p0, r))

' 2

3
R3

Z r

s=0

Z 2π

θ=0

ˆ
n(p0)n(p0)T + s2 cos2(θ)κ2

1(p0)P1P
T
1

+s2 sin2(θ)κ2
2(p0)P2P

T
2

˜
s dθds

=
2π

3
R3r2

"
~n(p0)~n(p0)T +

r2

4

2X
i=1

κ2
i (p0)Pi(p0)Pi(p0)T

#

It follows from this formula that under the assumptions on
the offset radius R and convolution radius r, the eigenvectors
of the VCM near a smooth point are close to the principal
curvature directions at that point.

A similar formula with different constants can be derived
for higher dimensional spaces as well.



~u

~v

α

Figure 2.3: The infinitesimal Voronoi cell p−1
C (x) of a

point x on a cube is pencil, triangle or cone-shaped
depending on the dimension of the normal cone.

2.4 VCM at a point on a sharp feature
Let S be a piecewise smooth hyper-surface in R3, and let

p0 be a point on an edge between two smooth parts of the
surface. Intuitively, the the infinitesimal Voronoi cell of p0 is
triangle shaped (Figure 2.3)), and the triangle is orthogonal
to the feature direction. In the Appendix we formalize this
intuition and derive the eigenvalues and eigenvectors of the
covariance matrix VS,R(B(p0, r)).

We work under the assumption that pS(p0 + tv) = p0 for
all unit vectors v in the normal cone at p0 and any 0 6 t < R.
This assumption can be seen as a one-sided lower bound on
the local feature size. Then, if ~u and ~v denote the projections
of the two outward normals to S at p0 on the orthogonal
plane to the feature direction (cf. Figure 2.3),

VS,R(B(p0, r)) =
R4r

8
[(α− sin(α)) e1e

T
1

+ (α+ sin(α)) e2e
T
2 +O(r/R)]

with ~e1 =
~u− ~v
‖~u− ~v‖ , ~e2 =

~u + ~v

‖~u + ~v‖ , and cos(α) = 〈~u|~v〉

In particular, the eigendirection corresponding to the small-
est eigenvalue is the tangent direction to the feature, with
an eigengap of O(R/r).

Similar calculations can be done if p0 is an isotropic corner
of the surface, such as the tip of a cone. In this case, the
two smallest eigenvalues will be equal, and contained in the
plane orthogonal to the direction of the cone. Figure 2.3
shows how the dimension of Voronoi cells, and hence the
number of small eigenvalues s of their covariance matrix,
can help distinguish between a point on a face (s = 2), on a
sharp edge (s = 1) and on a corner (s = 0).

3. ROBUSTNESS OF VCM
This section is devoted to the proof of robustness of the

VCM. By robustness we mean that if two compact sets K
and K′ are very close in the Hausdorff sense, then their
convolved VCM are also close. In applications, K will be a
sampled surface, and K′ will be a point cloud; however we
stress that this result is very general and does not depend
on the nature of these compact sets.

The convergence property is given in terms of the (sym-
metric) Hausdorff distance between the compact sets K and
K′, denoted by dH(K,K′). A point cloud is Hausdorff-close
to the underlying surface provided that it is sampled densely
enough and that there are no outliers. Note that this no-
tion of distance is purely geometric and does not make any
assumptions on the uniformity of the sampling.

We will prove a continuity result for the map K 7→ VK,R ∗
χ, from compact subsets of Rd to tensor-valued functions,

where the distance between two convolved VCM VK,KR ∗ χ
and VK′,K′R ∗ χ is measured by

‖VK,KR ∗ χ− VK′,K′R ∗ χ‖∞
:= sup

p∈Rd

‚‚VK,KR ∗ χ(p)− VK′,K′R ∗ χ(p)
‚‚

op

Where the operator norm ‖·‖op is the standard matrix norm
induced from the vector norm ‖ · ‖. The main theoretical
result we use is the following Projection Stability Theorem
from [7]:

Theorem 3.1. Let K and K′ be two compact sets of Rn,
and E an open set with rectifiable boundary. Then there is
a constant C(d,K,E) such that:Z

E

‖pK(x)− pK′(x)‖dx 6 C(d,K,E)dH(K,K′)1/2

As a consequence of this theorem, we will prove the Hausdorff-
robustness of the convolved VCMs when the convolution ker-
nel χ : Rd → R is k-Lipschitz and bounded by 1 — this
means that there exists a k > 0 such that:

∀(x, y), |χ(x)− χ(y)| 6 k ‖x− y‖ and ∀x, |χ(x)| 6 1

Theorem 3.2. If χ : Rd → R is a bounded k-Lipschitz func-
tion, for every compact set K ⊆ Rd and R > 0, there is a
constant C′(d,K,R) such that for every other K′ ⊆ Rd,

‖VK,R ∗ χ− VK′,R ∗ χ‖∞ 6 C
′(d,K,R)dH(K,K′)1/2

Proof. We let E be the intersection of KR and K′
R

. By
Corollary II.5 in [7], we know that the volume KR \ E is
O(dH(K,K′)). Hence, letting δ(x) = x − pK(x), we can
make the approximation,

VK,R ∗ χ(p) '
Z
E

δ(x)δ(x)Tχ(pK(x)− p)dx

The goal is now to bound the operator norm of the differ-
ence: M =

R
E
P (x)−P ′(x)dx, where P (resp. P ′) is defined

by P (x) = δ(x)δ(x)Tχ(pK(x)− p). Then,

P (x)− P ′(x)

= χ(pK(x)− p)
`
δ(x)δ(x)T − δ′(x)δ′(x)T

´
+ (χ(pK(x)− p)− χ(pK′(x)− p)) δ′(x)δ′(x)T

The first term can be written as:

χ(pK(x)− p)
`
(pK(x)− x) (pK(x)− pK′(x))T

+ (pK′(x)− pK(x)) (x− pK′(x))T
´

Now since χ is bounded by 1, ‖pK(x) − x‖ < R, and using
the triangle inequality, the operator norm of this expression
is bounded by 2R ‖pK′(x)− pK(x)‖ .

By the k-Lipschitz property of χ, the norm of the second
term can be bounded by

|χ(pK(x)− p)− χ(pK′(x)− p)|R2

6 kR2 ‖pK(x)− pK′(x)‖

Hence,‚‚P (x)− P ′(x)
‚‚

op
6 (2R+ kR2) ‖pK(x)− pK′(x)‖

Integrating and using theorem 3.1 yields the bound

‖M‖op 6 C(d,K,E)[2R+ kR2]dH(K,K′)1/2 �



We now let χr be a Lipschitz approximation of the char-
acteristic function of the ball B(0, r). If S is a piecewise
smooth surface, p a point of S and Cn a sequence of point
clouds converging to S in the Hausdorff sense, the stability
theorem says that VCn,R ∗ χr(p) converges to VS,R ∗ χr(p)
w.r.t the operator norm, and quantifies the speed of conver-
gence.

Using the standard results of matrix perturbation the-
ory (see e.g. [25]), one then obtains the convergence of the
eigenvalues and eigenvectors of VCn,R ∗ χr(p) to those of
VS,R ∗χr(p), provided that the eigenvalues have multiplicity
one. The speed of this convergence depends on the eigengap.

Since at a smooth point p ∈ S, the eigenvalues of VS,R∗χr
are proportional to 1, κ2

1(p) r
2

4
and κ2

2(p) r
2

4
, one can expect

a faster convergence rate for the estimated normal, and a
faster convergence of the estimated principal curvature di-
rections at points where the principal curvatures are very
different (i.e. very non-umbilical points).

Robustness to some outliers. One limitation of the Haus-
dorff distance in the bound above, is its sensitivity to out-
liers. Indeed, even under controlled noise, outliers can con-
taminate the point cloud, and influence the shapes of the
Voronoi cells. Nevertheless, as pointed out earlier, inter-
secting the Voronoi cells with an offset allows us to obtain
local information which is unaffected by a certain class of
outliers. The following Lemma shows that if the outliers
are sufficiently far away from the point cloud, the convolved
VCM will remain the same.

Lemma 3.3. Given a point cloud C and a set of outliers
O, with mino∈0 d(o, C) > 2R > r, and χ is the indicator
function of B(0, r) then the convolved Voronoi Covariance
Measures of C and C′ = C ∪O agree on C:

∀ p ∈ C, VC,R ∗ χ(p) = VC′,R ∗ χ(p)

Proof. We first prove that for any point p ∈ C, the intersec-
tion between its Voronoi cell and a ball of radius R remains
unchanged after introducing points from O. For this, sim-
ply note that the bisecting plane formed between p and any
point p′ ∈ O is at least R away from p, because by assump-
tion d(p, p′) > 2R. This implies that:

∀ pi ∈ C, VC,R({pi}) = VC′,R({pi})

Finally, since

VC′,R ∗ χ(p) =
X

pi∈B(p,r)

cov
“

Vor(pi) ∩ C′R, pi
”

and because ‖p− p′‖ > r there will be no outliers in the ball
B(p, r), and the desired equality follows.

4. COMPUTATION OF THE VCM
In this section, we describe two algorithms for computing

the VCM of a point cloud in practice. The first method is
easy to implement and is applicable in any ambient dimen-
sion. The second algorithm is much faster, and is the one
we used for all of our results. We then describe a straight-
forward way to convolve the VCM.

As remarked earlier, the VCM at a scale R of a point cloud
C = {p1, . . . , pn} ⊆ R3 is the tensor-valued measure VC,R
concentrated on the point cloud C and such that VC,R({pi})
is the covariance matrix of the intersection Bi = B(pi, R) ∩
Vor(pi), where Vor(pi) is the Voronoi cell of pi.

Figure 4.4: The tessellated intersection of a Voronoi
cell with a ball.

No simple closed-form expression seems to exist for the
covariance matrix of Bi. As remarked in [5], in order to com-
pute the volume of the intersection of a Voronoi cell with a
ball, one can use the inclusion-exclusion formula to reduce to
the case of the intersection of two and three half-planes with
the same ball. The same formula can be used to compute
the covariance matrix of Bi, reducing it to integrals of the el-
ementary quadratic polynomials Pi,j(x1, x2, x3) = xixj over
these two type of intersections. However, whereas the in-
tegral of the constant function P (x1, x2, x3) = 1 admits a
(pretty intricate) closed form, there seems to be no such
form for the Pi,j .

Monte-Carlo approximation of the VCM. The Voronoi
covariance measure is a modification of the boundary mea-
sure introduced in [7]. In this work, instead of considering
the covariance matrix cov(Bi), one only considered its vol-
ume. The Monte-Carlo algorithm for computing the bound-
ary measures can be easily adapted to compute the VCM:

Algorithm 4.1 Monte-Carlo algorithm for VCM

Input: a point cloud C, a scalar R, a number N

Output: an approximation of
VC,R

vold(CR)
' 1

N

P
pi∈C Ciδpi

loop {N times}
[1.] Choose a random pi uniformly in C ;
[2.] Choose a random point X uniformly in B(pi, R) ;
[3.] Compute k = #(B(X,R) ∩ C) ;
[4.] Find the closest point pj of X in C:

Cj ← Cj + 1
k

(X − pj)(X − pj)T

The convergence of the output of this algorithm to the
real VCM with high probability follows from the arguments
presented in [7, p.6], as well as the analysis of the speed
of convergence. This algorithm has the advantage of be-
ing easy to implement in any ambient dimension, since it
only uses nearest-neighbor queries. However it is too slow
in practice for computing the VCM of point clouds with hun-
dreds of thousands of points. In the following, we describe
a deterministic approach that can be used to improve the
computation speed in low dimensions.

Approximating the VCM in 3D. We base our second
method on the fact that the covariance matrix of a tetra-
hedron can be computed analytically [2]. Therefore, using
the additivity of the integral, in order to compute the co-
variance matrix of the intersection of a Voronoi cell with a
ball, it is sufficient to approximate it with tetrahedra. For
this, we triangulate the boundary of this intersection and
build tetrahedra by connecting each of these triangles to the
center of the Voronoi cell. This can be done because the
intersection is convex.



We start with an arbitrary triangulation of the boundary
of the Voronoi cell ∂(Vor(pi)). Our goal is subdivide each
triangle so that its projection onto the ball B(pi, R) is a suf-
ficiently good approximation of the corresponding spherical
triangle. For this, we process each triangle t in the original
triangulation according to the following three rules:

1. t is completely outside the ball B(pi, R):
Recursively subdivide t into a family of smaller trian-
gles {tk}, tk = (ak, bk, ck), until the family of projected
triangles t′k = (p(ak),p(bk),p(ck)) is a precise enough
tessellation of the underlying spherical patch. Then
add each t′k to the final triangulation T ′.

2. t is completely inside the ball B(pi, R):
Simply add t to the final triangulation T ′.

3. t crosses the sphere ∂B(pi, R):
Subdivide t by adding points along the circular arc of
intersection, and apply 1. or 2. to the constructed tri-
angles depending on whether they are inside or outside
of the ball.

The output of this algorithm yields a tetrahedralization
of the intersection of the Voronoi cell with a ball of a given
radius, centered at the same point. We then use the closed-
form formulas of [2] to compute the covariance matrix of this
intersection.

Convolution of VCM. Convolving the VCM of a point
cloud using a kernel function χ supported on a ball of ra-
dius r can be done by computing for each point pi ∈ C the
intersection B(pi, r) ∩ C, and then summing:

VC,R ∗ χ(pi) =
X

pj∈B(pi,r)∩C

χ(pj − pi)VC,R({pj})

The points belonging to B(pi, r)∩C are the k nearest neigh-
bor to pi in C for the suitable value of k, which can be
determined by a binary search, using a structure adapted to
k-NN queries (like a kD-tree). As mentioned in Section 2.2,
in this work, we always used χ = 1B(0,r).

Implementation. We implemented the two algorithms de-
scribed above. The tessellation of the Voronoi cells was done
using the 3D Delaunay Triangulation package of CGAL [23].
Running this algorithm for the Voronoi cell at the origin and
15 random points on the unit sphere, with R = 1, yields
an average of 120 triangles for tessellating the boundary of
Vor(pi) ∩ B(pi, R), for a target approximation error of 1%.
The running times of this algorithm on more complex point
clouds are reported in Table 1.

Model Delaunay Tessellation Total
Blade (195k) 23.73 90.82 114.55
Bimba (502k) 79.04 305.42 384.46
Nicolò (947k) 95.08 465.53 560.61

Table 1: Computation times for VCM of range-scan
models (in sec., on a 3GHz Dual Core CPU)

The convolution step is implemented using the ANN li-
brary [19], which includes a query for finding the set of points
of a point cloud contained in a given ball. The time of the

(a) z = sin(3x) + cos(x) (b) z = exp(−x2)+exp(−y2)

Figure 5.5: Parametric surfaces with exact (in blue)
and computed (in red) principal curvature direc-
tions. At the boundary, the computed directions
follow the edges of the surface.

convolution step depends on the radius of convolution, but
stays within 10 seconds for most models.

Note also that both the tessellation and the convolution
steps can be easily parallelized once the Delaunay triangu-
lation and kD-tree have been constructed, since the compu-
tations for a given point of the cloud do not involve access
to any shared data structures.

5. RESULTS

5.1 Parametric Surfaces
To validate the theoretical guarantees presented above, we

tested our method on parametric surfaces for which prin-
cipal curvatures and principal curvature directions can be
computed exactly.

We sampled two functions z = sin(3x) + cos(y), where
0 ≤ x, y ≤ 1 and z = exp(−x2) + exp(−y2), where − 1

2
≤

x, y ≤ 1
2
. In both examples we used 100,000 points that were

chosen uniformly at random within the domain. Figure 5.5
shows these two surfaces with the exact and computed prin-
cipal curvature directions, using R = 1 and r = 0.055. As
expected, away from the boundary the computed and the
exact directions match very closely, except possibly at um-
bilical points (tip of the second surface). Near the boundary
of the domain, the principal directions computed using our
method follow the edges of the surface, which forms the basis
of our feature detection method.

To measure the dependence of our method on the offset
and convolution radii, we computed the average deviation
(in degrees) of principal directions from exact ones. To min-
imize the effect of the points close to the boundary, where
the directions are not expected to match, we only considered
90 percent of the data-set that is farthest from the boundary
of the domain. Figure 5.6 shows the average deviation for
these two parametric surfaces. As can be seen, the results
are quite stable for different choices of the parameters. In-
terestingly, although our analysis above applies only if the
offset is smaller than the reach, we get good results even
when the former is larger.

5.2 Comparison with Polynomial Fitting

Sampling Conditions. As mentioned in the introduction,
the most common method of estimating principal curvatures
and principal curvature directions on point clouds is to lo-
cally fit a polynomial of a given degree, and to analytically

http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/


(a) z = sin(3x) + cos(x) (b) z = exp(−x2) + exp(−y2)

Figure 5.6: Average deviation (in degrees) of com-
puted principal curvature directions from exact ones
for different values of parameters R and r.

(a) Our method (b) Fit with k=100 (c) Fit with k=200

Figure 5.7: Principal curvature directions on a bi-
ased dataset. Jet fitting (b-c) produces unreliable
directions (in green) following oversampled areas.

compute principal curvatures of this fitted polynomial [6].
Although these methods work well on noiseless and regu-

larly sampled surfaces, polynomial fitting performs poorly if
the data has strong noise and sampling bias. Our method,
however, is oblivious to the sampling, as a consequence of
Hausdorff-robustness proved in Section 3. To illustrate this,
we added 50,000 points in a small band along the diago-
nal (in the parameter space) to the sampling of the sur-
face shown in Figure 5.5(a). The results obtained with our
method and with the state of the art polynomial jet-fitting
algorithm implemented in CGAL [6] are reported in Figure
5.7. We used second order polynomial fitting with different
neighborhood sizes k, which gave satisfactory results for the
original sampling. As can be seen, the extra points do not
affect the accuracy of our method. The results obtained with
jet-fitting, however, become unreliable and strongly biased
in the direction of the oversampling.

Robustness. Other areas that are challenging for polyno-
mial fitting algorithms include parts of the shape with high
curvature, and regions where separate parts of the shape
come in close contact, thus adversely influencing the quality
of the fit. While the first problem can be addressed by fitting
higher order polynomials, both of these settings are severely
aggravated in the presence of noise. To illustrate this, we
sampled a surface made by smoothly joining a small cylinder
lying parallel to the z axis, with two planes on either side of
the x axis. We used 0.1 as the radius of the cylinder, so the
curvature at points along the z axis equals 10. Figure 5.8
shows the principal curvature directions obtained on this
model with varying levels of noise, using our method and
using jet-fitting with 200 nearest neighbors and second or-
der polynomial fitting. Note that when points from different
parts of the shape mix, even the robust low order polynomial
fitting fails, while our method preserves robustness

(a) r = 0 (b) r = 0.01 (c) r = 0.04 (d) r = 0.08

Figure 5.8: Principal curvature directions computed
with our method (in red) are stable under noise. Di-
rections computed by jet-fitting (in blue), are unre-
liable, especially when points from separate parts of
the shape begin to mix (d).

5.3 Detection of Sharp Edges
We evaluated the sharp edge estimation method and its

resilience to noise on a unit icosahedron. We sampled 100k
points randomly on it, ran the computations with R = 20
and various convolution parameters r. We consider a point
as a feature if the ratio of the second smallest to the smallest
eigenvalue is greater than some threshold parameter. This
ratio measures the thickness of the infinitesimal Voronoi cell,
as described in Section 2.4 and on Figure 2.3. The results
do not seem to be sensitive to this threshold parameter, if
it is within the range 10–40; for all the experiments below,
we set it to 20.

Resilience to noise. In order to test the resilience of our
method to noise, we perturbed the original 100k point cloud
on the icosahedron by adding to each point a random vector
uniformly chosen in a ball of given radius (the radius of the
noise). Figure 5.9 shows the estimated feature directions on
the icosahedron, for different noise and convolution radii.

We quantify the quality of the approximation using the
three following distances between two oriented point clouds
C1 = (p1

i , d
1
i ) and C2 = (p2

i , d
2
i ):

1. the maximum distance δ∞ between a point p2
i in C2

and its nearest neighbor in C1 (this is the half-Hausdorff
distance);

2. the average distance δavg between a point p2
i in C2 and

its nearest neighbor in C1;

3. the average angular deviation (in degrees) αavg be-
tween the direction d2

i of a point p2
i in C2 and the

direction of its nearest neighbor in C1.

We also consider the symmetric quantities between C2 and
C1. Table 2 shows the values of these quantities between the
real oriented features C1 of the icosahedron and the esti-
mated ones C2, for various noise and convolution radii. The
first line of each experiment in the table corresponds to the
distances from C1 to C2 (as above), while the second line
corresponds to the distances from C2 to C1.

On the first line of each experiment, δ∞ measures the
presence of isolated outliers, while δavg measures the spread
of the estimated features. One can see that increasing the
convolution radius removes isolated outliers, but increases
the spread of feature (in fact it seems that δavg ' r/2).

On the second line, δ∞ and δavg both evaluate how far
every point on an edge of the icosahedron is to an estimated



(a) no noise, r = 0.05 (b) noise 0.02, r = 0.1

(c) noise 0.05, r = 0.1 (d) noise 0.1, r = 0.15

Figure 5.9: Estimated feature directions on an icosa-
hedron of radius 1, with various convolution radii r
and noise values.

Noise r δ∞ δavg αavg

0.0 0.05 0.35 0.037 3.25
0.076 0.011 1.42

0.0 0.1 0.118 0.051 0.33
0.124 0.016 1.34

0.02 0.1 0.226 0.049 1.65
0.139 0.020 3.46

0.05 0.1 0.220 0.050 2.82
0.155 0.025 5.45

0.1 0.15 0.271 0.069 3.12
0.178 0.036 7.94

Table 2: Distances between the estimated features
and real features of an icosahedron, with varying
noise radius and convolution radius

feature. Most of the error here comes from the corners:
since we select feature points based on the ratio between
the second and third eigenvalues, points nearby corner – at
which these two eigenvalues are small – are discarded (see
figures 2.3 and 5.9).

Sharp edges with low external angle. In order to un-
derstand the effect of sharpness of the edge on the quality
of the feature detection, we sampled a surface made of two
planar rectangular patches joined by a common edge and
whose normals differ by an angle of 2α. As shown in Figure
5.10, the feature estimation method described above is able
to reliably detect sharp edges whose external dihedral an-
gle is as small; all the results were produced using the same
convolution radius and threshold.

5.4 Results on more complex point clouds
In order to further illustrate the robustness of the feature

estimation method, we tested it on a 300k point cloud sam-

(a) α = 45◦ (b) α = 13◦ (c) α = 1.8◦

Figure 5.10: Estimated feature directions on a
folded rectangle, for different values of the external
angle α.

pled on the standard fandisk model. We then perturbed it
by uniform noise of radius 0.01δ, where δ is the radius of
the model. Figure 5.4.(d) shows the features and feature di-
rections produced by our algorithm. While the features are
diffused with very strong noise, the feature directions are
quite stable and closely follow the edges of the model.

On larger range scan point clouds, we were able to de-
crease both the offset and the convolution radii while keep-
ing the detected features almost noiseless. This enables the
algorithm to capture very small and non-sharp features, like
the hair of Caesar or the braiding of Bimba, as shown in
Figure 5.4.(a-c).

6. CONCLUSION AND FUTURE WORK
In this paper, we have described a method for comput-

ing principal curvatures and principal curvature directions
and detecting sharp features and feature directions on point
cloud data in a unified fashion. We have provided theoret-
ical guarantees on the robustness of our method, giving a
bound on the deviation of the estimated directions from the
real ones in terms of the Hausdorff distance between the
point cloud and the underlying surface. We implemented
the method and tested it on multiple surfaces with varying
amounts of sampling bias and noise.

One disadvantage of our method is that the principal di-
rections that it produces are only defined up to a sign, and
thus lack consistent orientation. One possible way of ob-
taining an orientation of the normal directions would be to
intersect the Voronoi cells with half spheres on each side of
the surface, and resolve ambiguities at the features, where
one of the sides touches the medial axis.

In the future, we also intend to parallelize our algorithm
and make the computations purely local. In addition, it
would be interesting to apply our method to more challeng-
ing surface reconstruction problems.
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Figure A.12: Planar view of the Voronoi cell of a
point on an edge of a piecewise smooth surface

APPENDIX
In this section, we assume that S is a piecewise smooth
hyper-surface in R3, and p0 is lying on an edge separating
two smooth parts of the surface. Specifically, we assume
that the edge can be represented as a differentiable curve
γ(t) parameterized by arc-length, with γ(0) = p0.

Convolved VCM for a feature point. Let S be an em-
bedded piecewise smooth surface in R3. The normal cone
at a point p ∈ S is by definition

NpS = {λ(x− p) ; λ > 0 and pS(x) = p}
At a smooth point p of S, NpS is simply the ray generated
by the normal at p. In general, if the local feature size of S
at a point p is greater than R, then p−1

K ({p}) ∩ B(p,R) =
p+(NpS∩B(0, R)): this means that the VCM VS,SR at that
point is fully described by the normal cone. Since the local
feature size vanishes at any point on a sharp edge, we have
to introduce a weaker notion of feature size. The 1-sided
local feature size, or lfs1, of a point p is defined as:

lfs1S(p) = inf{R ; ∀n ∈ NpS, ‖n‖ 6 1 =⇒ pS(p+Rn) = p}
Proposition A.1. Let S be a piecewise smooth surface em-
bedded in R3, and p0 be a point on a sharp edge of S, with
lfs1S(p0) > R. Let ~t be the tangent to this edge at p0, and ~u,
~v be the projections of the two outward normals to S at p0

on the orthogonal plane to ~t. Then,

VS,SR(B(p0, r)) =
R4r

8
[(α− sin(α)) e1e

T
1

+ (α+ sin(α)) e2e
T
2 +O(r/R)]

where ~e1 = ~u−~v
‖~u−~v‖ , ~e2 = ~u+~v

‖~u+~v‖ , and cos(α) = 〈~u|~v〉.

To describe the VCM of S near p0, we first need to char-
acterize the Voronoi cell p−1

S (p0) = {x ∈ R3|pS(x) = γ(t)}.

Lemma A.2. The infinitesimal Voronoi cell p−1
S (p0) is con-

tained in the positive cone Q generated by the vectors ~u and
~v, i.e.

p−1
S ({p0}) ⊆ Q := {p0 + a~u + b~v ; a, b > 0}

Proof. Consider any point x ∈ Rd with pS(x) = p0. By
definition of the projection, the open ball B(x, d(x, p0)) does
not contain any points in S and in particular points of the
curve γ. Hence, it must be tangent to γ at p0; this can
be rephrased as 〈x − p0|~t〉 = 0. Let P denote the plane

p0 +{~t}⊥. The point x can be written as x = γ(t)+a~u+ b~u.
We let ` be a (local) parametrization of the intersection

P ∩S, with `(0) = p0, and `′−(0) and `′−(0) be the left and
right derivatives of ` at 0. We suppose that ` is oriented so
that 〈`′−(0)|~u〉 > 0 and 〈`′+(0)|~v〉 < 0. Since by hypothesis,
x projects onto p0, we have 〈`(t) − p0|x − p0〉 6 0 for all
values of t. For t < 0, we also have the Taylor expansion

`(t) = p0 + t`′−(0) + o(t); using the inequality above and
〈`′−(0)|~u〉 = 0, we deduce b〈`′−(0)|~v〉 > 0, and finally b > 0.
The same argument proves that a > 0.

Because of the 1-lfs assumption, every point in Q within
distance R of p0 projects onto S at p0. This means that if SR

denotes the R-neighborhood of S, one has p−1
S ({p0})∩SR =

Q ∩ SR: this intersection is a circular slice with radius R
and angle α which equals the dihedral angle between the
two smooth parts of the shape (Figure A.12(a)).

Lemma A.3. Let ~u,~v be two unit vectors in the plane, and
Q = {a~u + b~v} ∩ B(0, R). The eigenpairs of the covariance
matrix cov(Q, 0) are:

λ1 =
R4

8
(α− sin(α)) , e1 = ~u− ~v and

λ2 =
R4

8
(α+ sin(α)) , e2 = ~u + ~v

where cos(α) = 〈~u|~v〉.
Proof. Consider the covariance in some fixed unit direction
~d which is at angle β from v (Figure A.12(b)). Then, with
M = cov(Q, 0),

~dTM~d =

Z α

θ=0

Z R

r=0

r2 cos2(θ − β)rdrdθ

=
R4

4

Z α

0

cos(2(θ − β)) + 1

2
dθ

=
R4

8

„
sin(2(α− β)) + sin(2β)

2
+ α

«
(A.2)

To find the direction ~d corresponding to an eigenvector of
M we need to find the minimizer/maximizer of the above
quantity with respect to β. For this, we set the derivative
with respect to β to 0, and get:

− cos(2(α− β)) + cos(2β) = 0⇐⇒ β =
α

2
or β =

α− π
2

To compute the eigenvalues associated with these eigenvec-

tors, we plug in the values into (A.2) to get λ1 = R4

8
(α− sin(α))

and λ2 = R4

8
(α+ sin(α)).

Proof of proposition A.1. By definition, we have, with B =
B(p0, r):

VS,E(B(p0, r)) =

Z
E∩p−1

K
(B∩S)

(x− pS(x))(x− pS(x))Tdx

=

Z
E∩p−1

K
(B∩e(t))

(x− pS(x))(x− pS(x))Tdx (A.3)

+

Z
E∩p−1

K
(B∩(S1∪S2))

(x− pS(x))(x− pS(x))Tdx (A.4)

where S1 and S2 are the two smooth parts of the surface
on either side of the edge γ(t). The computations for the
smooth case prove that the order of A.4 is O(R3r2), whereas
the integral along the curve A.3 has an order of O(R4r).Z
SR∩p−1

K
(B∩Imγ)

(x− pS(x))(x− pS(x))Tdx

'
Z r

−r

Z
SR∩p−1

K
(γ(t))

(x− pS(x))(x− pS(x))Tdxdt

' 2r

Z
SR∩p−1

K
(p0)

(x− pS(x))(x− pS(x))Tdx

We conclude using the two previous lemmas.
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