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ABSTRACT
Nonlinear dimensionality reduction (NLDR) algorithms such
as Isomap, LLE and Laplacian Eigenmaps address the prob-
lem of representing high-dimensional nonlinear data in terms
of low-dimensional coordinates which represent the intrinsic
structure of the data. This paradigm incorporates the as-
sumption that real-valued coordinates provide a rich enough
class of functions to represent the data faithfully and ef-
ficiently. On the other hand, there are simple structures
which challenge this assumption: the circle, for example, is
one-dimensional but its faithful representation requires two
real coordinates. In this work, we present a strategy for
constructing circle-valued functions on a statistical data set.
We develop a machinery of persistent cohomology to iden-
tify candidates for significant circle-structures in the data,
and we use harmonic smoothing and integration to obtain
the circle-valued coordinate functions themselves. We sug-
gest that this enriched class of coordinate functions permits
a precise NLDR analysis of a broader range of realistic data
sets.

Categories and Subject Descriptors
G.3 [Probability and statistics]: multivariate statistics;
I.5.1 [Pattern recognition]: models—geometric

General Terms
algorithms, theory
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1. INTRODUCTION
Nonlinear dimensionality reduction (nldr) algorithms ad-

dress the following problem: given a high-dimensional col-
lection of data points X ⊂ RN , find a low-dimensional em-
bedding φ : X → Rn (for some n � N) which faithfully
preserves the ‘intrinsic’ structure of the data. For instance,
if the data have been obtained by sampling from some un-
known manifold M ⊂ RN — perhaps the parameter space
of some physical system — then φ might correspond to an
n-dimensional coordinate system on M . If M is completely
and non-redundantly parametrized by these n coordinates,
then the nldr is regarded as having succeeded completely.

Principal components analysis, or linear regression, is the
simplest form of dimensionality reduction; the embedding
function φ is taken to be a linear projection. This is closely
related to (and sometimes identifed with) classical multidi-
mensional scaling [2].

When there are no satisfactory linear projections, it be-
comes necessary to use nldr. Prominent algorithms for
nldr include Locally Linear Embedding [14], Isomap [16],
Laplacian Eigenmaps [1], Hessian Eigenmaps [5], and many
more.

These techniques share an implicit assumption that the
unknown manifold M is well-described by a finite set of co-
ordinate functions φ1, φ2, . . . , φn : M → R. Explicitly, some
of the correctness theorems in these studies depend on the
hypothesis that M has the topological structure of a con-
vex domain in some Rn. This hypothesis guarantees that
good coordinates exist, and shifts the burden of proof onto
showing that the algorithm recovers these coordinates.

In this paper we ask what happens when this assumption
fails. The simplest space which challenges the assumption is
the circle, which is one-dimensional but requires two real co-
ordinates for a faithful embedding. Other simple examples
include the annulus, the torus, the figure eight, the 2-sphere,
the last three of which present topological obstructions to
being embedded in the Euclidean space of their natural di-
mension. We propose that an appropriate response to the
problem is to enlarge the class of coordinate functions to
include circle-valued coordinates θ : M → S1. In a physical
setting, circular coordinates occur naturally as angular and
phase variables. Spaces like the annulus and the torus are
well described by a combination of real and circular coor-
dinates. (The 2-sphere is not so lucky, and must await its
day.)

The goal of this paper is to describe a natural procedure
for constructing circular coordinates on a nonlinear data set
using techniques from classical algebraic topology and its



21st-century grandchild, persistent topology. We direct the
reader to [9] as a general reference for algebraic topology, and
to [17] for a streamlined account of persistent homology.

1.1 Related work
There have been other attempts to address the problem

of finding good coordinate representations of simple non-
Euclidean data spaces. One approach [13] is to use modified
versions of multidimensional scaling specifically devised to
find the best embedding of a data set into the cylinder, the
sphere and so on. The target space has to be chosen in ad-
vance. Another class of approaches [10, 4] involves cutting
the data manifold along arcs and curves until it has trivial
topology. The resulting configuration can then be embedded
in Euclidean space in the usual way. In our approach, the
number of circular coordinates is not fixed in advance, but is
determined experimentally after a persistent homology cal-
culation. Moreover, there is no cutting involved; the coor-
dinate functions respect the original topology of the data.

1.2 Overview
The principle behind our algorithm is the following equa-

tion from homotopy theory, valid for topological spaces X
with the homotopy type of a cell complex (which covers ev-
erything we normally encounter):

[X, S1] = H1(X; Z) (1)

The left-hand side denotes the set of equivalence classes of
continuous maps from X to the circle S1; two maps are
equivalent if they are homotopic (meaning that one map
can be deformed continuously into the other); the right-hand
side denotes the 1-dimensional cohomology of X, taken with
integer coefficients. In other language: S1 is the classifying
space for H1, or equivalently S1 is the Eilenberg–MacLane
space K(Z, 1). See section 4.3 of [9].

If X is a contractible space (such as a convex subset of Rn),
then H1(X; Z) = 0 and Equation (1) tells us not to bother
looking for circular functions: all such functions are homo-
topic to a constant function. On the other hand, if X has
nontrivial topology then there may well exist a nonzero coho-
mology class [α] ∈ H1(X; Z); we can then build a continuous
function X → S1 which in some sense reveals [α].

Our strategy divides into the following steps.

1. Represent the given discrete data set as a simplicial
complex or filtered simplicial complex.

2. Use persistent cohomology to identify a ‘significant’
cohomology class in the data. For technical reasons,
we carry this out with coefficients in the field Fp of
integers modulo p, for some prime p. This gives us
[αp] ∈ H1(X; Fp).

3. Lift [αp] to a cohomology class with integer coefficients:
[α] ∈ H1(X; Z).

4. Smoothing: replace the integer cocycle α by a har-
monic cocycle in the same cohomology class: ᾱ ∈
C1(X; R).

5. Integrate the harmonic cocycle ᾱ to a circle-valued
function θ : X → S1.

The paper is organized as follows. In Section 2.1, we derive
what we need of equation (1). Steps (1–5) of the algorithm
are addressed in Sections 2.2–2.6, respectively. In Section 3
we report some experimental results.

2. ALGORITHM DETAILS

2.1 Cohomology and circular functions
Let X be a finite simplicial complex. Let X0, X1, X2 de-

note the sets of vertices, edges and triangles of X, respec-
tively. We suppose that the vertices are totally ordered (in
an arbitrary way). If a < b then the edge between vertices
a, b is always written ab and not ba. Similarly, if a < b < c
then the triangle with vertices a, b, c is always written abc.

Cohomology can be defined as follows. Let A be a commu-
tative ring (for example A = Z, Fp, R). We define 0-cochains,
1-cochains, and 2-cochains as follows:

C0 = C0(X; A) =
˘
functions f : X0 → A

¯
C1 = C1(X; A) =

˘
functions α : X1 → A

¯
C2 = C2(X; A) =

˘
functions A : X2 → A

¯
These are modules over A. We now define coboundary maps
d0 : C0 → C1 and d1 : C1 → C2.

(d0f)(ab) = f(b)− f(a)

(d1α)(abc) = α(bc)− α(ac) + α(ab)

Let α ∈ C1. If d1α = 0 we say that α is a cocycle. If d0f =
α admits a solution f ∈ C0 we say that α is a coboundary.
The solution f , if it exists, can be thought of as the discrete
integral of α. It is unique up to adding constants on each
connected component of X.

It is easily verified that d1d0f = 0 for any f ∈ C0. Thus,
coboundaries are always cocycles, or equivalently Im(d0) ⊆
Ker(d1). We can measure the difference between cobound-
aries and cocycles by defining the 1-cohomology of X to be
the quotient module

H1(X; A) = Ker(d1)/ Im(d0).

We say that two cocycles α, β are cohomologous if α − β is
a coboundary.

We now consider integer coefficients. The following propo-
sition fulfils part of the promise of equation (1), by produc-
ing circle-valued functions from integer cocycles. It will be
helpful to think of S1 as the quotient group R/Z.

Proposition 1. Let α ∈ C1(X; Z) be a cocycle. Then
there exists a continuous function θ : X → R/Z which maps
each vertex to 0, and each edge ab around the entire circle
with winding number α(ab).

Proof. We can define θ inductively on the vertices, edges,
triangles, . . . of X. The vertices and edges follow the pre-
scription in the statement of the proposition. To extend θ
to the triangles, it is necessary that the winding number of
θ along the boundary of each triangle abc is zero. And in-
deed this is α(bc)−α(ac)+α(ab) = d1α(abc) = 0. Since the
higher homotopy groups of S1 are all zero ([9], section 4.3),
θ can then be extended to the higher cells of X without
obstruction.

The construction in Proposition 1 is unsatisfactory in the
sense that all vertices are mapped to the same point. All
variation in the circle parameter takes place in the interior
of the edges (and higher cells). This is rather unsmooth.
For more leeway, we consider real coefficients.

Proposition 2. Let ᾱ ∈ C1(X; R) be a cocycle. Suppose
we can find α ∈ C1(X; Z) and f ∈ C0(X; R) such that ᾱ =



α + d0f . Then there exists a continuous function θ : X →
R/Z which maps each edge ab linearly to an interval of length
ᾱ(ab), measured with sign.

In other words, we can construct a circle-valued function
out of any real cocycle ᾱ whose cohomology class [ᾱ] lies
in the image of the natural homomorphism H1(X; Z) →
H1(X; R).

Proof. Define θ on the vertices of X by setting θ(a) to
be f(a) mod Z. For each edge ab, we have

θ(b)− θ(a) = f(b)− f(a)

= d0f(ab)

= ᾱ(ab)− α(ab)

which is congruent to ᾱ(ab) mod Z, since α(ab) is an integer.
It follows that θ can be taken to map ab linearly onto an

interval of signed length ᾱ(ab). Since ᾱ is a cocyle, θ can
be extended to the triangles as before; then to the higher
cells.

Proposition 2 suggests the following tactic: from an in-
teger cocycle α we construct a cohomologous real cocycle
ᾱ = α + d0f , and then define θ = f mod Z on the vertices
of X. If we can construct ᾱ so that the edge-lengths |ᾱ(ab)|
are small, then the behaviour of θ will be apparent from its
restriction to the vertices. See Section 2.5.

2.2 Point-cloud data to simplicial complex
We now begin describing the workflow in detail. The input

is a point-cloud data set: in other words, a finite set S ⊂ RN

or more generally a finite metric space. The first step is to
convert S into a simplicial complex and to identify a stable-
looking integer cohomology class. This will occupy the next
three subsections.

The first lesson of point-cloud topology [7] is that point-
clouds are best represented by 1-parameter nested families of
simplicial complexes. There are several candidate construc-
tions: the Vietoris–Rips complex Xε = Rips(S, ε) has vertex
set S and includes a k-simplex whenever all k+1 vertices lie
pairwise within distance ε of each other. The witness com-
plex Xε = Witness(L, S, ε) uses a smaller vertex set L ⊂ S
and includes a k-simplex when the k + 1 vertices lie close
to other points of S, in a certain precise sense (see [3, 8]).

In both cases, Xε ⊆ Xε′ whenever ε ≤ ε′. Either of these
constructions will serve our purposes, but the witness com-
plex has the computational advantage of being considerably
smaller.

We determine Xε only up to its 2-skeleton, since we are
interested in H1.

2.3 Persistent cohomology
Having constructed a 1-parameter family {Xε}, we ap-

ply the principle of persistence to identify cocycles that are
stable across a large range for ε. Suppose that ε1, ε2, . . . , εm

are the critical values where the complex Xε gains new cells.
The family can be represented as a diagram

Xε1 −→ Xε2 −→ . . . −→ Xεm

of simplicial complexes and inclusion maps. For any coeffi-
cient field F, the cohomology functor H1(−; F) converts this
diagram into a diagram of vector spaces and linear maps
over F; the arrows are reversed:

H1(Xε1 ; F)←− H1(Xε2 ; F)←− . . .←− H1(Xεm ; F)

According to the theory of persistence [6, 17], such a di-
agram decomposes as a direct sum of 1-dimensional terms
indexed by half-open intervals of the form [εi, εj). Each such
term corresponds to a cochain α ∈ Ci(Xε) that satisfies the
cocycle condition for ε < εj and becomes a coboundary for
ε < εi. The collection of intervals can be displayed graphi-
cally as a persistence diagram, by representing each interval
[εi, εj) as a point (εi, εj) in the Cartesian plane above the
main diagonal. We think of long intervals as representing
trustworthy (i.e. stable) topological information.

Choice of coefficients. The persistence decomposi-
tion theorem applies to diagrams of vector spaces over a
field. When we work over the ring of integers Z, however,
the result is known to fail: there need not be an interval
decomposition. This is unfortunate, since we require integer
cocycles to construct circle maps. To finesse this problem,
we pick an arbitrary prime number p (such as p = 47) and
carry out our persistence calculations over the finite field
F = Fp. The resulting Fp cocyle must then be converted to
integer coefficients: we address this in Section 2.4.

In principle we can use the ideas in [17] to calculate the
persistent cohomology intervals and then select a long inter-
val [εi, εj) and a specific δ ∈ [εi, εj). We then let X = Xδ

and take α to be the cocycle in C1(X; F) corresponding to
the interval.

Explicitly, persistent cocycles can be calculated in the fol-
lowing way. We thank Dmitriy Morozov for this algorithm.
Suppose that the simplices in the filtered complex are to-
tally ordered, and labelled σ1, σ2, . . . , σm so that σi arrives
at time εi. For k = 0, 1, . . . , m we maintain the following
information:

• a set of indices Ik ⊆ {1, 2, . . . , k} associated with ‘live’
cocycles;

• a list of cocycles (αi : i ∈ Ik) in C∗(Xεk ; F).

The cocycle αi involves only σi and those simplices of the
same dimension that appear later in the filtration sequence
(thus only σj with j ≥ i).

Initially I0 = ∅ and the list of cocycles is empty.
To update from k − 1 to k, we compute the cobound-

aries of the cocycles (αi : i ∈ Ik−1) of Xεk−1 within the
larger complex Xεk obtained by including the simplex σk.
In fact, these coboundaries must be multiples of the elemen-
tary cocycle α = [σk] defined by α(σk) = 1, and α(σj) = 0
otherwise. We can write dαi = ci[σk]. If all the ci are zero,
then we have one new cocycle: let Ik = Ik−1∪{k} and define
αk = [σk]. Otherwise, we must lose a cocycle. Let j ∈ Ik−1

be the largest index for which cj 6= 0. We delete αj by set-
ting Ik = Ik−1 \ {j}, and we restore the earlier cocycles by
setting αi ← αi− (ci/cj)αj . In this latter case, we write the
persistence interval [εj , εk) to the output.

At the end of the process, surviving cocycles are associated
with semi-infinite intervals: [εi,∞) for i ∈ Im.

Remark. The reader may be more familiar with persis-
tence diagrams in homology rather than cohomology. In
fact, the universal coefficient theorem [9] implies that the
two diagrams are identical. The salient point is that coho-
mology is the vector-space dual of homology, when work-
ing with field coefficients. That said, we cannot simply use
the usual algorithm for persistent homology: we are inter-
ested in obtaining explicit cocycles, whereas the classical
algorithm [17] returns cycles.



We will establish the correctness of this algorithm in the
archival version of this paper. The expert reader may regard
this as an exercise in the theory of persistence.

2.4 Lifting to integer coefficients
We now have a simplicial complex X = Xδ and a cocycle

αp ∈ C1(X; Fp). The next step is to ‘lift’ αp by constructing
an integer cocycle α which reduces to αp modulo p.

To show that this is (almost) always possible, note that

the short exact sequence of coefficient rings 0 −→ Z ·p−→
Z −→ Fp −→ 0 gives rise to a long exact sequence, called
the Bockstein sequence (see Section 3.E of [9]). Here is the
relevant section of the sequence:

→ H1(X; Z)→ H1(X; Fp)
β→ H2(X; Z)

·p→ H2(X; Z)→

By exactness, the Bockstein homomorphism β induces an
isomorphism between the cokernel of H1(X; Z)→ H1(X; Fp)

and the kernel of H2(X; Z)
·p→ H2(X; Z), and this kernel is

precisely the set of p-torsion elements of H2(X; Z). If there is
no p-torsion, then it follows immediately that the cokernel of
the first map is zero. In other words H1(X; Z)→ H1(X; Fp)
is surjective; any cocycle αp ∈ C1(X; Fp) can be lifted to a
cocycle α ∈ C1(X; Z).

If we are unluckily sabotaged by p-torsion, then we pick
another prime and redo the calculation from scratch: it is
enough to pick a prime that does not divide the order of the
torsion subgroup of H2(X; Z), so almost any prime will do.

In practice, we construct α by taking the coefficients of
αp in Fp and replacing them with integers in the correct
congruence class modulo p. The default choice is to choose
coefficients close to zero. If d1α = 0 then we are done; oth-
erwise it becomes necessary to do some repair work. Cer-
tainly d1α ≡ 0 modulo p, so we can write d1α = pη for
some η ∈ C2(X; Z). In the absence of p-torsion, we can then
solve η = d1ζ for ζ ∈ C1(X; Z), and then the required lift is
α− pζ. Fortunately, this has not proved necessary in any of
our examples.

Remark. We expect that p-torsion is extremely rare in
‘real’ data sets, since it is symptomatic of rather subtle
topological phenomena. For instance, the simplest examples
which exhibit 2-torsion are the nonorientable closed surfaces
(such as the projective plane and the Klein bottle).

2.5 Harmonic smoothing
Given an integer cocycle α ∈ C1(X; Z), or indeed a real

cocycle α ∈ C1(X; R), we wish to find the ‘smoothest’ real
cocycle ᾱ ∈ C1(X; R) cohomologous to α. It turns out that
what we want is the harmonic cocycle representing the co-
homology class [α].

We define smoothness. Each of the spaces Ci(X; R) comes
with a natural Euclidean metric:

‖f‖2 =
X

a∈X0

|f(a)|2,

‖α‖2 =
X

ab∈X1

|α(ab)|2,

‖A‖2 =
X

abc∈X2

|A(abc)|2.

A circle-valued function θ is ‘smooth’ if its total variation
across the edges of X is small. The terms |α(ab)|2 cap-

ture the variation across individual edges; therefore what
we must minimize is ‖ᾱ‖2.

Proposition 3. Let α ∈ C1(X; R). There is a unique
solution ᾱ to the least-squares minimization problem

argmin
ᾱ

˘
‖ᾱ‖2 | ∃f ∈ C0(X; R), ᾱ = α + d0f

¯
. (2)

Moreover, ᾱ is characterized by the equation d∗0 ᾱ = 0, where
d∗0 is the adjoint of d0 with respect to the inner products on
C0, C1.

Proof. Note that if d∗0 ᾱ = 0 then for any f ∈ C0 we
have

‖ᾱ + d0f‖2 = ‖ᾱ‖2 + 2〈ᾱ, d0f〉+ ‖d0f‖2

= ‖ᾱ‖2 + 2〈d∗0 ᾱ, f〉+ ‖d0f‖2

= ‖ᾱ‖2 + ‖d0f‖2

which implies that such an ᾱ must be the unique minimizer.
For existence, note that

d∗0 α + d∗0 d0f = 0

certainly has a solution f if Im(d∗0) = Im(d∗0 d0). But this is a
standard fact in finite-dimensional linear algebra: Im(At) =
Im(AtA) for any real matrix A; this follows from the singular
value decomposition, for instance.

Remark. It is customary to construct the Laplacian ∆ =
d∗1 d1 + d0 d∗0. The twin equations d1 ᾱ = 0 and d∗0 ᾱ = 0
immediately imply (and conversely, can be deduced from)
the single equation ∆ᾱ = 0; in other words ᾱ is harmonic.

2.6 Integration
The least-squares problem in equation (2) can be solved

using a standard algorithm such as LSQR [12]. By Propo-
sition 2 we can use the solution parameter f to define the
circular coordinate θ on the vertices of X. This works be-
cause the original cocycle α has integer coefficients.

More generally, if ᾱ is an arbitrary real cocycle such that
[ᾱ] ∈ Im(H1(X; Z) → H1(X; R)), it is a straightforward
matter to integrate ᾱ to a circle-valued function θ on the
vertex set X0. Suppose that X is connected (if not, each
connected component can be treated separately) and pick a
starting vertex x0 and assign θ(x0) = 0. One can use Di-
jkstra’s algorithm to find shortest paths to each remaining
vertex from x0. When a new vertex b enters the structure
via an edge ab, we assign θ(b) = θ(a)+ᾱ(ab) (or θ(a)−ᾱ(ba)
if the edge is correctly identified as ba). If a vertex a is con-
nected to x0 by multiple paths then the different possible
values of θ(a) differ by an integer; this is where we use the
hypothesis that ᾱ is cohomologous to an integer cocyle.

3. EXPERIMENTS

3.1 Software
The following experiments were carried out using the Java-

based jPlex simplicial complex software [15], with high-level
scripting and numerical analysis in MATLAB. We ran a de-
velopment version of jPlex to obtain explicit persistent co-
homology cocycles. We expect to include the code in the
next release of jPlex. We used Paige and Saunders’ imple-
mentation of LSQR [11] for the least-squares problem in the
harmonic smoothing step. Timings were determined using
MATLAB’s built-in ‘tic’ and ‘toc’ commands, and are in-
cluded for relative comparison against each other.



3.2 General procedure
We tested our methods on several synthetic data sets with

known topology, ranging from the humble circle itself to a
genus-2 surface (‘double torus’). Most of the examples were
embedded in R2 or R3, with the exception of a sample from
a complex projective curve (embedded in CP 2) and a syn-
thetic image-like data set (embedded in R120000).

In each case we selected vertices for the filtered simplicial
complex: either the whole set, or a smaller well-distributed
subset of ‘landmarks’ selected by iterative furthest-point
sampling. We then built a Rips or witness complex, with
maximum radius generally chosen to ensure around 105 sim-
plices in the complex.

In most cases, we show the persistence diagram produced
by the cocycle computation. The chosen value δ is marked
on the diagonal, with its upper-left quadrant indicated in
green lines. The persistent cocycles available at that pa-
rameter value are precisely those contained in that quadrant.
Each of those cocycles then produces a circular coordinate.

There are various figures associated with each example.
Most important are the correlation scatter plots: each scat-
ter plot compares two circular coordinate functions. These
may be functions produced by the computation (‘inferred
coordinates’) or known parameters. These scatter plots are
drawn in the unit square, which is of course really a torus
S1 × S1.

When the original data are embedded in R2 or R3, we
also display the circular coordinates directly on the data
set, plotting each point in color according to its coordinate
value interpreted on the standard hue-circle. This works less
well in grayscale reproductions, of course.

Finally, in certain cases we plot coordinate values against
frequency, as a histogram. This distributional information
can sometimes be useful in the absence of other information.

Remark. When the goal is to infer the topology of a data
set whose structure is unknown, we do not have any ‘known
parameters’ available to us. We can still construct correla-
tion scatter plots between pairs of inferred coordinates, and
the distributional histograms for each coordinate individu-
ally. We exhort the reader to view the following examples
through the lens of the topological inference problem: what
structures can be distinguished using scatter plots and his-
tograms (and persistence diagrams) alone?

3.3 Noisy circle
We begin with the circle itself, and its tautological circle-

valued coordinate.
We picked 400 points distributed along the unit circle.

We added a uniform random variable from [0.0, 0.4] to each
coordinate. A Rips complex was constructed with maximal
radius 0.5, resulting in 23475 simplices. The computation of
cohomology finished in 237 seconds.

Parametrizing at 0.4 yielded a single coordinate function,
which very closely reproduces the tautological angle func-
tion. Parametrizing at 0.14 yielded several possible cocycles.
We selected one of those with low persistence; this produced
a parametrization which ‘snags’ around a small gap in the
data.

See Figure 1. The left panel in each row shows the his-
togram of coordinate values; the middle panel shows the cor-
relation scatter plot against the known angle function; the
right panel displays the coordinate using color. The high-

persistence (‘global’) coordinate correlates with the angle
function with topological degree 1. Variation in that coor-
dinate is uniformly distributed, as seen in the histogram. In
contrast, the low-persistence (‘local’) coordinate has a spiky
distribution.

3.4 Trefoil torus knot
Another example with circle topology: see Figure 2. We

picked 400 points distributed along the (2, 3) torus knot on
a torus with radii 2.0 and 1.0. We jittered them by a uni-
form random variable from [0.0, 0.2] added to each coordi-
nate. We generated a Rips complex up to radius 1.0, acquir-
ing 36936 simplices. We computed persistent cohomology
in 70 seconds. As expected, the inferred coordinate corre-
lates strongly with the known parameter with topological
degree 1. The histogram shows three ‘bulges’ correspond-
ing to the three high-density regions of the sampled curve,
which occur when the curve approaches the central axis of
the torus.

3.5 Rotating cube
For a more elaborate data set with S1-topology, we gen-

erated a sequence of 657 rendered images of a colorful cube
rotating around one axis. Each image was regarded as a
vector in the Euclidean space R200·200·3. From this data
we built a witness complex with 50 landmark points and
constructed a single circular coordinate. Interpolating the
resulting function linearly between the landmarks gave us
coordinates for all the points in the family.

See Figure 3. The frequency distribution is comparatively
smooth (by which we mean that there are no large spikes in
the histogram), which indicates that the coordinate does not
have large static regions. The correlation plot of the inferred
coordinate against the original known sequence of the cube
images shows a correlation with topological degree 1. We
show the progression of the animation on an evenly-spaced
sample of representative points around the circle.

3.6 Pair of circles
See Figure 4 for these two examples.
Conjoined circles: we picked 400 points distributed along

circles in the plane with radius 1 and with centres at (±1, 0).
The points were then jittered by adding noise to each coor-
dinate taken uniformly randomly from the interval [0.0, 0.3].
A Rips complex was constructed with maximal radius 0.5,
resulting in 76763 simplices. The cohomology was computed
in 378 seconds.

Disjoint circles: 400 points were distributed on circles of
radius 1 centered around (±2, 0) in the plane. These points
were subsequently disturbed by a uniform random variable
from [0.0, 0.5]. We constructed a Rips complex with maxi-
mum radius 0.5, which gave us 45809 simplices. The coho-
mology computation finished in about 117 seconds.

In both cases, our method detects the two most natural
circle-valued functions. The scatter plots appear very simi-
lar. In the conjoined case, there is some interference between
the two circles, near their meeting point.

3.7 Torus
See Figure 5. We picked 400 points at random in the

unit square, and then used a standard parametrization to
map the points onto a torus with inner and outer radii 1.0
and 3.0. These were subsequently jittered by adding a uni-
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Figure 1: Noisy circle. Persistence diagram (left). Global coordinate (top row), local coordinate (bottom
row). In each row: histogram of coordinate values (left), correlation scatter plot against known angle function
(middle), inferred coordinate in color (right).
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Figure 2: Trefoil torus knot. Persistence diagram (left), correlation scatter plot of inferred coordinate against
known parametrization (middle), inferred coordinate in color (right).

Figure 3: Images of a rotating cube. Histogram of coordinate values (left); scatter plot against known angle
function (middle); a selection of images matched to recovered circle coordinate (right).
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Figure 4: Two conjoined circles (left); two disjoint circles (right). In each case we show the persistence
diagram (top left), the two inferred coordinates (right column), the correlation scatter plot (bottom left).

form random variable from [0.0, 0.2] to each coordinate. We
constructed a Rips complex with maximal radius

√
3, result-

ing in 61522 simplices. The corresponding cohomology was
computed in 209 seconds.

The two inferred coordinates in this (fairly typical) ex-
perimental run recover the original coordinates essentially
perfectly: the first inferred coordinate correlates with the
meridional coordinate with topological degree −1, while the
second inferred coordinate correlates with the longitudinal
coordinate with degree 1.

When the original coordinates are unavailable, the impor-
tant figure is the inferred-versus-inferred scatter plot. In
this case the scatter plot is fairly uniformly distributed over
the entire coordinate square (i.e. torus). In other words,
the two coordinates are decorrelated. This is slightly truer
(and more clearly apparent in the scatter plot) for the two
original coordinates. Contrast these with the corresponding
scatter plots for a pair of circles (conjoined or disjoint).

3.8 Elliptic curve
See Figure 6. For fun, we repeated the previous experi-

ment with a torus abstractly defined as the zero set of a ho-
mogeneous cubic polynomial in three variables, interpreted
as a complex projective curve. We picked 400 points at ran-
dom on S5 ⊂ C3, subject to the cubic equation

x2y + y2z + z2x = 0.

To interpret these as points in CP 2, we used the projectively
invariant metric

d(ξ, η) = cos−1(|ξ̄ · η|)

for all pairs ξ, η ∈ S5. With this metric we built a Rips
complex with maximal radius 0.15. The resulting complex
had 44184 simplices, and the cohomology was computed in
56 seconds. We found two dominant coclasses that survived
beyond radius 0.15, and we computed our parametrizations
at the 0.15 mark.

The resulting correlation plot quite clearly exhibits the
decorrelation which is characteristic of the torus.
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Figure 6: Elliptic curve. Persistence diagram (left),
correlation scatter plot between the two coordinates
(right).

3.9 Double torus
See Figure 7. We constructed a genus-2 surface by gen-

erating 1600 points on a torus with inner and outer radii
1.0 and 3.0; slicing off part of the data set by a plane at
distance 3.7 from the axis of the torus, and reflecting the
remaining points in that plane. The resulting data set has
3120 points. Out of these, we pick 400 landmark points, and
construct a witness complex with maximal radius 0.6. The
landmark set yields a covering radius rmax = 0.9982 and a
complex with 70605 simplices. The computation took 748
seconds active computer time. We identified the four most
significant cocycles.

Note that coordinates 1 and 4 are ‘coupled’ in the sense
that they are supported over the same subtorus of the dou-
ble torus. The scatter plot shows that the two coordinates
appear to be completely decorrelated except for a large mass
concentrated at a single point. This mass corresponds to the
other subtorus, on which coordinates 1 and 4 are essentially
constant. A similar discussion holds for coordinates 2 and 3.

The uncoupled coordinate pairs (1,2), (1,3), (2,4), (3,4)
produce scatter plots reminiscent of two conjoined or disjoint
circles.
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(a) Persistence diagram (left); first inferred coordinate (middle); second inferred coordinate
(right).
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(b) Correlation scatter plots between the two original and two inferred coordinates.

Figure 5: Torus in R3.
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(a) Persistence diagram: four cocycles detected.

(b) Correlation scatter plots between the four inferred coordinates.

Figure 7: Double torus in R3.
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2004.

[4] M. Dixon, N. Jacobs, and R. Pless. Finding minimal
parameterizations of cylindrical image manifolds. In
CVPRW ’06: Proceedings of the 2006 Conference on
Computer Vision and Pattern Recognition Workshop,
page 192, Washington, DC, USA, 2006. IEEE
Computer Society.

[5] D. L. Donoho and C. Grimes. Hessian Eigenmaps:
New locally linear embedding techniques for
high-dimensional data. Technical Report TR 2003-08,
Department of Statistics, Stanford University, 2003.

[6] H. Edelsbrunner, D. Letscher, and A. Zomorodian.
Topological persistence and simplification. Discrete
and Computational Geometry, 28:511–533, 2002.

[7] R. Ghrist. Barcodes: the persistent topology of data.
Bulletin of the American Mathematical Society,
45(1):61–75, 2008.

[8] L. J. Guibas and S. Y. Oudot. Reconstruction using
witness complexes. In Proc. 18th ACM-SIAM Sympos.
on Discrete Algorithms, pages 1076–1085, 2007.

[9] A. Hatcher. Algebraic Topology. Cambridge University
Press, Cambridge, 2002.

[10] J. A. Lee and M. Verleysen. Nonlinear dimensionality
reduction of data manifolds with essential loops.
Neurocomputing, 67:29–53, 2005.

[11] C. C. Paige and M. A. Saunders. LSQR: Sparse
equations and least squares.
http://www.stanford.edu/group/SOL/software/lsqr.html.

[12] C. C. Paige and M. A. Saunders. LSQR: An algorithm
for sparse linear equations and sparse least squares.
ACM Transactions on Mathematical Software,
8(1):43–71, March 1982.

[13] R. Pless and I. Simon. Embedding images in non-flat
spaces. In Conference on Imaging Science Systems and
Technology, pages 182–188, 2002.

[14] S. Roweis and L. Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science,
290:2323–2326, Dec. 2000.

[15] H. Sexton and M. Vejdemo-Johansson. jPlex simplicial
complex library.
http://comptop.stanford.edu/programs/jplex/.

[16] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A
global geometric framework for nonlinear
dimensionality reduction. Science, 290:2319–2323,
Dec. 2000.

[17] A. Zomorodian and G. Carlsson. Computing
persistent homology. Discrete and Computational
Geometry, 33(2):249–274, 2005.


	Introduction
	Related work
	Overview

	Algorithm Details
	Cohomology and circular functions
	Point-cloud data to simplicial complex
	Persistent cohomology
	Lifting to integer coefficients
	Harmonic smoothing
	Integration

	Experiments
	Software
	General procedure
	Noisy circle
	Trefoil torus knot
	Rotating cube
	Pair of circles
	Torus
	Elliptic curve
	Double torus

	Acknowledgements
	References

