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Abstract

We study hierarchical clustering schemes under an axiomatic view. We show that
within this framework, one can prove a theorem analogous to one of J. Kleinberg
(Kleinberg, 2002), in which one obtains an existence and uniqueness theorem in-
stead of a non-existence result. We explore further properties of this unique scheme:
stability and convergence are established. We represent dendrograms as ultrametric
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to quantify the degree to which perturbations in the input metric space affect the
result of hierarchical methods.
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CHARACTERIZATION, STABILITY AND CONVERGENCE OF HIERARCHICAL CLUSTERING METHODS

1. Notation

Symbol Meaning

R Real numbers.

R4 d-dimensional Euclidean space.

N Natural numbers.

(a)) A square symmetric matrix with elements a;; which are usually distances.
(X,d) Metric space X with metric d, page 9.

(X, u) Ultrametric space X with ultrametric u, page 9.

X, X, Collection of all finite (resp. n point) metric spaces, page 9.

U, U, Collection of all finite (resp. n point) ultrametric spaces, page 9.

C(X) Collection of all non-empty subsets of the set X, page 9.

UX) Collection of all ultrametrics over the finite set X, page 9.

P(X) Collection of all partitions of the finite set X, page 9.

I, B, A A partition of a finite set and blocks of that partition, respectively, page 9.
~, la], A\ ~ An equivalence relation, the equivalence class of a point and the quotient space, page 9.
~p An equivalence relation with a parameter r = 0, page 10.

Sk=1(7r) Sphere of radius r and dimension k — 1 embedded in R¥, page 9.

L(W) Maximal metric < W, page 10.

0 :[0,00) - P(X) A dendrogram over the finite set X, 11.

D(X) Collection of all dendrograms over the finite set X, page 11.

0* Dendrogram over the finite set X arising from ~,, 13.

(8L (CL pAL Linkage functions, page 15.

65T, AL HCL Dendrograms arising from linkage functions, 15.

T A hierarchical clustering method seen as a map ¥ : X — U, page 23.

T A HC method arising from the maximal sub-dominant ultrametric, page 24.
Uug An ultrametric obtained from the dendrogram 6, page 22.

o A dendrogram obtained from the ultrametric u, page 23.

v A bijective map between D(X) and U(X), page 21.

A, Metric space isometric to an n point unit simplex, page 29.
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L, Metric space isometric to n points on a line, page 29.
d7Z_L Hausdorff distance between subsets of the metric space Z, page 37.
TSL gCL gCL Standard linkage based HC methods seen as maps from X to U, page 24.

dis(f), dis(f, 9) Distortion of a map f and joint distortion of a pair of maps f and g, page 27.

dgy Gromov-Hausdorff distance between metric spaces, pages 27, 40.

sep(X) Separation of the metric space X, page 10.

diam (X) Diameter of the metric space X, page 9.

P, All the n! permutations of elements of the set {1,...,n}.

I'xy A function used to measure metric distortion, page 40.

(X,d, 1) An mm-space, (X,d) a compact metric space, u a Borel probability measure, page 43.
supp [ p] Support of the probability measure i, page 43.

P, Probability with respect to the law p.
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2. Introduction

Clustering techniques play a very central role in various parts of data analysis. They
can give important clues to the structure of data sets, and therefore suggest results
and hypotheses in the underlying science. Many of the interesting methods of clus-
tering available have been applied to good effect in dealing with various datasets
of interest. However, despite being one of the most commonly used tools for unsu-
pervised exploratory data analysis, and despite its extensive literature, very little is
known about the theoretical foundations of clustering methods. These points have
been recently made prominent by Ben-David and von Luxburg in (von Luxburg and
Ben-David, 2005; Ben-David et al., 2006).

The general question of which methods are “best”, or most appropriate for a
particular problem, or how significant a particular clustering is has not been addressed
too frequently. This lack of theoretical guarantees can be attributed to the fact that
many methods involve particular choices to be made at the outset, for example how
many clusters there should be, or the value of a particular thresholding parameter.
In addition, some methods depend on artifacts in the data, such as the particular
order in which the observations are listed.

In (Kleinberg, 2002), J. Kleinberg proves a very interesting impossibility result for
the problem of even defining a clustering scheme with some rather mild invariance
properties. He also points out that his results shed light on the trade-offs one has to
make in choosing clustering algorithms.

Standard clustering methods take as input a finite metric space (X, d) and
output a partition of X. Let P(X) denote the set of all possible partitions of the
set X. Kleinberg (Kleinberg, 2002) discussed this situation in an axiomatic way and
identified a set of reasonable properties of standard clustering schemes, namely, scale
invariance, richness and consistency. Fix a standard clustering method f and a metric
space (X, d) and let f(X,d) =1l € P(X). Kleinberg identified the following desirable
properties of a clustering scheme:

e Scale Invariance: For all o > 0, f(X,«-d) =1I.

e Richness: Fix any finite set X. Then for all IT € P(X), there exists dy, a
metric on X s.t. f(X,dy) =1L

e Consistency: Let I1 = {By,..., B;}. Let d be any metric on X s.t.

1. for all z, 2’ € B,, ci(x,x') < d(z,z') and

~

2. forall x € B,, ¥’ € By, a # ', d(z,2') = d(z,2).

Then, f(X,d) =1L

He then proved, in the same spirit of Arrow’s impossibility theorem, that no
clustering scheme satisfying these conditions simultaneously can exist.
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Theorem 1 ((Kleinberg, 2002)) There exists no clustering algorithm that satis-
fies scale invariance, richness and consistency.

Then, in particular, Kleinberg’s axioms rule out single, average and complete linkage
(standard) clustering. Clusters in any of these three methods can be obtained by
first constructing a hierachical decomposition of space (such as those provided by
hierarchical clustering methods) and then selecting the partition that arises at a
given, fixed, threshold.

A natural question is whether Kleinberg’s impossibility results still holds when
one admits clustering schemes that do not try to return a fixed partition of a space,
but are allowed to return a hierarchical decomposition.

Furthermore, datasets can exhibit multiscale structure and this can render stan-
dard clustering algorithms inapplicable in certain situations, see Figure 1. This fur-
ther motivates the use of Hierarchical clustering methods. Hierarchical methods
take as input a finite metric space (X, d) and output a hierarchical family of partitions
of X.
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Figure 1: Dataset with multiscale structure. Any standard clustering algorithm will
fail to capture the structure of the data.

These hierarchical families of partitions that constitute the output of hierarchical
methods receive the name of dendrograms. Dendrograms come in two versions: prox-
imity and threshold dendrograms. These two types of dendrograms differ in whether
they retain some proximity information about the underlying clusters that they rep-
resent or not: proximity dendrograms do retain such information whereas threshold
dendrograms do not. Practicioners of statistical data analysis seem to work almost
exclusively with proximity dendrograms. For this reason we opt to carry out our anal-
ysis under the model that hierarchical methods take as input a finite metric space X
and output a proximity dendrogram over X, see Remark 3.
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We remind the reader that we are using the term standard clustering methods to
refer to procedures that take a finite metric space as input and output a fixed single
partition of the metric space.

In a similar spirit to Kleinberg’s theorem, we prove in Theorem 18 that in the
context of hierarchical methods, one obtains uniqueness instead of non-existence. We
emphasize that our result can be interpreted as a relazation of the theorem proved by
Kleinberg, in the sense that allowing clustering schemes that output a nested family
of partitions in the form of a proximity dendrogram, instead of a fixed partition,
removes the obstruction to existence. The unique HC method characterized by our
theorem turns out to be single linkage hierarchical clustering.

We stress the fact that our result assumes that outputs of hierarchical methods
are proximity dendrograms, whereas Kleinberg’s Theorem applies to flat/standard
clustering, a situation in which the output contains no proximity information between
clusters.

In order to state and prove our results we make use of the well known equivalent
representation of dendrograms, the output of HC methods, using ultrametrics. This
already appears in the book Jardine and Sibson (Jardine and Sibson, 1971) and in the
classical work of Hartigan and others, see (Hartigan, 1985), (Jain and Dubes, 1988,
§3.2.3) and references therein.

In recent years, the theme of studying the properties of metrics with prescribed
generalized curvature properties has been studied intensively. In particular, the work
of Gromov (Gromov, 1987) has been seminal, and many interesting results have been
proved concerning objects other than metric spaces, such as finitely generated groups,
depending on these methods. The curvature conditions can be formulated in terms
of properties of triangles within the metric spaces, and the most extreme of these
properties is that embodied in ultrametric spaces. A second idea of Gromov’s is to
make the collection of all metric spaces into its own metric space, and the resulting
metric gives a very useful and natural way to distinguish between metric spaces
(Gromov, 2007). This metric is known as the Gromov-Hausdorff distance and its
restriction to the subclass of ultrametric spaces is therefore a very natural object to
study.

Stability of some kind is clearly a desirable property of clustering methods and,
therefore, a point of interest is studying whether results obtained by a given clustering
algorithm are stable to perturbations in the input data. Since input data are modelled
as finite metric spaces, and the output of hierarchical methods can be regarded as
finite ultrametric spaces, the Gromov-Hausdorff distance provides a natural tool for
studying variability or perturbation of the inputs and outputs of hierarchical clustering
methods.

After observing in §4.6 that average and complete linkage clustering are not stable
in the metric sense alluded to above, we prove in Proposition 26 that single linkage
does enjoy a kind of stability:
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Proposition 2 Let (X,dx) and (Y,dy) be two finite metric spaces and let (X, ux)
and (Y, ux) be the two (finite metric ultrametric spaces) corresponding outputs yielded
by single linkage HC. Then,

dgn (X, ux), (Y,uy)) < dgn((X,dx), (Y, dy)).

Here, dgy stands for the Gromov-Hausdorff distance.

Figure 2: Convergence of dendrograms. We formalize this concept by equivalently
representing dendrogram as ultrametrics and then computing the Gromov-
Hausdorff distance between the resulting metrics. We prove in Theorem 30
that by taking increasingly many i.i.d. samples from a given probability
distribution p on a metric space,then with probability 1 one recovers a
multiscale representation of the supprt of u.

This result is very important for the convergence theorems which we prove in the
later parts of the paper. These results describe in a very precise way the fact that
for compact metric spaces X, the results of clustering the finite subsets of X yields
a collection of dendrograms which ultimately converge to the dendrogram for X. In
order for this to happen, one needs the metric on the ultrametric spaces as well as
the behavior of the clustering construction on the Gromov-Hausdorff distance, which
is what Proposition 2 does. The issue of stability is further explored in §6.

Probabilistic convergence. Finally, in Theorem 30 we also prove that for ran-
dom i.i.d. observations X,, = {x1,...,z,} with probability distribution y compactly
supported in a metric space (X,d), the result (X,,ux,) of applying single linkage
clustering to (X,,, d) converges almost surely in the Gromov-Hausdorff sense to an
ultrametric space that recovers the multiscale structure of the support of u, see Fig-
ure 20. This can be interpreted as a refinement of a previous observation (Hartigan,
1985) that SLHC is insensitive to the distribution of mass of x in its support.

Organization of the paper. This paper is organized as follows: §1 provides a list
of all the notation defined and used throughout the paper; §3 introduces the terminol-
ogy and basic concepts that we use in our paper; §4.2 reviews hierarchical clustering
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methods in general; §4.3 discusses the representation of dendrograms as ultrametric
spaces and establishes the equivalence of both repersentations; and §4.5 delves into
the issue of constructing a notion of distance between dendrograms which is based in
the equivalence of dendrograms and ultrametrics; §4.6 comments on issues pertaining
to the theoretical properties of HC methods. In §5 we present our characterization
result, Theorem 18, for SL in a spirit similar to the axiomatic treatment of Kleinberg.
We delve into the stability and convergence questions of SL in §6, where we introduce
all the necessary concepts from Metric Geometry. Proposition 26 and Theorem 28
contain our results for the deterministic case. In §6.3 we prove a probabilistic con-
vergence result Theorem 30 that hinges on a general sampling theorem for measure
metric spaces, Theorem 34. Finally, we conclude the paper with a discussion on future
directions.

For clarity of exposition, we have chosen to move most of the proofs in this paper
to and appendix. The ones which remain in the main text are intended to provide
intuition which would not otherwise be there.

3. Background and notation
A metric space is a pair (X, d) where X is a set and d : X x X — R* satisfies
1. For all z,2" € X, d(2/,x) = d(z,2’) = 0 and d(z,2’) = 0 if and only if z = 2.
2. Forall z,2' 2" € X, d(x,2") < d(z,2") + d(2/, 2").
A metric space (X, u) is an ultrametric space if and only if for all z, 2/, 2" € X,
max(u(x, '), u(z’, ")) = u(x, 2"). (3.1)

Ultrametric spaces are therefore metric spaces which satisfy a stronger type of
triangle inequality. It is interesting to observe that this ultrametric triangle inequality
(3.1) implies that all triangles are isosceles.!

Notice that by iterating the ultrametric property one obtains that if 1, zo, ..., xy
is any set of k points in X, then

max (u(xl, To), u(xe, x3), ..., u(xp 1, :vk)) > u(xy, xp).

For a fixed finite set X, we let U(X) denote the collection of all ultrametrics on
X. For n € Nlet X, (resp. U,) denote the collection of all metric spaces (resp.
ultra-metric spaces) with n points. Let X = | | ., A, denote the collection of all
finite metric spaces and U = | | ., U, all finite ultrametric spaces. For (X, d) € X let

nx=1

sep(X,d) := mind(z,2') and diam (X, d) := maxd(z,z’)

r#x’ T,x

1. Indeed, assume that all sides a, b, ¢ of a triangle in a given ultrametric space are different. Then,
without loss of generality a > b > ¢. But then, a > max(a,b) which violates (3.1). Hence, there
must be at least two equal sides in every triangle in an ultrametric space.
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be the separation and the diameter of X, respectively.

We now recall the definition of an equivalence relation. Given a set A, a binary
relation is a subset S < A x A. One says that a and ' are related and writes a ~ a’
whenever (a,a’) € S. S is called an equivalence relation if and only if for all a, b, c € A,
all the following hold true:

e Reflexivity: a ~ a.
e Symmetry: if a ~ b then b ~ a.
e Transitivity: if a ~ b and b ~ ¢ then a ~ c.

The equivalence class of a under ~, denoted [a], is defined as all those @’ which are
related to a: [a] = {d’ € A, s.t. d’ ~a}. Finally, the quotient space A\ ~ is the
collection of all equivalence classes: A\ ~:= {[a], a € A}.

We now construct our first example which will be crucial in our presentation.

Example 1 (r-equivalence) Given a finite metric space (X,d) and r = 0 we say
that points x,2’ € X are r-equivalent (denoted x ~, x') if and only if there exists
points xg, x1,..., 1, € X with xg =z, x; = 2’ and d(x;, x;41) <71 fori=0,...,t—1.
It is easy to see that ~, is indeed an equivalence relation on X.

This definition embodies the simple idea of partitioning a finite metric space into
path connected components, where the granularity of this partitioning is specified by
the parameter r = 0, see Figure 1.

For a finite set X, and a symmetric function W : X x X — R* let £(I¥) denote
the mazimal metric on X less than of equal to W (Bridson and Haefliger, 1999), i.e.

m—1
L(W)(z,z") = min { Z W (i, zi41)| ® = 20, ..., T = x}

1=0

for z,2' € X.

For a finite set X, we let C(X) denote the collection of all non-empty subsets of
X. By P(X) we denote the set of all partitions of X. For a given partition IT € P(X)
we refer to each B € II as a block of TI. For partitions IT,1I' € P(X), we say that
IT is coarser than II', or equivalently that II" is a refinement of II, if for every block
B’ € I’ there exists a block Be Il s.t. B’ < B.

For k € N and r > 0 let S*71(r) = R¥ denote the (k — 1) dimensional sphere with
radius r. By ((@)) we will denote a matrix of elements a;;.

10
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Figure 3: Illustration of the equivalence relation ~,.. A finite metric space X is speci-
fied by the points in orange which are endowed with the Euclidean distance.
This construction can be understood as allowing the creation of edges join-
ing two points whenever the distance between them does not exceed r.
Then, two points & and 2z’ in black are deemed r-equivalent if one can find
a sequence of edges on the resulting graph connecting x to z’. From left
to right and top to bottom we show the resulting graph one obtains for
4 increasing values of r. The points x and z’ are not r-equivalent when
r = 1ry,79 Or r3, but they are r4-equivalent.

4. Hierarchical clustering: formulation

In this section we formaly define hierarchical clustering methods as maps that assign
a dendrogram to a finite metric space. First, in §4.1 formalize the standard concept
of dendrogram; then, in §4.2 we present a formal treatment of HC methods which
emphasizes the need for a formulation that is insensitive to arbitrary choices such
as the labels given to the points in the dataset. Finally, in §4.3 we prove that the
collection of all dendrograms over a finite set is in a one to one correspondence with
the collection of all ultrametrics on this set. We then redefine HC methods as maps

11
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from the collection of finite metric spaces to the collection all finite ultrametric spaces.
This change in perspective permits a natural formulation and study of the stability
and convergence issues in later sections of the paper. In particular, in §4.5, we
discuss the construction of notions of distance between dendrograms by appealing to
the ultrametric representation. These notions are instrumental for the arguments in
§6.

Finally, in §4.6, we disgress on some critiques to the classical HC methods. The
situation with HC methods is seemingly paradoxical in that SL is the one that seems
to enjoys the best theoretical properties while CL and AL, despite exhibiting some
undesirable behaviour, are the usual choices of practicioners.

4.1 Dendrograms

A dendrogram over a finite set X is defined to be nested family of partitions, usually
represented graphically as a rooted tree. Dendrograms are meant to represent a
hierarchical decompositions of the underlying set X, such as those that are produced
by hierarchical clustering algorithms, and therefore the nested family of partitions
provided must satisfy certain conditions. We formally describe dendrograms as pairs
(X,0), where X is a finite set and 6 : [0,00) — P(X). The parameter of ¢ usually
represents a certain notion of scale and it is reflected in the height of the different
levels, see Figure 4.1. We require that 6 satisfies:

1. 0(0) = {{z1}, ..., {x,}}. This condition means that the initial decomposition of
space is the finest possible: the space itself.

2. There exists tg s.t. 6(t) is the single block partition for all t > to. This condition
encondes the fact that for large enough ¢, the partition of the space becomes
trivial.

3. If r < s then 6(r) refines 6(s). This condition ensures that the family of
partitions provided by the dendrogram is indeed nested.

4. For all r there exists € > 0 s.t. 0(r) = 6(t) for t € [r,r+¢]. (technical condition)

Let D(X) denote the collection of all possible dendrograms over a given finite set

X. When understood from context, we will omit the first component of a dendrogram
(X,0) € D(X) and refer to 6 as a dendrogram over X.

Remark 3 (About our definition of dendrogram) Our definition coincides with
what Jain and Dubes call proximity dendrograms in (Jain and Dubes, 1988, §3.2).
We stress that we view the parameter t in our definition as part of the information
about the hierarchical clustering. Jain and Dubes also discuss a simpler version of
dendrograms, which they call threshold dendrograms, which retain merely the order
in which succesive partitions are created. These of course can be viewed as functions

12
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L1
L2
I
X3
L4
— —4 —1 >

a rhn b roc 173

Figure 4: A graphical representation of a dendrogram over the set X =
{x1, 29,23, 24}. Let 6 denote the dendrogram. Notice for example that
9(&) = {{%1},{%2},{1'3},{.’174}}; H(b) = {{x1,$2},{x3},{$4}}; 0(6) =

{{xl,xg}, {xg,:c4}}; and 0(t) = {£C1,$2,$3,$4} for any t > rs.

from N into P(X) satisfying the constraints (1), (2) and (3) above, instead of having
the domain [0, 00).

It seems that proximity dendrograms are the type of dendrograms that are most
often employed by practicioners and statisticians, see for erample the dendrograms
provided by the statistical software R (http://www.r-project.org/) and by matlab’s
statistics toolbox (http://www. mathworks. com/products/statistics/, 2009), whereas
threshold dendrograms are more popular in the Machine Learning and Computer Sci-
ence communities.

Usually, Hierarchical Clustering methods are defined as those maps that to each
finite metric space (X, d) assign a dendrogram over X.

Using the definitions above we now construct our first example.

13
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Example 2 For each finite metric space (X, d) let (X, 0*) € D(X) be given by 0*(r) =
X\ ~;. In other words, for each r = 0, 0*(r) returns the partition of X into ~,-
equivalence classes. Recall (Example 1) that two points x amd x' are ~, equivalent if
and only if one can find a sequence of points xg, x1,...,xy S.t. the first of them is x
and the last one is ' and all the hops are smaller than r: max; dx(z;, x; 1) <r. We
will see below that this definition coincides with single linkage hierarchical clustering.
See Figure 2 for an illustration of this concept.

X1
X7
)
x3 g
X9

Iy O

L6
Iy

210

e,

11

Figure 5: For the same finite metric space X of Example 1 and the value r =

ro, X\ o= {{xla T2,T3, T4, Ts, IG}: {'T77 xS}a {x9}7 {'rl()u xll}}u that iS, ~ry
splits X into four path connected components.

In order to build up intuition about our definitions, we prove that (X, 6*) is indeed
a dendrogram. Since X is a metric space, x ~q x' if and only if v = x'. Thus
condition (1) above is satisfied. Clearly, fort = diam (X,d), x ~; x' for all z, 2, and
thus condition (2) holds. Fiz 0 <r < s and let B be a mazimal connected component
of 0*(r) and let x, 2’ € B. Then, by definition of 0*(r), x ~, '. But it follows from
the definition of ~, that if x ~, x', then x ~, x’ for all s = r. Hence, x,z’ are in the
same block of 0*(s) and condition (3) holds. Condition (4) holds since clearly 0* is
right continuous, has finitely many discontinuity points, and is piecewise constant.

14
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We now need to discuss a formal description of agglomerative HC methods.

4.2 A general description of Agglomerative Hierarchical Clustering
methods

In this section we give a description of agglomerative HC methods that is suitable for
our theoretical analyses. Standard algorithmic descriptions of HC methods typically
make the assumption that in the merging process there are only two points at minimal
linkage value of eachother. For example, the formulation of Lance and Williams (1967)
does not specifically explain how to deal with the case when more than two points
are candidates for merging. In practice one could argue that if at a certain stage,
say, three points are at minimal linkage value of eachother, then one could proceed
to merge them two at a time, according to some predefined rule that depends on the
indices of the points.

Whereas this tie breaking strategy seems reasonable from a computational point
of view, it invariably leads to dendrograms that depend on the ordering of the points.
This is no doubt an undesirable feature that can be translated into, for example, that
the results of the clustering methods depend on the order in which the data samples
were obtained. Single linkage HC is exempted from this problem however, because
of the fact that at each stage only minimal distances are taken into account. In
contrast, complete and average linkage will produce results that do not behave well
under reordering of the points.

The problems arising from ad hoc tie breaking are often not even mentioned
in books on clustering. A notable exception is the book (Jain and Dubes, 1988),
especially Section §3.2.6, where the reader can find a careful exposition of these issues.

Below, we formulate HC methods in a way that is independent of these extraneous
features. In order to do so , we need to have some kind of invariance in the formu-
lation. More precisely, let (X, dx) be the input metric space, where we assume that
X ={1,...,n} consists of exactly n points. Write (X, fx) is the output dendrogram
of a given HC method applied to (X,dyx). Let m be a permutation of the indices
{1,2,...,n}, and (Y,dy) be the metric space with points {1,...,n} and permuted
metric: dy (i,j) := dx(m;,n;) for all 4,5 € {1,...,n}; further, denote by (Y, 6y ) the
output dendrogram of the same HC method applied on (Y,dy). Then, we require
that for all permutations 7, the result of computing the dendrogram first and then
permuting the result is the same as the result of first permuting the input distance
matrix and then computing the output dendrogram:

molx(t) =0y(t), for all t > 0. (4.2)
Formally, the action of a permutation 7 over a partition (such as 0x(t)) above must be
understood in the following sense: if P = {B;,...,B,} is a partition of {1,2,...,n},

then mo P is the partition with blocks {moB;, 1 < i < r}, where in turn 7o B; consists
of all those indices 7; for j € B;.

15
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We elaborate on this in the next example. We first recall the usual definition of
CLHC, and then construct a simple metric space consisting of five points where this
usual formulation of CL fails to exhibit invariance to permutations.

4.2.1 THE STANDARD FORMULATION OF COMPLETE LINKAGE HC

We assume (X, ((d))) is a given finite metric space. In this example, we use the
formulas for CL but the structure of the iterative procedure in this example is common
to all HC methods (Jain and Dubes, 1988, Chapter 3). Let 6 be the dendrogram to
be constructed in this example.

1. Set Xy = X and Dy = ((d)) and set 6(0) to be the partition of X into singletons.

2. Search the matrix Dy for the smallest non-zero value, i.e. find éy = sep(Xp),
and find all pairs of points {(z;,, ;,), (%, Tj,) - - -, (Tip, 5, )} at distance dy from
eachother, ie. d(x;,,x;,) = 0 for all @ = 1,2,... k, where one orders the
indices s.t. i1 < 9 < ... < 1.

3. Merge the first pair of elements in that list, (z;,,2;,), into a single group. The
procedure now removes (z;,, ;) from the initial set of points and adds a point
¢ to represent the cluster formed by both: define X1 = (Xo\{z;,,2;,}) U {c}.
Define the dissimilarity matrix Dy on X; x X7 by Di(a,b) = Dg(a,b) for all
a,b # c and Di(a,c) = Di(c,a) = max (Do(z;,,a), Do(z;,,a)) (this step is the
only one that depends on the choice corresponding to CL). Finally, set

00) = {waz} o | fail.

111,51

4. The construction of the dendrogram 6 is completed by repeating the previous
steps until all points have been merged into a single cluster.

Example 3 (about the standard formulation of complete linkage) The cruz
of the problem lies in step 3 of the procedure outlined above. The choice to merge
just the first pair of points in the list causes the procedure to not behave well under
relabeling of the points in the sense of (4.2).

An explicit exzample is the following: consider the metric space ({1, 2,3,4,5}, ((d)))
with five points and distance matriz

SN = O
O WO = N
WO W W
S DO W O Ut &~
SIS I e NG I
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This metric space arises from considering the graph metric on the graph depicted
in Figure 6. Under CLHC (as defined in §4.2.1), and under the action of all possible
permutations of the labels of its & points, this metric space produces 3 different non-
equivalent dendrograms, see Figure 7. This is an undesirable feature, as discussed
at length in (Jain and Dubes, 1988, Chapter 3).

Figure 6: A finite metric space that under permutations leads to different outputs of
the usual CL HC algorithm, see text for details. The metric is defined by
the graph distance on the weighted graph shown.

We now re-define general HC methods in a way that they satisfy (4.2).

4.2.2 THE PERMUTATION INVARIANT FORMULATION.

Here we consider the family of Agglomerative Hierarchical clustering techniques, (Jain
and Dubes, 1988, Chapter 3). We define these by the recursive procedure described
next. The main difference with §4.2.1 lies that in Step 3 we will allow for more than
just two points into the same cluster and also, it could happen, for example, that four
points A, B, C, D merge into two different clusters {A, B} and {C, D} at the same
time.

Let the finite metric space (X,d) be given where X = {xy,...,z,} and let L
denote a family of linkage functions on X:

L:={:C(X)xC(X)—R"}

17
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(1,2} 3 4
L2,/ 0 36 3 —
@) = 3 3 03 |
V" s 6 @0 (1,2,3,4) 5 4
5 6 74 (D) - (1234 0 7 5
V7 s 7 0. 2
.—1
{1.2} {34} 5 1 3 67
L2,/ 0 6 6
:ET::A 6 0 qv
5 6 70
5
(1,2,5) (3,4) 4=
(1,2,5) 0 7 3 e
@) -33 (7 q) ;
.—1

Figure 7: The five point metric space of Example 3 leads to 3 non-equivalent CL-dendrograms. Here we show the
agglomerative procedure corresponding to the usual order dependent definition of CL HC, see text in Example
3 for details. Notice that in D, there are two pairs at minimal linkage value (this value is 3, in red circles):
Qr 2}, wv on one hand, and vamv on the other. The top row shows the agglomeration process that follows
after merging {1,2} with 3. The bottom row shows that when one instead chooses to merge 3 and 4 instead,
then at the next step there is again ambiguity (represented again by the red circles). The three dendrograms
shown on the right are the three possible outputs one finds when choosing different orders for the agglomeration
processes. Clearly, these three dendrograms are not equivalent under permutations of the labels of their base
points.
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with the property all that ¢ € L are bounded non-negative functions. These functions
assign a non-negative value to each pair of non-empty subsets of X, and provide
a certain measure of distance between two clusters. Let B, B’ € C(X), then, some
possible standard choices for ¢ are:

o Single linkage: (5“(B,B') = mingep mingep d(z, 2');
o Complete linkage: (““(B,B') = max,es maxcp d(z,2'); and

o Average linkage: (A4(B,B') = Zass ig.ﬁ;(m’x/).

o Hausdorff linkage: ("“(B,B') = dy (B, B').2
The permutation invariant formulation is as follows:

1. Fix £ € L. For each R > 0 consider the equivalence relation ~, p on blocks of
a partition IT € P(X), given by B ~, g B’ if and only if there is a sequence of
blocks B = By,...,Bs = B in Il with ¢(Bg, Byy1) < Rfor k=1,...,5s— 1.

2. Consider the sequences Ry, Ry, ... € [0,00) and O1,0,,... € P(X) given by
© :={x1,...,2,}, and recursively for i > 1 by 0, = ©;/ ~, g, where

R; ;== min{{(B,B'); B,B' € ©;, B # B'}.

Note that this process necessarily ends in finitely many steps. This construction
reflects the fact that at step ¢ one agglomerates those clusters at distance < R;
from eachother (as measured by the linkage function ¢). More than two clusters
could be merged at any given step.

3. Finally, we define ¢° : [0,00) — P(X) by r — 6(r) := Oy, where i(r) :=
max{i|R; < r}.

Remark 4 (About our definition of HC methods) Note that, unlike the usual
definition of agglomerative hierarchical clustering §4.2.1 ((Jain and Dubes, 1988,
§3.2)), at each step of the inductive definition we allow for more than two clusters
to be merged. Of course, the standard formulation can be recovered if one assumes
that at each step i of the algorithm, there exist only two blocks B and B’ in ©; s.t.
R; = U(B,B'). Then, at each step, only two blocks will be merged.

2. The Hausdorff distance is defined in Definition 21.
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Example 4 Note for ezample that for the five point metric space in Example 3, the
result of applying CL (according to the permutation invariant formulation) is the
dendrogram in Figure 8 (a). It also follows, for example, that when applied to the

metric space Lz := | {a,b,c}, (g (1) z) , which can be represented by three points on

I & 1
a line: @ Kb/ @ , SL, AL and CL all yield the same dendrogram,
which is shown in Figure 8 (b).

4 =
3
-
1
1 3 7’

A\ 4

Figure 8: (a) shows the result of applying the permutation invariant formulation of
CL to the five point metric space of Example 3 (see also Figure 6). (b) shows
the dendrogram that one obtains as output of (the permutation invariant
formulation of) SL, AL and CL applied to the metric space Ls.

Proposition 5 We have the following properties of the construction above:
e Fori=1,2,..., ©;,1 1s coarser than ©; and
o i1 = Ry

o 0' is a dendrogram over X.

Proof The only non trivial claim is that R;.; > R;, which can be proved by induc-
tion on 1. [

Remark 6 From this point forward, all references to SL, AL, and CL clustering will
be to the permutation invariant formulation, in which more than two clusters can be
merged at a given step.
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The following result is clear, and we omit its proof.

Proposition 7 The above construction of hierarchical clustering algorithms (includ-
ing SL, AL, and CL) yields algorithms which are permutation invariant.

A simplification for SL HC. In the particular case of SL, there is an alternative
formulation that uses the equivalence relation introduced in Example 1 and its asso-
ciated dendrogram (Example 2). The proof of the following Proposition is deferred
to the appendix.

Proposition 8 Let (X,d) be a finite metric space and 05 be the dendrogram over
X obtained by the single linkage agglomerative procedure described above, and let 0*
be the dendrogram over X constructed in Ezvample 2. Then, 055(r) = 0*(r) for all
r=0.

4.3 Dendrograms as Ultrametric spaces

The representation of dendrograms as ultrametrics is well known and it appears in the
book by Jardine and Sibson (Jardine and Sibson, 1971), it has already been used in
the work of Hartigan (Hartigan, 1985), and is touched upon in the classical reference
of Jain and Dubes (Jain and Dubes, 1988, §3.2.3).

We now present the main ideas regarding this change in perspective which we will
adopt for all subsequent considerations. The formulation of the output of hierarchical
clustering algorithms as ultrametric spaces is powerful when one is proving stability
results, as well as results about the approximation of the dendrograms of metric spaces
by their finite subspaces. This is so because of the fact that once a dendrogram is
regarded as a metric space, the Gromov-Hausdorff metric provides a very natural
notion of distance on the output, in which the right kind of stability results are easily
formulated. We state these theorems in §6.

The main result in this section is that dendrograms and ultrametrics are equiv-
alent.

Theorem 9 Given a finite set X, there is a bijection VU : D(X) — U(X) between the
collection D(X) of all dendrograms over X and the collection U(X) of all ultrametrics
over X such that for any dendrogram 6 € D(X) the ultrametric ¥(0) over X generates
the same hierarchical decomposition as 0, i.e.

(x) for eachr =0, z,2' € Bef(r) < V() (z,2') <.
Furthermore, this bijection is given by
U(0)(x,2") = min{r = 0|z, 2’ belong to the same block of 6(r)}.

In order to establish the above theorem, we first construct certain natural map-
pings from D(X) to U(X) and from U(X) to D(X), and we then prove they are
inverses of eachother and satisfy ().
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From dendrograms to ultrametrics. Let X be a finite set and 6 : [0, 0) — P(X)
a dendrogram over X. Consider the symmetric map ug : X x X — R* given by

(x,2") — min{r = 0|z, 2’ belong to the same block of 6(r)}. (4.3)

See Figure 9 for an illustration of this definition. Note that condition (4) in the
definition of dendrograms guarantees that uy is well defined. It is easy to see that wuy
defines an ultrametric on X:

Lemma 10 Let X be a finite set and (X,0) € D(X). Thenug: X x X — R* defined
in (4.3) is an ultrametric.

1
ro — | 1 T2 T3 T4
I 0 1 Ts s
((UG)) _ I9 T1 0 T3 T3
I3 T3 3 T3 0 ()
Ty rs T3 T2 0
T4
i i | >
™ T2 T3

Figure 9: A graphical representation of a dendrogram 6 over X = {z1, x9, x3, 23} and
the ultrametric uy. Notice for example, that according to (4.3), ug(xq,x2) =
r1 since 7 is the first value of the (scale) parameter for which z; and x5
are merged into the same cluster. Similarly, since x; and x3 are merged
into the same cluster for the first time when the parameter equals 73, then

up(xy, x3) = 13.

From ultrametrics to dendrograms. Conversely, given an ultrametric u : X x
X — R7, its associated dendrogram

6" :10,0) - P(X)

can be obtained as follows: for each r = 0 let §%(r) be the collection of equivalence
classes of X under the relation z ~ 2’ if and only if u(x,z’) < r. That this defines
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an equivalence relation follows immediately from the fact that u is an ultrametric.
Indeed, assume that * ~ 2’ and 2’ ~ 2” for some r > 0. Then, u(z,2’) < r and
u(z’,2") < r. Now, by the ultrametric property, max (u(x,m'),u(m',x”)) > u(z,z")
and hence u(x,z”) < r as well. We conclude that x ~ z” thus establishing the
transitivity of ~.

Example 5 Consider the ultrametric u on X = {x1,z9,...,x¢} given by

r1 X9 X3 T4 Tz g

©w/0 2 2 5 6 6

w2 0 2 5 6 6

x| 2 2 0 5 6 6

((w) = ol 5 5 5 0 6 6
=l 6 6 6 6 0 4

w\6 6 6 6 4 0

Then, for ezample 8*(0) = {{z1}, {x2}, {x3}, {za}, {z5}, {6} },

0“(3) = {{$1,1E27173}7 {ZL‘4}, {1'5}, {ZL’G}}, 9”(45) = {{.171, l’Q,ZL‘g}, {1'4}, {ZL’5, 1’6}}, Qu(55) =
{{xl,xg,x3,$4}, {x5,$6}} and 0"(7) = {I1,$2,$3,I’4,I’5,1’6}. A graphical representa-
tion of the dendrogram 0" is given in Figure 10.

The conclusion of the proof of Theorem 9. It is easy to check that (1) given
any dendrogram 6 on X, 0“ = 0 and (2) given any ultrametric u on X, ugu = u.
Now, let ¥ : D(X) — U(X) be defined by § — ¥(f) := uy. By construction we see
that ¥ : D(X) — U(X) is a bijection and that ¥~ is given by u — 6“. From (4.3)
we see that W satisfies (x). Hence, we obtain Theorem 9.

From now, whenever given a dendrogram 0y over a set X, we will be using
the notation W(fx) for the ultrametric associated to X given by Theorem 9. In a
similar manner, given an ultrametric u on X, ¥ *(u) will denote the dendrogram
over X given by Theorem 9.

4.4 Reformulation of Hierarchical Clustering using Ultrametrics

In the sequel, appealing to Theorem 9 which states the equivalence between ultra-
metrics and dendrograms, we represent dendrograms as ultrametric spaces. Then,
any hierarchical clustering method can be regarded as a map from finite metric spaces
into finite ultrametric spaces. This motivates the following definition:

Definition 11 A hierarchical clustering method is defined to be a map

T X->U st X,3(X,d)— (X,u)el,, neN.
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L1
)
L3
L4
]
L5
L6
i — —
2 4 5 6

Figure 10: A graphical representation of the dendrogram 6" of Example 5, see the
text for details.

Example 6 For a given finite metric space (X, d) consider the HC method T given
by TH(X, d) = (X, U(65)), where 85T is the single linkage dendrogram over X defined
in §4.2. Similarly, we define T¥ and TAL.

Example 7 (maximal sub-dominant ultrametric) There is a canonical construc-
tion: Let T : X — U be given by (X,d) — (X, u*) where

u*(z,2") := min { max 1d(:ci,a:i+1), st.x=umg,... T = x’} : (4.4)
i=0,....k—

We remark that the minimum above is taken over k € N and all k + 1-tuples of
points xg,T1,...,x, i X s.t. xg = x and x, = x'. Notice that for all x,x' € X,

u*(x, 2"y < d(z,z’).

This construction is sometimes known as the maximal sub-dominant ultra-
metric and it has the property that if uw < d is any other ultrametric on X, then
u < u*. The Lemma below proves that this canonical construction is equivalent to the
ultrametric induced by the equivalence relation in Fxample 1.

Lemma 12 For (X,d) € X write T(X,d) = (X,u*) and let (X,0*) € D(X) be the
dendrogram arising from the construction in Example 2. Then, u* = U (6*).
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Remark 13 Notice that another way of stating the Lemma above is that x ~, ' if
and only if u*(z,x') < r.

It turns out that T* yields exactly single linkage clustering as defined in §4.2.
Corollary 14 One has that T = T*.

Equivalently, for any finite metric space X, the single linkage dendrogram 6% on X
agrees with W1 (u*).
Proof The proof follows easily from Proposition 8 and Lemma 12. |

We emphasize that, as it follows from Corollary 14, T* produces ultrametric
outputs which are exactly those corresponding to SLHC. We will use this fact
strongly in the sequel.

Interpretation of the ultrametric. For a HC method ¥ and (X,d) € &, let
T(X,d) = (X,u). The intuition that arises from (4.3) is that for two points x, 2’ € X,
u(z, ') measures the minimal effort method ¥ makes in order to join z to z’ into
the same cluster.

We note in particular that a desirable property of a HC algorithm should be that
upon shrinking some of the distances in the input metric space, the corresponding
“efforts” also decrease. This property is exactly verified by T*. Indeed, let X be a
finite set and d; and dy two metrics on X s.t. dy = dp. Write (X, d;) = (X, u}) and
T(X,dy) = (X,u3). Then, it follows immediately from equation (4.4) that uf > u}
(compare with Kleinberg’s consistency property, pp 5).

Observe that CL and AL HC fail to satisfy this property. An example is provided
in Figure 19.

We see in Theorem 18 that a condition of this type, together with two more
natural normalizing conditions, completely characterizes SLHC.

4.5 Comparing results of Hierarchical Clustering methods

One of the goals of this paper is to study the stability of clustering methods to pertur-
bations in the input metric space. In order to do so one needs to define certain suitable
notions of distance between dendrograms. We choose to do this by appealing to the
ultrametric representation of dendrograms, which provides a natural way of defining
a distance between hierarchical clusterings. We now delve into the construction.
Consider first the simple case of two different dendrograms (X, o) and (X, §) over
the same fixed finite set X. In this case, as a tentative measure of dissimilarity
between the dendrograms we look at the maximal difference between the associated
ultrametrics given by Theorem 9: u, = ¥(a) and ug = V(f): max, yex |ua(z, 2') —
ug(x,z")|. There is a natural interpretation of the condition that max, yex |uq(z,2")—
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ug(x,z’)| < e: if we look at the graphical representation of the dendrograms a and g,
then the transition horizontal lines in Figure 11 have to occur within ¢ of eachother.?
This is easy to see by recalling that by (4.3),

ug(x, ') = min{r = 0|z, 2’ belong to the same block of a(r)}

and
ug(z,2") = min{r = 0|z, 2" belong to the same block of 3(r)}.

For the example in Figure 11, we then obtain that max; |r; — ri| < &, which is not
surprising since 1y = U (21, T2), 75 = ug(x1, x2), ete.

L4 I3 ) L1

Figure 11: Two different dendrograms (X, ) and (X, 8) over the same underlying set
X = {x1, 29, 23,24} Let @ be the dendrogram represented in orange and 3
be the one in green. The condition that |u, —ug|L=(xxx) < € is equivalent
to the horizontal dotted lines corresponding to r; and r; (i = 1,2, 3) being
within e of eachother.

Now, in a slightly more general situation we may be faced with the task of com-
paring two different dendrograms « and § without knowing (or caring about) the

3. These lines represent values of the scale parameter for which there is a merging of blocks of the
partitions encoded by the dendrograms.
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exact labels of the points. In this case, a natural solution is to look at the mini-
mum of the maximum difference of the corresponding ultrametrics under all possible
permutations, namely:
min max |ug(z, 2") — ug(w(x), m(a"))], (4.5)
TeP, r,x'eX
where n is the cardinality of X and P, is the collection of all permutations of n
elements.

The most general case arises when we do not know whether the dendrograms
come from the same underlying set or not. This situation may arise, for example,
when comparing the results of clustering two different samples, of possibly different
sizes, coming from the same dataset. One may want to be able to compare two such
clusterings as a way to ascertain whether the sample size is sufficient for capturing
the structure of the underlying dataset.

Assume then that we are given (X7, a) and (X5, §), two different dendrograms,
defined possibly over two different sets X; and X, of different cardinality. This
potential difference in cardinality in the two sets forces us to consider transformations
other than mere permutations. A natural solution, which can be interpreted as a
relazation of the permutation based distance (4.5) discussed above, is to consider
maps f: X; — Xy and g : Xy — X; and look at their distortions:

dis(f) := max |ua(z,2") —ug(f(zx), f(z"))],

r,x’'eXy

dis(g) := max |ua(g(x),g(z")) — us(z, 7)].

r,x'eXo

The next natural step would be to optimize over the choice of f and g, for example
by minimizing the maximum of the two distortions:

n;lin max (dis(f), dis(g)).
9

This construction is depicted in Figure 12. Roughly speaking, this idea leads
to the Gromov-Hausdorff distance. The difference lies in the fact that in standard
definition of the Gromov-Hausdorff distance, one also considers a term that measures
the degree to which f and g are inverses of eachother. Being more precise, given the
maps f and g, this term, called the joint distortion of f and g is given by

dis(f,9) == max_|ua(z,9(y)) — usly, f(2))]-

reX,yeY

One defines the Gromov-Hausdorff distance between (X1, u,) and (Xs, ug) by

dgy (X1, X5) = %min max (dis(f), dis(g), dis(f, g)).* (4.6)

£

4. The factor % is of course inmaterial but kept here for coherence with the standard definition.
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We now see exactly how the inclusion of the new term enforces f and g to be
approximate inverses of eachother. Assume that for some ¢ > 0 dgy (Xl, Xg) < g,
then, in particular, there exist maps f and g such that |u,(z, g(y)) — us(y, f(2))| <
2¢ for all z € X; and y € X5. Choosing y = f(z), in particular, we obtain that
ua(z, g(f(x))) < 2¢ for all z € X;. Similarly one obtains that us(y, f(9(y))) < 2¢ for
all y € Xy. These two inequalities measure the degree to which f o g and g o f differ
from the identities, and thus, measure the degree to which f and g fail to be inverses
of eachother. This is a useful feature when one considers convergence issues such as
we do in §6.

Interpretation of the Gromov-Hausdorff distance in terms of dendrograms.
Assume that dgy (X1, ua), (X2,u)) < 2 for some n = 0. Then there exist maps
f:X —>Y and g:Y — X such that the following conditions hold (see Figure 13):

e If x, 2’ fall in the same block of a(t) then f(z), f(2') belong to the same block
of f(t') for all t/ =t + .

e If y, o fall in the same block of 3(¢) then g(y), g(y') belong to the same block
of a(t') for all t' =t + n.

For the next section we do not need to make use of the full generality in these
considerations: there we only compare dendrograms defined over the same underlying
set. A more detailed use and additional material about the Gromov-Hausdorff ideas
is given in §6.

We finish this section with a precise result regarding the stability of dendrograms
arising from SLHC.

The following Lemma deals with the situation when we have a fixed finite set P
and two different metrics on P and then we compute the result of applying T* each of
these metrics. This lemma is a particular case of our main stability result, Proposition
26 in §6. In the interest of clarity, we prove it here to provide some intuition about
the techniques.

Lemma 15 Let P be a fized finite set and let dy,dy be two metrics on P. Write
(P, d;) = (P, u;), i =1,2. Then,

max |u1(p, q) — u2(p, q)| < max|di(p,q) — da(p,q)|.
p,qeP p,qeP

) )

Proof Let n = maxy4ep [di(p, q) — da2(p, q)|. Let po,...,pp € Pbest. po=p, pp =q
and max; d; (p;, piv1) = u1(p, q). Then, by definition of uy (which is the minimum over
all chains of the maximal hop measured with metric dy) and the fact that dy < d; +7:

us(p, q) < mZaXdQ(pz‘,PiH) < max (n + di(pi, pit1)) = 1+ w1 (p, q).

Similarly, u;(p, q¢) < n+us2(p, q), and hence |ui(p, ¢) —ua(p, q)| < n. The claim follows
since p, q € P are arbitrary. |
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.
l— Y1
)
| ]
€3 Yo
x4 Y3
re Ty 73 ry T
(X «) (Y, 8)

Figure 12: In this example, two different dendrograms, (X, ) and (Y, ), are given.
In orange arrows we show a map f : X — Y and in green arrows the map
g:Y — X. With simple explicit computations one sees that these choices
of maps f and ¢ incur distortions dis(f) = dis(f,g) = max (7"3, |y —
7|, [r2 = r4]) and dis(g) = max (|ry — ri],|r2 — r4|), respectively. Hence,
we see that dgy (X, U(), (Y, ¥(8))) < 3 max (rs, [r1 — ], [ro — rh]).

4.6 Some remarks about Hierarchical Clustering methods

Practitioners of clustering often prefer AL and CL to SL because it is perceived that
the former two methods tend to produce clusters which are more coherent concep-
tually, and which are in a non-technical sense viewed as more compact. In fact, SL
exhibits the so called chaining effect which makes it more likely to produce clus-
terings which separate items which conceptually should be together. We view these
observations as evidence for the idea that good clustering schemes need to take some
notion of density into account, rather than straightforward geometric information
alone. One can loosely argue that given the actual definition of the linkage functions
used by AL and CL, these two methods do enjoy some sort of sensitivity to den-
sity. Unfortunately, AL and CL are unstable, and in particular, discontinuous in
a very precise sense (see Remark 16 below), whereas SL enjoys all the nice theoretical
properties that the other two methods lack.
In this section we review this seemingly paradoxical situation.

For each n € N let L,, be a metric space with n points P = {py,...,p,} and metric
dr,(pi,p;) = |t —jl, 4,5 € {1,...,n}. Similarly, let A, be the metric space with the
same underlying set and metric da, (p;,p;) = 1, ¢,5 € {1,...,n}, i # j. Clearly, the
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Figure 13: These are the same dendrograms as in Figure 12. Let r; = g, ry = 1,
ry = 3,1 = 4 and ry = 3. For the maps f and g s.t. f(z1) = f(22) = y1,
fx3) = y2, f(24) = y3, g(y1) = 21, g(y2) = 3 and g(y3) = x4, using the
formulas computed in Figure 12 we sce that dis(f) = dis(g) = dis(f,g) = 3
and hence dgy ((X, ¥()), (Y, ¥(8))) < i. Now notice for instance that
xg and x4 fall in the same block of a(rs) = (1) and that yo = f(x3) and

ys = f(x4) fall in the same block of B(') for all ' = ry +2- 3 =1+ 3 =

4 _
§_r2'

metric space L, is isometric to points equally spaced on a line in FEuclidean space
whereas (s.t. two adjacent points are at distance 1 from eachother) A,, is isometric
to the (n — 1)-unit-simplex as a subset of R" 1.
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Clearly, the outputs of Single Linkage HC applied to both L, and A,, coincide for
all n e N:

TP, dy,) =T (P,da,) = (P, (7)) (4.7)
where v;; = 0if ¢ = j and v;; = 1 if ¢ # j, for all n € N, see Figure 14.

L, ololo ololo
X1 X2 Xn

VA
A, A,
A,

Figure 14: The metric spaces L, and A, both have n points. Single linkage HC
applied to either of them yields the dendrogram in the center.

By appealing to the Euclidean realizations of L,, and A,,, one can define perturbed
versions of these two metric spaces. Indeed, fix ¢ > 0 and let {a4,...,a,} < [0,¢/2]
and {by,...,b,} = S""!(e/2). Define L, to be the metric space with underlying set P
and metric dr: (p;,p;) = |i — j + a; — a;|. Similarly, define A} to be the metric space
with underlying set P and metric da: (pi, p;) = ||si — s; + b; — b;].

Notice that by construction,

max |dp,, (pi, ;) = du, (P, ps)| < € (4.8)

’

and
max |da, (pispj) — das, (pi, pj)| < e (4.9)

)
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We thus say that the spaces (P,dr:) and (P, da:) are perturbed versions of (P, dy,,)
and (P, da, ), respectively.

Remark 16 (About a critique to SL) Single linkage is generally regarded as a
poor choice in practical applications. The reason for this is the so called chaining
effect observed experimentally, which is central to the criticism to SL made in (Lance
and Williams, 1967) (see also the discussion in (Wishart, 1969, pp. 296)). The
following two observations are important:

(O1) 1t is generally argued that since (P,dr:) corresponds to points on the wvicin-
ity of a line, whereas (P,da:) corresponds to points in the close vicinity of a
(n — 1)-simplex, then the cluster formed by points on the latter metric space
1s more compact or denser than the one formed by the former, and thus more
meaningful.

(O2) The outputs of SL to the spaces (P,dr:) and (P,da:) are very similar and this
similarity is of order .

Indeed, if we write T(P,dr:) = (P,uzs) and T(P,da:) = (P,ua:), then, by
the triangle inequality for the L™ norm,

[ure — vas|opxpy < |ure —uro |Lo(pxp) (4.10)
+ lugg — unag L= (pxpy

+ |uag —uas Lo (pxp).-
As we pointed out in (4.7) at the beginning of Section §4.6,

thus, (4.10) simplifies into:

lurs — uas |opxpy < ure — uro|Lo(pxp) (4.11)
+ Juag —uag|repxp)
(and by Lemma 15:)
< |drg —digllLepxp)

+ HdAg — dA(,)L”L’f»‘(PxP)-

Hence, by (4.11) and the construction of di= and das (equations (4.8) and
(4.9)), we conclude that

|lure — uns |Lo(pxp) < 2€.

This means that for any small perturbations of L, and A,, the output of SL to
these perturbations are at a small distance from eachother, as we claimed.
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When put together, observations (O1) and (O2) suggest that SL is unable to
pick denser associations of data, such as cliques, over sparser ones, such as linear
structures. This feature is undesirable in practical applications where often times one
would like to regard clusters as modes of an underlying distribution (Wishart, 1969;
Hartigan, 1981).

It is then the case that in practical applications, CL and especially AL are preferred
over SL. These two methods have the property that they indeed somehow favor the
association of compact subsets of points. For CL this can be explained easily using the
concept of maximal clique (mazimally connected sub-graphs of a given graph) (Jain
and Dubes, 1988, Section 3.2.1). Let dy, be the diameter of the cluster created in step
k of CL clustering and define a graph G(k) as the graph that links all data points
with a distance of at most dy,. Then the clusters after step k are the maximal cliques
of G(k). This observation reinforces the perception that CL yields clusters that are
dense as measured by the presence of cliques. The sensitivity of AL to density has
been discussed by Hartigan in (Hartigan, 1985, Section 3) and is basically due to the
averaging performed in the definition of its linkage function.

A more principled way of taking density into account, that does not depend on ad
hoc constructions which destroy the stability property, would be to explicitly build the
density into the method. In (Carlsson and Mémoli, 2009) we study multiparameter
clustering methods, which are similar to HC methods but we track connected com-
ponents in a multiparameter landscape. We also study the classification and stability
properties of multiparameter clustering methods.

Remark 17 (Instability of CL and AL) [t turns out that CL and AL, despite not
exhibiting the undesirable feature of the chaining effect, and despite being regarded as
more sensitive to density, are unstable in a precise sense. Consider for example CL
and let n = 3. In the construction of (P,d5) above let a; = ay =0 and a3 = €, then

P P2 P3 b1 P2 P3

pp/f0 1 2 D1 0 1 2+¢

(d) = p2{ 1 0 1 ] and (d7) = p2 1 0 1+4¢
ps\2 1 0 p3\2+¢e 1+¢ 0

Write TE(P,dy) = (P,ur) and TH(P,d3) = (P,us5). Clearly,

P1 P2 P3 b P2 P3

D1 0 1 1 P1 0 1 2+¢

(ur) = p2f 1 0 1 | and (up) = p2| 1 0 2+4¢
ps\1 1 0 ps\2+e 2+e O

Notice that despite max; ; |dy,(p;, p;)—d5 (i, p;)| = €, max; ; |ur(pi, pj)—u3 (i, py)| =
14+e>1forall e >0. We thus conclude that CL is not stable under small perturba-
tions of the metric. Note that in particular, it follows that CL is not continuous.
The same construction can be adapted for AL. See Figure 15.
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p
1 1 5
e—0—=90 2
Py P, Py Py
1
p1
1 1+€ b
—@ @ ’
P, P, Py Py
1 2+€

Figure 15: Complete Linkage is not stable to small perturbations in the metric. On
the left we show two metric spaces that are metrically very similar. To the
right of each of them we show their CL dendrogram outputs. Regardless of
e > 0, the two outputs are always very dissimilar. We make the notion of
similarity between dendrogram precise in §6 by interpreting dendrograms
as ultrametric spaces and by computing the Gromov-Hausdorff distance
between these ultrametric spaces.

5. A characterization theorem for SL hierarchical clustering

In this section we obtain a characterization of SL hierarchical clustering in terms
of some simple axioms. The main axiom, (II) below, says that the clustering scheme
has a prescribed behavior under distance non-increasing maps of metric space. The
behavior is that the map of metric spaces should induce a map of clusters, i.e. that
if two points in the domain space belong to the same cluster, then so do their images
in the clustering of the image metric space. This notion, referred to as functoriality
in the mathematics literature, appears to us to be a very natural one, and it is
closely related to Kleinberg’s consistency property (cf. pp. 5) for ordinary clustering
methods; see Remark 19 for an interpretation of our axioms.

Theorem 18 Let T be a hierarchical clustering method s.t.

(M Tp. a3, (33)) = Up,a}, (8 9)) for all 6 > 0.
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(II) Whenever X,Y € X and ¢ : X — Y are such that dx(x,x") = dy(¢(z), o(2'))
for all x,2" € X, then

ux (z,2") = uy (é(x), ¢(z"))

also holds for all x,x’" € X, where (X, dx) = (X,ux) and T(Y,dy) = (Y, uy).
prop

(IIT) For all (X,d) e X,
u(z,x’) = sep(X,d) for allz #2' € X
where T(X,d) = (X, u).
Then T = T*, that is, T is exactly single linkage hierarchical clustering.

Remark 19 (Interpretation of the conditions) Let (X,d) € X and write T(X,d) =
(X,w). The intuition is that u(x, x") measures the effort method T makes in order to
join x to x' into the same cluster.

Condition (I) is clear, the two-point metric space contains only one degree of free-
dom which has to determine unambiguously the behavior of any clustering method .

In terms of dendrograms, this means that the two point metric space | {A, B}, (99)

must be mapped to the dendrogram where A and B are merged at parameter value 9,
see Figure 16.

Condition (II) is crucial and roughly says that whenever one shrinks some dis-
tances (even to zero) to obtain a new (pseudo) metric space, then the corresponding
efforts in this new space have to be smaller than the efforts in the original metric
space. This is consistent with the notion that reducing the distance between two points
(without increasing all other distances) makes them more likely to belong to the same
cluster.

Let 0x = U~ (ux) and 0y = V' (uy) be the dendrograms associated to ux and
uy . In terms of dendrograms, this means that if two points x,z’ € X are in the same
block of Ox (t) for somet > 0, then ¢(x) and ¢(x') must be in the same block of Oy (t).
see Figure 17.

Condition (I11) expresses the fact that in order to join two points x,2’ € X, any
clustering method T has to make an effort of at least the separation sep(X,d) of
the metric space. In terms of dendrograms, this means that Ox(t) has to equal the
partition of X into singletons for all 0 <t < sep(X,d). See Figure 18.

Remark 20 [t is interesting to point out why complete linkage and average linkage
hierarchical clustering, as defined in §4.2.2, fail to satisfy the conditions in Theorem
18. It is easy to see that conditions (1) and (III) are always satisfied by CL and AL.
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Y1 Y2 .’ ,
b

Figure 16: Interpretation of Condition I: For all § > 0 the two point metric space
on the left must be mapped by ¥ into the dendrogram on the right.

Consider the metric spaces X = {A, B,C} with metric given by the edge lengths
{4,3,5} and Y = (A', B', C") with metric given by the edge lengths {4,3,2}, as given
in Figure 19. Obuviously, the map ¢ from X toY with ¢(A) = A’, ¢(B) = B' and
o(C) =C"is s.t.

dy(¢(x), d(2")) < dx(x,2") for all z,2' € {A, B,C}.

It 1s easy to check that

A B C A B

A0 5 3 A0 2 4

(ux) = Bl 5 0 5 | and (uy)= B'| 2 0 4
C\3 5 0 '\ 4 4 0

Note that for example 3 = ux(A,C) < uy(¢(A),d(C)) = uy (A, C") = 4 thus
violating property (II). The same construction yields a counter-example for average
linkage.

6. Metric stability and convergence of T*

The Proposition and Theorem below assert the metric stability and consistency /convergence
of the method T* (i.e. of SLHC, by virtue of Proposition 14. We use the notion of
Gromov-Hausdorff distance between metric spaces (Burago et al., 2001). This notion

of distance permits regarding the collection of all compact metric spaces as a metric
space in itself.

This seemingly abstract construction is in fact very useful. Finite metric spaces
are by now ubiquitous in virtually all areas of data analysis, and the idea of assigning
a metric to the collection of all of them is in fact quite an old one. For Euclidean
metric spaces, for example, the idea of constructing a metric was used by Kendall
(Kendall et al., 1999) and Bookstein (Bookstein et al., 1985) in constructing a statisti-
cal shape theory, motivated by the ideas about form of biological organisms developed
by D’Arcy Thompson.
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L1 U (ux)

T2

Z3

T4

Y1

Y2

Y3

T (uy)

Figure 17: Interpretation of Condition II: Assume that ¢ : X — Y is a dis-
tance non-increasing map such that ¢(z1) = ¢(x2) = 1, ¢(x3) = yo and
¢(x4) = y3. Then, Condition (II) requires that if z,2’ € X are merged
into the same cluster of ¥=!(ux) at parameter value ¢, then ¢(x) and ¢(a')
must merge into the same cluster of ¥~!(uy) for some parameter value
< t. In the Figure, this translates into the condition that vertical dotted
lines corresponding to mergings of pairs of points in X should happen
at parameter values greater than or equal than the parameter values for
which correponding points in Y (via ¢) are merged into the same clus-
ter. For example, ¢(x1), ¢(x2) merge into the same cluster at parameter
value 0. The condition is clearly verified for this pair since by definition
of ¢, ¢(z1) = ¢(x9) = y;. Take now z3 and z4: clearly the vertical line
that shows the parameter value for which they merge is to the right of
the vertical line showing the parameter value for which y» = ¢(z3) and

ys = ¢(x4) merge.

6.1 The Gromov-Hausdorff distance and examples

Definition 21 Let (Z,dz) be a compact metric space. The Hausdorff distance be-
tween any two compact subsets A, B of Z is defined by

dqz_[(A, B) = max (maxmindz(a,b),maxmindz(a, b)) :

a€A beB beB a€A
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| >

sep(X, d)

Figure 18: Interpretation of Condition III: The vertical line at parameter value
t = sep(X, d) must intersect the horizontal lines of the dendrogram before
any two points are merged.

Remark 22 Let Z = {z,...,2,} < Z. Then, di(Z, Z) < 6 for some § = 0 if and
only if Z < |J;—, B(2:,0). In other words, dZ, (Z, Z) describes the minimal § s.t. Z is
a 0-net for Z and therefore measures how well 7 covers Z.

The Gromov-Hausdorff distance dgy (X , Y) between compact metric spaces (X, dy)
and (Y, dy) was orignally defined to be the infimal € > 0 s.t. there exists a metric d
on X | |Y with d|, , = dx and d}, , = dy for which the Hausdorff distance between
X and Y (as subsets of (X | |Y,d)) is less than € (Gromov, 1987). There is, however,
an alternative expression for the GH distance that is better suited for our purposes
which we now recall.

Definition 23 (Correspondence) For sets A and B, a subset R € A x B is a
correspondence (between A and B) if and and only if
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B
A — X
C¢
012345
C’
A Y
sl__—
012345
[ A
c 3

Figure 19: An example that shows why complete linkage fails to satisfy condition (2)
of Theorem 18.

o Vae A, there existsbe B s.t. (a,b) e R
e V be B, there exists a € X s.t. (a,b) € R
Let R(A, B) denote the set of all possible correspondences between A and B.

We now give several examples to illustrate this definition.

Example 8 Let A = {ay, as} and B = {by, by, b3}. In this case, Ry = {(a1,b1), (a2, ba), (a1,bs)}
is a correspondence but Ry = {(a1,b1), (az,bs)} is not.

Example 9 Let A and B be finite s.t. #A = #B = n. In this case, if ™ is any
permutation matriz of size n, then {(a;, bs,), i =1,...,n} € R(A, B).

Example 10 Let ¢ : X — Y and v : Y — X be given maps. Then, one can
construct a correspondence out of these maps, call it R(p,1) given by

{(z,0(x)), e X} J{(w®),y), ye Y}
For metric spaces (X, dx) and (Y,dy). Let I'xy : X xY X X xY — R* be given
by
(l’, Y, .73,, y/) — |dX($7 JJ/) - dY(% y,)|
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Then, by (Burago et al., 2001, Theorem 7.3.25) the Gromov-Hausdorff distance
between X and Y is equal to

dgn (X,Y) := inf sup  Ixy(z,y,2',9). (6.12)

1
2 RER(XY) (a,y),(ay')eR

It can be seen (it is an easy computation) that in (6.12) one can restrict the
infimum to those correspondences that arise from maps ¢ and 1 such as those con-
structed in Example 10. Then, one recovers expression (4.6) which we gave in §4.5,
namely, that actually

dgn (X,Y) := }bng max (dis(¢), dis(), dis(¢, 1)). (6.13)

Remark 24 Expression (6.13) defines a distance on the set of (isometry classes
of ) finite metric spaces, (Burago et al., 2001, Theorem 7.3.30). From now on let
G denote the collection of all (isometry classes of) compact metric spaces. We
say that {(X,,dx,)}nen © G Gromov-Hausdorff converges to X € G if and only if
dgH(Xn,X) —0asn T 0.

Example 11 Fiz (X,dx) € G. Consider the sequence {(X, = - dx)}pen < G. Then,
X, Gromov-Hausdorff converges to the metric space consisting of a single point.

Remark 25 (Gromov-Hausdorff distance and Hausdorff distance) Let (X, dy)
be a compact metric space. Then, if X' < X is compact and we endow X' with the
metric dx: equal to the restriction of dx, then

dgr ((X,dx), (X', dx:)) < djy (X', X).
This is easy to see by defining the correspondence R between X and X' given by
R={("2"), 2 e X'} u{(z,2)), x e V(a), 2’ € X'},

where V(2') :=={x € X, dx(x,2") < dx(x,z), z € X'\{2'}}. Indeed, since then, for all
(xla xll)a (332,1‘/2) €R,

1
§|dx(x1,x2)—dx(x'1,x'2)| < = (dx(21,2)) + dx (22, 75)) < max min dx (2, 2') = djf (X, X').

zeX z'eX’

N | —

Example 12 Consider a finite set M and d,d" : M x M — R* two metrics on M.
Then, the GH distance between (M,d) and (M,d') is bounded above by the L* norm
of the difference between d and d':

1
dgn (M, d), (M, d")) < §||d — d'|| Lo (vrx )
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To prove this it is enough to consider the correspondence R € R(M,M) given by
R = {(m,m), me M}.

Notice that as an application, for the metric spaces (P, dr:) and (P, da:) discussed
in §4.6, one has that

and

dgn((P,d,), (P,ds)) <

£
2
dgw ((P.da,), (P,das)) <

YRS

6.2 Stability and Convergence results

Our first result states that SL HC is stable in the Gromov-Hausdorff sense and it is
a generalization of Lemma 15.

Proposition 26 For any two finite metric spaces (X, dx) and (Y, dy)
dgH((X7 dX)7 (}/7 dY)) = dgH (g* (X7 dX)7 T (Y, dY))

Remark 27 This Proposition generalizes Lemma 15. Notice for example that in case
X and Y are finite, they need not have the same number of points. This feature is
important in order to be able to make sense of situations such as the one depicted in
Figure 2 in pp. 8, where one is trying to capture the connectivity (i.e. clustering) prop-
erties of an underlying ’continuous’ space by taking finitely (but increasingly) many
samples from this space and applying some form of HC to this finite set. Theorem 28
below deals with exactly this situation. See Figure 20.

Let (Z,dz) be a compact metric space. Given a finite index set A and a (finite)
collection of disjoint compact subsets of Z, {U(®} .4, let W4 : A x A — R* be given
by

(a, ') — min dy(z,2").

zeU(®)

2eU(@)
A metric space (A, d4) arises from this construction, where dq = L(W,). We say
that (A, d4) is the metric space with underlying set A arising from {U(®},c4. Notice
that sep(A,ds) equals the minimal separation between any two sets U (@) and U@
(a # '). More precisely,

sep(A,dq) = min min dg(z,2).

a,0’'€A, zeU(®)
a#a! ep(a))

We now state a metric stability and convergence result, see Figure 20. The proof
of this result is deferred to §A.

Theorem 28 Assume (Z,dz) is a compact metric space. Let X and X' be any two
finite subsets of Z and let dx = dgz|, . and dx = dg,, .. Write THX,dx) =
(X,ux) and (X', dx) = (X',ux:). Then,
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W,
Wi3< Moz < Wzt W< Wyp

X A={a,ay ag}

————
M3 o3

Figure 20: Illustration of Theorem 28. Top: A space Z composed of 3 disjoint path
connected parts, Z(M, Z? and Z®). The black dots are the points in the
finite sample X. In the figure, w;; = W(i,j), 1 < i # j < 3. Bot-
tom Left: The dendrogram representation of (X, ux). Bottom Right The
dendrogram representation of (Z,uyz). Note that dz(z1, z2) = w3 + was,
dz(z1,23) = wiz and dz(z9,23) = waz. Asr — 0, (X,ux) — (Z,uz) in
the Gromov-Hausdorff sense, see text for details.

1. (Finite Stability) dgy (X, ux), (X', ux)) < d%(X,2) + dZ(X', Z).

2. (Approzimation bound) Assume in addition that Z = ||, 2 where A is
a finite index set and Z\Y are compact, disjoint and path-connected sets. Let
(A,dy) be the finite metric space with underlying set A arising from {Z(} 4ea.
Let T(A,da) = (A,ua). Then, if d% (X, Z) < sep(A,da)/2,

dow (X, ux), (A, ua)) < d%(X, Z).

3. (Convergence) Under the hypotheses of (2), let {X,}nen be a sequence of finite
subsets of Z s.t. dZ, (Xn, Z) — 0 asn — o0, and dx, be the metric on X,, given
by the restriction of dy to X, x X,,. Then, one has that

dgH(‘Z*(Xn, dx,), (A, uA)) — 0 as n — o0o.

Remark 29 (Interpretation of the statement) Assertion (1) guarantees that if
X, X" are both dense samples of Z, then the result of applying T* to both sets are very
close in the Gromov-Hausdorff sense.
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Assertions (2) and (3) identify the limiting behavior of the construction (X, dx,)
as X, becomes denser and denser in X, see Figure 20.

6.3 A probabilistic convergence result

In this section, we prove a precise result which describes how the dendrograms at-
tached to compact metric spaces by single linkage clustering can be obtained as the
limits of the dendrograms attached to finite subsets of the metric space. The result is
by necessity probabilistic in nature. This kind of result is of great importance, since
we are often interested in infinite metric spaces but typically do not have access to
more than finitely many random samples from the metric space.

Theorem 30 and Corollary 32 below proves that for random i.i.d. observations
X, = {x1,...,x,} with probability distribution px compactly supported in a met-
ric space (X, d), the result (X,,,ux,) of applying single linkage clustering to (X, d)
converges almost surely in the Gromov-Hausdorff sense to an ultrametric space that
recovers the multiscale structure of the support of u, see Figure 20. This is a refine-
ment of a previous observation of Hartigan (Hartigan, 1985) that SLHC is insensitive
to the distribution of mass of u in its support.

The proof of this theorem relies on Theorem 34, a probabilistic covering theorem
of independent interest. In order to state and prove our theorems we make use of the
formalism of metric measure spaces.

A triple (X, dx, ux), where (X, dx) is a metric space and px is a Borel probability
measure on X with compact support will be called an mm-space (short for measure
metric space). The support supp [px] of a measure px on X is the minimal closed
set A (w.r.t. inclusion) s.t. px(X\A) = 0. Measure metric spaces are considered in
the work of Gromov and are useful in different contexts, see (Gromov, 2007, Chapter
33). For a mm-space X let fx : R* — R* be defined by

i B .
T min px (Bx (7))

Note also that by construction fx(:) in non-decreasing and fx(r) > 0 for all r > 0.
Let also Fy : N x Rt — R* be defined by (n,8) — “~X°2  Note that for fixed

fx(5/4)
do > 0, (1) Fx(-,0¢) is decreasing in its argument, and (2) > _ Fx(n,dy) < 0.

neN

Theorem 30 Let (Z,dz,uz) be a mm-space and write supp[uz] = U,en U for
a finite index set A and U = {U},en a collection of disjoint, compact, path-
connected subsets of Z. Let (A,da) be the metric space arising from U and let
da = sep(A,da)/2.

For each n € N, let Z,, = {z1,29,...,2,} be a collection of n independent random
variables (defined on some probability space Q) with values in Z ) with distribution pz,
and let dz, be the restriction of dg to Zyn X Zy,. Then, for ( =0 and n e N,
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P“Z(dgﬂ(i*@a“d%),s*@4¢Lo):><) < Fz(n,min(¢, 64/2)). (6.14)

Corollary 31 Under the hypotheses of Theorem 30, for any pre-specified probability
level p € (0,1) and tolerance ¢ = 0, if

In 1%;) —In fx(6/4)
fx(6/4) ’

n =

then P, (dgH (T*(Zn, dz,), T*(A,da)) < C) > p, where 6 := min((,04/2).

Corollary 32 Under the hypotheses of Theorem 30, T*(Zy,dz,) —> T*(A,d4) in
the Gromov-Hausdorff sense pz-almost surely.

Proof [Proof of Corollary 32] The proof follows immediately from the expression for
Fx and the Borel-Cantelli Lemma. [ |

Remark 33 Note that the convergence theorem above implies that in the limit, T(X,, dx, )
only retains information about the support of the probability measure but not about
the way the mass is distributed inside the support, cf. (Hartigan, 1985).

Example 13 (Z < R?) Let p: R? — R be a density function with compact, support
Z and p be its associated probability measure. Then (R?, |- |, u) satisfies the assump-
tions in the theorem. If one makes additional smoothness assumptions on p, in this
particular case one can relate Fz(n,() to geometrical properties of the boundary of

supp [p].

Example 14 (7 is a Riemannian manifold) In more generality, Z could be a
Riemannian manifold and p a probability measure absolutely continuous w.r.t. to
the Riemannian area measure on Z.

7. Discussion

We have obtained novel characterization, stability and convergence theorems for SL
HC. Our theorems contemplate both the deterministic and the stochastic case. Our
characterization theorem can be interpreted as a relaxation of Kleinberg’s impossibil-
ity result for standard clustering methods in that by allowing the output of clustering
methods to be hierarchical, one obtains existence and uniqueness.

Our stability results seem to be novel and complement classical observations that
CL and AL are discontinuous as maps from finite metric spaces into dendrograms.
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Our convergence results also seem to be novel and they refine a previous obser-
vation by Hartigan about the information retained about an underlying density by
SL clustering of an i.i.d. collection of samples from that density. Our setting for the
stochastic convergence results is quite general in that we do not assume the underly-
ing space to be a smooth manifold and we do not assume the underlying probability
measure to have a density with respect to any reference measure.

We understand that SL HC is not sensitive to variations in the density (see also
(Hartigan, 1981)). In our future work we will be looking at ways of further relaxing
the notions of clustering that can cope with the problem of detecting “dense” clusters,
in the same spirit as (Wishart, 1969; Stuetzle, 2003). A follow up paper (Carlsson and
Mémoli, 2009) presents a systematic treatment of this with a more general framework.

Some recent works have also addressed the characterization of clustering schemes
in the hierarchical case. The authors of the present paper reported a characteriza-
tion for proximity dendrograms (Carlsson and Mémoli, 2008) using the language of
category theory. Zadeh and Ben-David (Zadeh and Ben-David, 2009) gave a char-
acterization for threshold dendrograms.® More classical is the work of Jardine and
Sibson (Jardine and Sibson, 1971) who also ultimately view HC methods as maps
form finite metric spaces to finite ultrametric spaces.

It is interesting to consider the situation when one requires the map ¢ in our
characterization theorem (Theorem 18) to be 1 to 1 on points. In this case, a much
wider class of hierarchical schmemes becomes possible including for example a cer-
tain version of clique clustering. The restriction on the nature of ¢ would be called
restriction of functoriality by a mathematician. The classification question of clus-
tering methods that arises becomes mathematically interesting and we are currently
exploring it (Carlsson and Mémoli, 2009.; Carlsson and Mémoli, 2008).
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5. Recall that the difference between these two types of dendrograms is that proximity dendrograms
retain the linkage value at which mergings take place whereas threshold dendrograms only record
the order, see Remark 3.

45



CARLSSON AND MEMOLI

Appendix A. Proofs

Proof [Proof of Proposition 8] The claim follows from the following claim, which we
prove by induction on :

Claim: For all i > 2, x,2' € X are s.t. there exists B € ©; with x, 2’ € B if and only
if ~Ri_1 ZL’I.

Proof [Proof of the Claim] For i = 2 the claim is clearly true. Fix ¢ > 2.

Assume that x,2’ € X and B € O,,; are such that z,2’ € B. If x,2’ belong
to the same block of ©; there is nothing to prove. So, assume that z € A and
e A with A # A" and A, A € ©,. Then, it must be that there exist blocks
A=A, Ay A, = A of ©; st PY(AL Ayy) < Rjfort =1,...,8 — 1. Pick
1,1 € A1, To,y2 € As, ..., s,ys € As st. 21 = x and ys = ' and d(y;, 2401) =
YA, Ajyr) < Rijfort =1,...,5 — 1, see the Figure 21.

€2

Y3 l”s1ysl

Figure 21: Construction used in the proof of Proposition 8.

Notice that by the inductive hypothesis we have z; ~p,_, v fort = 1,...,s. It
follows that = ~, 2’ for r = max(R;, R;_1). By Proposition 5, r = R; and hence
T ~p, .

Assume now that x ~p, ’. If z, 2’ belong to the same block of ©; there’s nothing
to prove since ©;,1 is coarser than ©; and hence z, 2z’ will also belong to the same
block of ©;,;. Assume then that x € B and 2’ € B’ for B, B’ € ©; with B # B’. Let
T = I1,%s,...,Ts = & be points in X with d(x;,x441) < R; for t = 1,...,s — 1.
Also, for t = 1,...,s5 — 1 let B; be the block of ©; to which x; belongs. But then, by
construction

R; = d(xy,x401) = min  d(z,7) = KSL(Bt,BtH) fort=1,...,5s—1,
zEBt,Z’EBt+1

and hence By ~su g, Bs. In particular, B; u B, < A for some A € ©,,, and thus z, 2’
belong to the same block in ©;,;. |
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Proof [Proof of Lemma 10] Obviously uy is non-negative. Pick z,2’, 2" € X and let
r1,72 = 0 be s.t. x,2" belong to the same block of #(r;) and 2/, 2" belong to the
same block of §(ry). These numbers clearly exist by condition (2) in the definition of
dendrograms. Then, there exist a block B of Q(max(rl, rg)) s.t. x, 2" € B and hence
up(x, ") < maz(ry,re). The conclusion follows since 1 = wy(z, ') and 19 = uy(2’, 2")
are arbitrary.

Now, let , 2" € X be such that ug(z,z") = 0. Then z, 2" are in the same block of
6(0). Condition (1) in the definition of dendrograms implies that x = z'. |

Proof [Proof of Lemma 12] Pick x,2" € X and let r := ugs(x,2’). Then, according

to (4.3), there exist zg, x1,...,2; € X with 2o = z, ; = 2/ and max; d(z;, ;1) < 7.
From (4.4) we conclude that then u*(z, 2") < r as well. Assume now that u*(z,z') < r
and let zg,zq,...,2; € X be st. xg = x, x; = 2’ and max; d(x;, x;.1) < r. Then,

x ~, 2’ and hence again by recalling (4.3), ug«(x,z") < r. This finishes the proof. W

Proof [Proof of Theorem 18] Pick (X, d) € X. Write T(X,d) = (X, u) and T*(X,d) =

(X, u*).
(A) We prove that u*(z,2') = u(z,2') for all z,2" € X. Pick x,2' € X and let
§:=u*(x,2"). Let x = xq,..., 2, = 2’ be s.t.

mzaxd(xi, Tiy1) = u*(z,2') = 6.

Consider the two point metric space (Z, e) := ({p, ¢}, ($9)). Fixi € {0,...,n—1}.
Consider ¢ : {p,q} — X given by p — z; and ¢ — z;.1. By condition (I) we
have T(Z5) = Zs. Note that 6 = e(p,q) = d(é(p), #(q)) = d(x;, x;+1) and hence by
condition (II),

d = u(w;, xipq).

Then, since ¢ was arbitrary, we obtain § > max; u(z;, z;11). Now, since u is an
ultrametric on X, we know that max; u(x;, u;11) = u(z,z’) and hence 6 > u(x, ).
(B) We prove that u*(x,2') < u(x,2’) for all x,2' € X. Fix r > 0. Let (X,,d,) be
the metric space with underlying set X, given by the equivalence classes of X under
the relation = ~, 2’. Let ¢, : X — X, be given by = — [z], where [z], denotes the
equivalence class of x under ~,. Let Jr : X, x X, > R* be given by

d.(z,2') = min d(z, ")
v €6, '(2)
a'e ¢, (<)
and let d, = Lﬁ(Jr). Note that, by our construction, ¢, is such that for all z, 2’ € X,
d(z,3") = di(¢r(2), d:(2)).
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Indeed, assume the contrary. Then for some z,2’ € X one has that d(z,2") <
d,(¢.(z), ¢ (2")). But, from the definition of d,. it follows that d(z, ') < d,(¢.(z), ¢.(2")) <
dy (¢ (x), pp(a")) = min{d(Z,T'), s.t. T ~, ;T ~, 2'}. This is a contradiction since

T ~, x and 2’ ~, 2.

Write ¥(X,,d,) = (X,,u,). Then, by condition (III),

u(, 2') = u(ér(2), dr(a')) (A.15)
for all z, 2’ € X. Note that
sep(X,,d,) >r. (A.16)

Indeed, for otherwise, there would be two points z, 2’ € X with [z], # [2'], and
r = d(z,z") = u*(x,2"). But this gives a contradiction by Remark 13.

Claim: u*(z,2') > r implies that u,(¢,(x), ¢.(z)) > r.
Assuming the claim, let x,2’ € X be s.t. u*(x,z') > r, then by equation (A.15),

u(w, ') = ur(¢p(), dr(2')) > 7.
That is, we have obtained that for any r > 0,
{(z,2)st.u*(x,2") > r} < {(x,2") st u(z,2) > r},

which implies that u*(z, 2") < u(x,2’) for all x,2' € X.

Proof of the claim. Let z,2' € X be s.t. u*(x,z') > r. Then, [z], # [2'],. By
definition of ¢,, also, ¢.(z) # ¢.(2') and hence, by condition (III) and equation
(A.16):

ur(pr(2), or(2)) = sep(X,, d,.) > 1.
|

Proof [Proof of Proposition 26] Write T*(X, dx) = (X, ux) and T*(Y, dy) = (Y, uy).
Let n = dgn((X.dx),(Y,dy)) and R € R(X,Y) st. |dx(z,2") — dy(y,y')] < 27
for all (z,y),(2',y') € R. Fix (z,y) and (2',y') € R. Let xg,...,z, € X be
st. g =z, &, = 2’ and dx(x;,241) < ux(z,2') for all i = 0,...,m — 1. Let
Y = Y0,Yl,-- > Ymn-1,Ym = Y €Y be s.t. (r;,y;) € R for all i = 0,...,m (this is
possible by definition of R). Then, dy (y;, yi+1) < dx(xi, xit1) + 1 < ux(z,2') + 7
for all i = 0,...,m — 1 and hence uy(y,y") < ux(z,2’) + 2n. By exchanging the
roles of X and Y one obtains the inequality ux(x,2’") < uy(y,y’) + 2n. This means
lux(z,2") —uy(y,y')| < 2n. Since (x,y), (2',y’) € R are arbitrary, and upon recalling
the expression of the Gromov-Hausdorff distance given by (6.12) we obtain the de-
sired conclusion. [
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Proof [Proof of Theorem 28| By Proposition 26 and the triangle inequality for the
Gromov-Hausdorff distance,

dgH(X, Z) + dgH(X/, Z) = dgH((X, UX)), (X/,UXI))).

Now, (1) follows from Remark 25.

We now prove the second claim. Let 6 > 0 be s.t. min,.s Wa(a, ) = 6. For
each z € Z let a(z) denote the index of the path connected component of Z s.t.
ze ZED, Since r:=d% (X, Z) < 1, it is clear that # (2 n X) > 1 for all a € A.
It follows that R = {(x, a(x))|x € X} belongs to R(X, A). We prove below that for
all x, 2" € X,

(1 (1)
ua(a(z),a(r)) < ux(z,2') < ualalz), a(z’)) + 2r.

By putting (I) and (II) together we will have dgy (X, ux), (A, ua)) <.

Let’s prove (I). It follows immediately from the definition of d4 and Wy that for
all y,y' € X,

Wala(y), e(y)) < dx(y,y).

From the definition of d4 it also follows that Wy (a, a') = da(a, ) for all a,a’ €
A. Then, in order to prove (I) pick zo,...,x, in X with 20 = z, 2, = 2’ and
max; dx (z;, z;41) < ux(z,z'). Consider the points in A given by

a(r) = alzg), alxy), ..., alx,) = a(r)).
Then,
da(a(zi), a(@ir1)) < Wala(z:), a(zit1)) < dx (i, 2i11) < ux(z,27)
for i = 0,...,m — 1 by the observations above. Then, max; d(a(x;), a(x;11)) <

dx(z,2') and by recalling the definition of us(a(z), a(z")) we obtain (I).

We now prove (II). Assume first that a(z) = a(2') = a. Fix ¢ > 0 small. Let
7 :10,1] — Z{®) be a continuous path s.t. v(0) = x and (1) = 2’. Let 2,..., 2z, be
points on image(y) s.t. zo = z, 2z, = @’ and dx(2;,2i.1) < €, 1 =0,...,m— 1. By
hypothesis, one can find z = zg, 21, ..., Tm_1, Tm = &’ s.t. dz(z;,2;) < r. Thus,

max dx (z;, ;1) < €9 + 2r
A

and hence uy(x,2") < €y + 2r. Let ¢g — 0 to obtain the desired result.

Now if a = a(x) # a(z') = 3, let ag, aq, ..., € A be st. g = a(x), ay = )
and da(a;, oj41) <wuala,f) for j=0,...,1—1.
By definition of d4, for each j =0,...,l — 1 one can find a chain
C; = {aéo), . ,ayj)} s.t. a§0) = aj, ayj) = Qi1
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and
Z Wy ( . (ZH) = da(ay, aji1) < uala, B).

Since W, takes non-negative values, then, for fixed j € {0,...,1 — 1}, it follows

that
Wa(a E’),aﬁlﬂ)) <wuala,B) foralli=0,...,7; — 1.

Consider the chain C' = {ay, ..., a5} in A joining a to § given by the concatenation
of all the C;. By eliminating repeated consecutive elements in C, if necessary, one can
assume that &; # Q;41. By construction Wy (&, @ir1) < wua(a, B) forie {0,...,s—1},

and Qg = «a, a, = f. We will now lift C' into a chain in Z joining = to 2’. Note that
by compactness, for all v, € A, v # p there exist z; , € Z®) and 2, € ARNER

WA(V /’1/) - dZ( Vu?zllju)

Consider the chain G in Z given by

G = {x, Zae a1 zgém . ,zgz_has,x'} .
For each point g € G < Z pick a point x(g) € X s.t. dz(g,x(g)) < r. Note that
this is possible by definition of r and also, that x(g) € Z{*9) since r < §/2.
Let G' = {zg,x1,...,2;} be the resulting path in X. Notice that if a(x;) #
a(xpy1) then

dx (g, Th1) < 2r + Wala(zg), a(zgi1)) (A.17)
by the triangle inequality. Also, by construction, for k € {0,...,t — 1},
Walalzr), a(@ps1)) < uale, B). (A.18)

Now, we claim that

ux(z,z') < max Wa(o(zy), o(xps1)) + 27 (A.19)

This claim will follow from (A.17) and the simple observation that

ux (2, 2') < maxux (zy, vpi1) < maxdy (vy, Th41)

which in turn follows from the fact that uy is the ultrametric on X defined by (4.4), see
remarks in Example 7. If a(zy) = a(zg,1) we already proved that uy(xy, zri1) < 2r.
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If on the other hand a(xy) # a(zk41) then (A.19) holds. Hence, we have that without
restriction, for all z, 2’ € X,

ux (z, ') < max Wa(a(z), o)) + 27

and hence the claim. Combine this fact with (A.18) to conclude the proof of (II).
Claim (3) follows immediately from (2).
|

A.1 The proof of Theorem 30

We will make use of the following general covering theorem in the proof of Theorem
30.

Theorem 34 Let (X, d, p) be an mm-space and X,, = {x1,xs,...,2,} a collection of
n independent random variables (defined on some probability space ), and with values
in X ) and identically distributed with distribution p. Then, for any § > 0,

P, (dy (X, supp [nx]) > 6) < Fx(n,9).

Proof Consider first a fixed point = € supp [ux] and h > 0. Then, since x1,...,z,
are i.i.d., for all ¢, P,(z; € Bx(z,h)) = u(Bx(z,h)). We then have:

. ({x ¢ OBX(xi,h)}> (ﬂ {z ¢ Bx(x;, )})

- P, (ﬂ {; ¢ Bx(z h)})

ﬁ P, ({z; ¢ Bx(z,h)}) (by independence)

=1

1 — px(Bx(x, h)))"
1= fx(h)))". (A.20)

We now obtain a similar bound for the probability that a ball of radius §/2 around
x is within ¢ of a point in X,,. Notice that the following inclusion of events holds:

Indeed, assume that the event {x e ;" , Bx(x;,6/2)} holds. Then, x € Bx(x;,0/2)
for some i € {1,...,n}. Pick any 2’ € Bx(z,d/2), then by the triangle inequality,
dx (2, x;) < dx(a',x) +dx(z,x;) < §/2+ /2 =6, thus ' € Bx(x;,0). Since 2’ is an

~~

<

~~

o1
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arbitrary point in Bx(z,/2) we are done. Now, from (A.21) and (A.20) (for h = 6/2)
above, we find

P, ({Bx<a:,5/2> 5| Bx<xi,6>}> < (1— fx(6/2))" (A.22)

=1

Now, consider a maximal ¢ /4-packing of supp [ux | by balls with centers {py, ..., pn}.
Then, clearly, supp [ux]| = U;V:1 Bx(p;,6/2). Such a packing always exists since
supp [px] is assumed to be compact (Burago et al., 2001). Notice that N, the car-
dinality of the packing, can be bounded by 1/fx(6/4). Indeed, since Bx(pa,d/4) N
Bx(pg,6/4) = & for a # 3, we have

1 = px(supp [ux]) =

Bx(pj, 0/ 2))

=

e
N
=

S
Il
—_

\Y%
=
=
T~
=

[
Il
—

Bx(pj, 0/ 4)>

= Z MX(BX(pj75/4))

7=1

> N - fx(6/4)

and the claim follows. Now, we finish the proof by first noting that since X,, <
supp [px], the following inclusion of events holds:

{ds; (X, supp [px]) > 6} = {X ¢ OBX(%"CS)}

and hence, using the union bound, then (A.22) and the bound on N, we find:
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P, (4} (X,,supp [px]) > §) < P, (X ¢ 0 Bx (3, 5))

=1

_ p, (U {Bx<pj,6/2> ¢ OBxW)})

< N- jznllﬁ_’fjv P, (BX(Z%(S/Q) ¢ ZL:JlBX(xMS))

< s 0 Gy

< 7 (15 7 (1= (/)" (since f () i non-decreasing)

< me—"fxw‘*) (by the inequality (1 —t) < e t, V¢ € R)

= Fx(n,d) (A.23)
thus concluding the proof. [ |

Proof [Proof of Theorem 30] For each n € N, introduce the random variables r,, :=
dZ,(Zy,supp [17]) and g, := dgp (T*(Zn,dz,), T*(A,d4)). Fix ' = §4/2. Note that
by Theorem 28 (2) once 1, < ¢ for some ¢ < ¢’ we know that g, < r, a.s. Hence, we
have

P g > Q) < P(r > Q) < Fy(n, Q). (A.24)

where the last inequality follows from Lemma 34.

Meanwhile, if ¢ = ¢’ is arbitrary, then P (g, > () < P (g, > '). By (A.24) (for
¢ =) wefind P(g, >¢) < P(r,>) < Fx(n,{') for all ¢ = {’. Thus, we have
found that

The conclusion now follows. [ |
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