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ABSTRACT

We introduce a new dissimilarity function for ranked lists,
the expected weighted Hoeffding distance, that has several
advantages over current dissimilarity measures for ranked
search results. First, it is easily customized for users who
pay varying degrees of attention to websites at different
ranks. Second, unlike existing measures such as general-
ized Kendall’s tau, it is based on a true metric, preserving
meaningful embeddings when visualization techniques like
multi-dimensional scaling are applied. Third, our measure
can effectively handle partial or missing rank information
while retaining a probabilistic interpretation. Finally, the
measure can be made computationally tractable and we give
a highly efficient algorithm for computing it. We then apply
our new metric with multi-dimensional scaling to visualize
and explore relationships between the result sets from dif-
ferent search engines, showing how the weighted Hoeffding
distance can distinguish important differences in search en-
gine behavior that are not apparent with other rank-distance
metrics. Such visualizations are highly effective at summa-
rizing and analyzing insights on which search engines to use,
what search strategies users can employ, and how search re-
sults evolve over time. We demonstrate our techniques using
a collection of popular search engines, a representative set of
queries, and frequently used query manipulation methods.

1. INTRODUCTION
Search engines return ranked lists of documents or web-

sites in response to a query, with the precise forms of the
ranked lists depending on the internal mechanisms of the
engines. We consider the problems of comparing and visu-
alizing the similarity relationships between different search
algorithms. The term search algorithm is an intentionally
vague term corresponding to a mechanism for producing
ranked lists of websites in response to queries. We focus on
the following three interpretations of search algorithms: (a)
different search engines, (b) a single search engine subjected
to different query manipulation techniques by the user, and
(c) a single engine queried across different internal states.

A visualization of relationships among type-(a) search al-
gorithms may be useful as it reveals which search engines
users should or should not use. For example, two search
engines that output very similar ranked lists may provide
redundant information to the user. On the other hand, two
search engines that output very dissimilar lists are worth ex-
amining more closely. We emphasize that we do not consider
here the issue of search quality or relevance. The techniques
developed in this paper allow users to understand the sim-
ilarity relationships among search algorithms. Evaluating
retrieval quality is a separate, well-studied problem that is
beyond the scope of this paper.

Visualizing relationships among type-(b) search algorithms
is useful as it indicates which query manipulation techniques

are worth using. For example, a query times square may
be manipulated by the user (prior to entering it in the search
box) to times AND square. Such manipulations may result
in different ranked lists output by the search engine. Un-
derstanding the similarities between these ranked lists may
provide the user with insights into which manipulations are
redundant and which are worth exploring further.

Understanding the relationships among type-(c) search
algorithms is useful from the point of view of design and
modification of search engines. Search engines are complex
programs containing many tunable parameters, each one in-
fluencing the formation of the ranked list in a different way.
For example, commercial search engines frequently update
the internal index which may result in different ranked lists
output in different dates (in response to the same query). It
is important for both the users and the search engineers to
understand how much the ranked lists differ across consec-
utive days and how much this difference changes as internal
parameters are modified.

There are several techniques for visualizing complex data
such as search algorithms. One of the most popular tech-
niques is multidimensional scaling (MDS) [5], which trans-
forms complex high dimensional data s1, . . . , sm into 2-D
vectors z1, . . . , zm that are easily visualized by displaying
them on a 2-D scatter plot. Assuming that a suitable dissim-
ilarity measure between the high dimensional data ρ(si, sj)
has been identified, MDS computes the 2-D embedding of
the high dimensional data si 7→ zi ∈ R

2, i = 1, . . . , m that
minimizes the distortion

R(z1, . . . , zm) =
X

i<j

(ρ(si, sj) − ‖zi − zj‖)
2 . (1)

In other words, the coordinates z1, . . . , zm in R
2 correspond-

ing to s1, . . . , sm are selected to minimize the distortion

(z1, . . . , zm) = arg min
z′

1
,...,z′

m

R(z′
1, . . . , z

′
m). (2)

Variations of MDS with slightly different distortions (1) and
objective functions (2) may be found in [5].

Our contributions in this paper are (1) to develop a suit-
able dissimilarity function for search algorithms ρ(si, sj) and
study its properties, (2) to examine the use of MDS in the
context of visualizing search algorithms of types (a), (b),
and (c), and (3) to validate it using synthetic and web data.

2. RELATED WORK
The analysis of search engine outputs is a large area of

research within the IR community [2]. Most approaches
evaluate rankings output by search engines against human
judgement or some other ground truth [12, 16, 14, 28, 4, 27].
In this area, Carterette [6] recently enumerated the limita-
tions of Kendall’s tau for comparing system performance.
He proposed an alternative method for computing rank dis-
tance that accounts for dependency between items, which is



computed as the solution to a minimization problem. The
resulting measure, however, has problems with interpreta-
tion and is highly dependent on the number of systems and
queries being analyzed, and is used instead as input to a
p-value difference estimator for comparing system perfor-
mance. In general, increased industry and research interest
in measuring dissimilarity between different search engines
has lead to a variety of comparison tools1.

The key for comparing and visualizing ranked lists output
by search engines is to define an appropriate distance met-
ric. A straightforward way to measure such distance is to
compute the overlap of the two lists [20]. Such an approach
is problematic, however, as it is invariant with respect to re-
ordering or the ranked lists. Popular distance measures be-
tween permutations are Kendall’s tau, Spearman’s rho, the
footrule, Ulam’s distance, and Cayley’s distance [9]. There
are several ways to extend these permutation distances to
partially ranked lists output by search engines, including
Hausdorff distance [7] and expected distances [1, 22].

Substantial research on the interaction between users and
search engines [13, 17] show that users’ attention drops quickly
from top to bottom ranks2. One problem with many pro-
posed dissimilarities, however, is that they do not distinguish
between disagreement at top rankings and at the bottom
rankings. One exception is [11] who considers stage-wise
ranking processes that generalize Kendall’s tau. This gener-
alization, however, is not unique as it depends on the order
in which the different ranking stages are selected. Rank cor-
relation coefficient such as NDCG [16] adopts inverse loga-
rithm function as the discount rank factor. However it is not
symmetric and is intended as an evaluation measure against
ground truth, not a comparison measure between ranked
lists. Another example is the inverse measure [3] that em-
phasizes disagreement at top ranks, where the weight func-
tion decays linearly with the rank.

While much previous work on visualization of search al-
gorithms is based on document similarity, e.g. [24], there is
renewed interest in visualizing and analyzing set-level differ-
ences between results from different search systems. Fagin
et al. [10] and Bar-Ilan et al. [3] investigate the relationship
among engines by examining the pairwise distance matrix
but do not make the connection with visualization. Liggett
and Buckley [21] used multi-dimensional scaling over rank-
ing dissimilarity to examine search system variations due to
the effect of query expansion, where the dissimilarity was
based on Spearman’s coefficient. More recently, tools like
MetaCrystal [26] and the more general ConSet [19] regard
search results as a set of items and visualize the common
items among different engines. Temporal studies of search
engines have been examined by [3] and [15] who compare
search engine results across multiple time periods.

3. DISTANCES AND DISSIMILARITIES
As mentioned in Section 1, effective visualization of search

algorithms using MDS depends on the quality of the dissim-
ilarity measure ρ. We describe in this section a new measure
based on the expectation of the weighted Hoeffding distance
on permutations and examine its properties.

We start by considering several desired properties for ρ(si, sj).
It should be (i) symmetric, (ii) interpretable with respect to

1e.g.www.bing-vs-google.com, www.searchrater.com
2A popular discount function is the logarithm function [8]
but other discount functions have been proposed as well.

search algorithms retrieving ranked lists of different lengths,
(iii) flexible enough to model the increased attention users
pay to top ranks over bottom ranks, (iv) computationally ef-
ficient, and (v) aggregate information over multiple queries
in a meaningful way.

The symmetry property (i) is relatively straightforward.
Property (ii) addresses an important and often overlooked
issue. How should ranks in a short ranked list be compared
with ranks in a long one? How should we count websites that
appear only in the longer (or shorter) ranked list? Many
previously proposed dissimilarity measures provide ad-hoc
answers to these questions which may lower the quality of
the MDS embedding. Property (iii) refers to the differences
in attention users pay to websites listed in top vs. bottom
ranks. The dissimilarity measure should take this into ac-
count and provide a dissimilarity similar to that experienced
by users, as opposed to a rank-symmetric formula. The ef-
ficiency property (iv) can be critical for online use and we
address that in Sec. 3.2. Property (v) refers to the fact that
ρ(si, sj) should aggregate information from multiple queries
with each query contributing the “correct” amount to the
final dissimilarity ρ(si, sj).

Dissimilarity functions examined in previous studies sat-
isfy some but not all of these properties (see Figure 2). In
this paper we propose to define ρ using an expectation over
the weighted Hoeffding distance. The expectation and the
properties of the weighted Hoeffding distance provide a clear
probabilistic interpretation and ensure that properties (i)-
(v) are satisfied.

We start by defining the weighted Hoeffding distance which
is a novel distance on permutations dw(π, σ). The weight
vector w provides the flexibility necessary for satisfying (iii)
while the metric property satisfies (i). We then extend it to
a dissimilarity ρ(si(q), sj(q)) over ranked lists si(q), si(j) by
taking expectations with respect to the sets of permutations
S(si(q)), S(sj(q)) consistent with the ranked lists. Above,
we consider search algorithms si, sj as functions from queries
to ranked lists and si(q) represents the ranked list retrieved
by si in response to the query q.

The function ρ is extended to search algorithms by tak-
ing another expectation, this time with respect to queries
q sampled from a representative set of queries Q. The ex-
pectations ensure that properties (ii) and (v) are satisfied.
We derive an efficient closed form for the double expectation
that verifies property (iv) in Sec. 3.2 and give a pseudo-code
implementation.

Formally, we have

ρ(si, sj) = E q∼Q{ρ(si(q), sj(q))}

= E q∼Q E π∼S(si(q))E σ∼S(sj(q)){dw(π, σ)} (3)

where dw(π, σ) is a distance between permutations π, σ de-
fined in Section 3.1, E π∼S(si(q))E σ∼S(sj(q)) is the expecta-
tion with respect to permutations π, σ that are sampled from
the sets of all permutations consistent with the ranked lists
output by the two algorithms si(q), sj(q) (respectively), and
E q∼Q is an expectation with respect to all queries sampled
from a representative set of queries Q. In the absence of
any evidence to the contrary, we assume a uniform distri-
bution over the set of queries Q and over the sets of per-
mutations consistent with si(q), sj(q). However, in other
cases non-uniform distributions may be considered in order
to emphasize certain queries or introduce apriori information
regarding the likely ranks of certain websites.

We proceed with a description of dw(π, σ) in Section 3.1



and then follow up in Section 3.2 with additional details
regarding the expectations in (3) and how to compute them.

3.1 Weighted Hoeffding Distance
The weighted Hoeffding distance is a distance between

permutations, here considered as permutations over the n
indexed websites in the internet3. The fact that n is ex-
tremely large should not bother us at this point as we will
derive closed form expressions eliminating any online com-
plexity terms depending on n. For simplicity we refer to the
websites using the integers {1, . . . , n}.

A permutation over n websites π is a bijection from {1, . . . , n}
to itself mapping websites to ranks. That is π(6) is the rank
given to website 6 and π−1(2) is the website that is assigned
second rank. A permutation is thus a full ordering over the
entire web and we denote the set of all such permutations
by Sn. We will represent a permutation by a sorted list of
websites from most preferred to least, separated by verti-
cal bars i.e. π−1(1)| · · · |π−1(n); for example, for n = 5 one
permutation ranking item 3 as first and 2 as last is 3|5|1|4|2.

Our proposed distance dw(π, σ) is a variation of the earth
movers distance4 [25] on permutations. It may also be re-
garded as a weighted version of the Hoeffding distance [22].
It is best described as the minimum amount of work needed
to transform the permutation π to σ. Work, in this case, is
the total amount of work needed to bring each item from its
rank in π to its rank in σ i.e., the r-item is transported from
rank k = π(r) to l = σ(r) (for all r = 1, . . . , n) requiring
wk + · · ·+wl−1 work (assuming k < l) where wk is the work
required to transport an item from rank k to k + 1. For
example, the distance d(1|2|3, 2|1|3) is w1 + w1 due to the
sequence of moves 1|2|3 → |1, 2|3 → 2|1|3. Another example
is d(1|2|3, 3|1|2) = w1 + w2 + w2 + w1 due to the sequence
of moves 1|2|3 → |1, 2|3 → |1|2, 3 → |1, 3|2 → 3|1|2.

Formally, the distance may be written as

dw(π, σ) =
n

X

r=1

d′
w(π(r), σ(r)) where (4)

d′
w(u, v) =

8

>

<

>

:

Pv−1
t=u

wt if u < v

d′
w(v, u) if u > v

0 otherwise

. (5)

The weight vector w = (w1, . . . , wn−1) allows differentiat-
ing the work associated with moving items across top and
bottom ranks. A monotonic decreasing weight vector, e.g.,
wt = t−q, t = 1, . . . , n − 1, q ≥ 0 correctly captures the fact
that disagreements in top ranks should matter more than
disagreements in bottom ranks [13, 17, 23]. The exponent
q is the corresponding rate of decay. A linear or slower rate
0 ≤ q ≤ 1 may be appropriate for persistent search engine
users who are not very deterred by low-ranking websites.
Choosing q → 0 retrieves a weighting mathematically simi-
lar to the log function weighting that is used in NDCG [16]
to emphasize top ranks. A quadratic or cubic decay q = 2, 3
may be appropriate for users who do not pay substantial
attention to bottom ranks. The weight may be modified to

3There are several ways to define the number of indexed
websites in the internet. In any case, this number is very
large and is growing continuously. We avoid its dynamic
nature and consider it as a fixed number.
4The earth mover distance between two non-negative valued
function is the minimum amount of work needed to trans-
form one to the other, when the functions are viewed as
representing spatial distributions of earth or rubble.

(i) (ii) (iii) (iv) (v)

Kendall/Spear [9] X X

Fligner Kendall [11] X

E Kendall top k [10] X X X X

E Spearman [21] X X X X

InverseMeasure [3] X X X X

NDCG [16] X X X

E Weighted Hoeffding X X X X X

Figure 2: Summary of how different dissimilarities satisfy
properties (i)-(v) in Section 3.

wt = max(t−q − ǫ, 0), ǫ > 0 to capture the fact that many
users simply do not look at results beyond a certain rank.
While it is possible to select an intuitive value of q, it is
more desirable to select one that agrees with user studies.
An MDS embedding of permutations using dw appears in
Figure 1 (see Section 4 for more details).

Proposition 1. Assuming w is a positive vector, the weighted
Hoeffding distance (4) is a metric.

Proof. Non-negativity dw(π, σ) ≥ 0 and symmetry dw(π, σ)
= dw(σ, π) are trivial to show. Similarly it is easy to see that
dw(π, σ) = 0 iff π = σ. The triangle inequality holds as

dw(π, σ) + dw(σ, ϕ) =
n

X

r=1

d′
w(π(r), σ(r)) + d′

w(σ(r), ϕ(r))

≥
n

X

r=1

d′
w(π(r), ϕ(r)) = dw(π, ϕ) (6)

where the inequality (6) holds due to the positivity of w.

The weighted Hoeffding distance has several nice proper-
ties that make it more appropriate for our purposes than
other permutation measures. First, it allows customization
to different users who pay varying degrees of attention to
websites in different ranks (typically higher attention is paid
to higher ranks). Standard permutation distances such as
Kendall’s tau, Spearman’s rho, the footrule, Ulam’s distance
and Cayley’s distance treat all ranks uniformly [9]. Second,
it is a true metric in contrast to the generalized Kendall’s tau
[11]. Third, its clear interpretation allows explicit specifica-
tion of the weight vector based on user studies. Finally, it is
computationally tractable to compute the weighted Hoeffd-
ing distance as well as its expectation over partially ranked
lists corresponding to ρ in (8). Figure 2 summarizes the
advantages of our distance over other dissimilarities.

3.2 Ranked Lists and Expectations
In this section we describe how the ranked lists retrieved

by search algorithms relate to permutations and provide
more information regarding the expectations in (3) and their
computation. A ranked list output by a search algorithm
forms an ordered list 〈i1, . . . , ik〉 of a subset of the websites
{i1, . . . , ik} ⊂ {1, . . . , n}. Different search strategies may re-
sult in lists of different sizes but in general k is much smaller
than n. In addition to the notation 〈i1, . . . , ik〉 we also de-
note it using the bar notation as

i1|i2| · · · |ik|ik+1, . . . , in where

{ik+1, . . . , in} = {1, . . . , n} \ {i1, i2, · · · , ik} (7)

indicating that the unranked items {1, . . . , n} \ {i1, . . . , ik}
are ranked after the k items. Partial rankings (7) are not
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Figure 1: MDS embedding of permutations over n = 5 websites. The embeddings were computed using the weighted Hoeffding
distance with uniform weight function wt = 1 (left), linear weight function wt = 1/t (middle) and quadratic weight function
wt = 1/t2 (right). The permutations starting with 1 and 2 (colored in red) and the permutations starting with 2 and
1 (colored in blue) become more spatially disparate as the rate of weight decay increases. This represents the increased
importance assigned to agreement in top ranks as we move from uniform to linear and quadratic decay.

identical to permutations as there is no known preference
among the unranked items {1, . . . , n} \ {i1, . . . , ik}. We
therefore omit vertical lines between these items and list
them separated by commas i.e., 3|2|1, 4 is equivalent to the
ranked list 〈3, 2〉 which prefers 3 over 2 and ranks 1 and 4
last without clear preference between them.

It is natural to identify a ranked list 〈i1, . . . , ik〉 as a full
permutation of the web that is unknown except for the fact
that it agrees with the website ranking in 〈i1, . . . , ik〉. De-
noting the set of permutations whose website ordering does
not contradict 〈i1, . . . , ik〉 as S(〈i1, . . . , ik〉), we have that
〈i1, . . . , ik〉 corresponds to a random draw from S(〈i1, . . . , ik〉).
Assuming lack of additional knowledge, we consider all per-
mutations in S(〈i1, . . . , ik〉) as equally likely resulting in

ρ(〈i1, . . . , ik〉, 〈j1, . . . , jl〉)
def

= E π∼S(〈i1,...,ik〉),σ∼S(〈j1,...,jl〉)d(π, σ)

=
1

(n − k)!(n − l)!

X

π∈S(〈i1,...,ik〉)

X

σ∈S(〈j1,...,jl〉)

d(π, σ). (8)

For example, consider the case of n = 5 with two search
strategies returning the following ranked lists 〈3, 1, 4〉 =
3|1|4|2, 5 and 〈1, 5〉 = 1|5|2, 3, 4. The expected distance is

ρ(3|1|4|2, 5, 1|5|2, 3, 4) =
1

2 · 6
(d(3|1|4|2|5, 1|5|2|3|4)

+ d(3|1|4|5|2, 1|5|2|3|4) + · · · + d(3|1|4|2|5, 1|5|4|3|2)

+ d(3|1|4|5|2, 1|5|4|3|2)). (9)

Expression (8) provides a natural mechanism to incorpo-
rate information from partially ranked lists. It is difficult to
compare directly two ranked lists 〈i1, . . . , ik〉, 〈j1, . . . , jl〉 of
different sizes. However, the permutations in S(〈i1, . . . , ik〉)
and S(〈j1, . . . , jk〉) are directly comparable to each other as
they are permutations over the same set of websites. The
expectation (8) aggregates information over such directly
comparable events to provide a single interpretable and co-
herent dissimilarity measure. Figure 3 displays the MDS
embedding for partial rankings using the expected distance
ρ in (8) for several different weight vectors (see Section 4 for
more details).

The expectation defining ρ in (8) appears to require in-
surmountable computation as it includes summations over
(n − k)!(n − l)! elements with n being the size of the web.
However, using techniques similar to the ones developed in
[22] we are able to derive the following closed form.

Proposition 2. The following closed form applies to the

expected distance over the weighted Hoeffding distance (4).

ρ(〈i1, . . . , ik〉, 〈j1, . . . , jl〉) =
n

X

r=1

d̄(r) where (10)

d̄(r)=

8

>

>

>

<

>

>

>

:

d′
w(u, v) r ∈ A ∩ B
1

n−l

Pn

t=l+1 d′
w(t, u) r ∈ A ∩ Bc

1
n−k

Pn

t=k+1 d′
w(t, v) r ∈ Ac ∩ B

1
n−k

1
n−l

Pn

t=k+1

Pn

s=l+1 d′
w(t, s) otherwise

.

Above, A = {i1, . . . , ik}, B = {j1, . . . , jl}, and u ∈ {1, . . . , k},
v ∈ {1, . . . , l} are the respective ranks of r in {i1, . . . , ik} and
{j1, . . . , jl} (it they exist).

Proof. A careful examination of (4) reveals that it may
be written in matrix notation:

d(π, σ) = tr(Aπ△AT
σ ) (11)

where tr is the trace operator, △ is the n×n distance matrix
with elements △uv = d′

w(u, v), and Aπ, Aσ are permutation
matrices corresponding to the permutations π and σ i.e.,
[Aπ]uv = 1 iff π(u) = v. Using equation (11), we have

ρ(〈i1, . . . , ik〉, 〈j1, . . . , jl〉)

=

P

π∈S(〈i1,...,ik〉)

P

σ∈S(〈j1,...,jk〉) tr(Aπ△AT
σ )

(n − k)!(n − l)!

= tr(M̂〈i〉△(M̂〈j〉)
T ) (12)

where

M̂〈i〉 =

P

π∈S(〈i1,...,ik〉) Aπ

(n − k)!
, M̂〈j〉 =

P

σ∈S(〈j1,...,jl〉)
Aσ

(n − l)!
.

(13)

Note that the marginal matrices M̂〈i〉, M̂〈j〉 have a proba-
bilistic interpretation as their u, v entries represent the prob-
ability that item u is ranked at v. Combining (12) with
Lemma 1 below completes the proof.

Lemma 1. Let M̂ be the marginal matrix for a top-k ranked
list 〈i1, . . . , ik〉 with a total of n items as in (13). If r ∈

{i1, . . . , ik} and r = is for some s = 1, . . . , k, then M̂rj = δjs

where δab = 1 if a = b and 0 otherwise. If r 6∈ {i1, . . . , ik}

then M̂rj = 0 for j = 1, . . . , k and 1/(n − k) otherwise.

Proof. For a top-k ranking 〈i1, . . . , ik〉 out of n items,
the size of the set S(〈i1, . . . , ik〉) is (n − k)!. Each of the
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Figure 3: MDS embedding of ranked lists of varying lengths (k varies) over a total of n = 5 websites. The embeddings were
computed using the expected weighted Hoeffding’s distance (8) with uniform weight function wt = 1 (left), linear weight
function wt = 1/t (middle) and quadratic weight function wt = 1/t2 (right). We observe the same phenomenon that we saw
in Figure 1 for permutations. The expected distance (8) separates ranked lists agreeing in their top rankings (denoted by
different colors) better as the weights decay faster.

permutations compatible with it has exactly the same top-
k ranks. If r ∈ {i1, . . . , ik} and r = is for some s =
1, . . . , k then the number of permutations compatible with
〈i1, . . . , ik〉 that assign rank s to the item is (n − k)!. Simi-
larly, the number of consistent permutations assigning rank
other than s to the item is 0. As a result we have M̂rs =
(n−k)!
(n−k)!

= 1 and M̂rj = 0 for j 6= s. If r 6∈ {i1, . . . , ik}, the

number of permutations consistent with the ranked list that
assign rank j ∈ {k + 1, . . . , n} to the item is (n − k − 1)!.
Similarly, the number of permutations that assign rank j ∈
{1, . . . , k} to the item is 0. As a result M̂rj = 0 for j =

1, . . . , k, and M̂rj = (n−k−1)!
(n−k)!

= 1
n−k

for j = k+1, . . . , n.

The expected distance (8) may be computed very effi-
ciently, assuming that some combinatorial numbers are pre-
computed offline. Bounding k, l by a certain number k, l ≤
m ≪ n we have that the online complexity is O(k + l) and
the offline complexity is O(n + m2). The next proposition,
makes this precise. A pseudo-code description of the dis-
tance computation algorithm is given as Algorithm 3.1.

Proposition 3. Let 〈i1, . . . , ik〉 and 〈j1, . . . , jl〉 be top-
k and top-l ranks on a total n items with k, l ≤ m ≪ n.
Assuming that dw(u, v) is computable in constant time and
space complexity (as is the case for many polynomial decay-
ing weight vectors w) the online space and time complexity
is O(k + l). The offline space complexity is O(m2) and the
offline time complexity is O(n + m2).

Proof. From equation 10, the offline pre-computation
requires computing Dm×m, DE1

m×m and DE2
m×m, where Duv =

d′
w(u, v), DE1

kv = 1
n−k

Pn

t=k+1 d′
w(t, v), and DE2

kl = 1
n−k

1
n−l

Pn

t=k+1

Pn

s=l+1 d′
w(t, s). The space complexity for comput-

ing these matrices is O(m2). The time complexity to com-
pute Dm×m is O(m2). Exploiting features of cumulative
sums and the matrix Dm×m it can be shown that comput-
ing DE1

m×m requires O(n + m2) time. Similarly, comput-

ing DE2
m×m requires O(n + m2) time. As a result, the to-

tal offline complexity is O(m2) space and O(n + m2) time.
Given the three precomputed matrices, computing the ex-
pected distance for two partially ranked lists 〈i1, . . . , ik〉 and
〈j1, . . . , jl〉 requires O(k + l) time and space. The reasons
are that given two list, the time to identify overlapping items
from two lists of size k and l is O(k + l) and that for items
ranked by at least one engine, we need to use the look-up

table no more than k + l times and another extra look-up
for items never ranked in both.

4. SIMULATION STUDY
To evaluate the proposed framework we conducted two

sets of analyses. The first analysis uses synthetic data to
examine properties of the embedding and compare it to al-
ternative methods under controlled settings. The second set
of experiments includes real world search engine data. Its
goal is to demonstrate the benefit and applicability of the
framework in the context of a real world visualization prob-
lem. We explore the first set of experiments in this section
and the second set in Section 5.

We start by examining the embedding of permutations
over n = 5 websites. A small number is chosen intentionally
for illustrative purposes. We consider two sets of permuta-
tions. The first set contains all permutations ranking item
1 first and item 2 second. The second set contains all per-
mutations ranking item 2 first and item 1 second. Figure 1
displays the MDS embedding of these two sets of permuta-
tions based on the weighted Hoeffding’s distance with con-
stant weights wt = 1 (left), linear weight wt = t−1 (middle)
and quadratic weight wt = t−2 (right). The first set of per-
mutations are colored red and the second set blue.

The uniform weight MDS embedding does not pay par-
ticular attention to differing websites in the top ranks and
so the red and blue permutations are interspersed together.
This is also the embedding obtained by using the Kendall’s
tau distance as in [9, 10, 18]. Moving to linearly decaying
and quadratic decaying weights increases the separation be-
tween these two groups dramatically. The differences in web-
sites occupying top ranks are emphasized while differences in
websites occupying bottom ranks are de-emphasized. This
demonstrates the ineffectiveness of using Kendall’s tau dis-
tance or uniform weight Hoeffding distance in the context
of search engines. The precise form of the weight - linear,
quadratic, or higher decay rate depends on the degree to
which a user pays more attention to higher ranked websites
than to lower ranked websites.

The second simulated experiment is similar to the first,
but it contains partially ranked lists as opposed to permu-
tations. We form five groups - each one containing par-
tially ranked lists ranking a particular website at the top.
Figure 3 displays the MDS embedding of these five sets of



Off-line:
1. Specify n, the number of total items and m the list length bound.
2. Precompute matrices Dm×m, DE1

m×m and DE2

m×m (Section 3).
On-line:
3. Call Expected-Weighted-Hoeffding(π, σ) for lists π and σ

Expected-Weighted-Hoeffding(π, σ)
1 k1 ← size(π)
2 k2 ← size(σ)
3 [πmark, σmark ] = Mark-Rank(π, σ);
4 sum← 0;
5 for i← 1 to k1

6 do

7 if πmark[i] > 0
8 then sum ← sum + D[i, πmark[i]]
9 else

10 sum ← sum + DE1[k2, i]
11
12 count← 0
13 for i← 1 to k2

14 do

15 if σmark[i] = 0

16 then sum ← sum + DE1[k1, i]
17 count← count + 1
18
19 sum← sum + (n− k1 − count) ·DE2[k1, k2];
20 return sum;

Mark-Rank(a, b)
1 k1 = size(a)
2 k2 = size(b)
3 amark = zeros(1 . . . k1), bmark = zeros(1 . . . k2)
4 for i← 1 to k1

5 do for j ← 1 to k2

6 do if a[i] = b[j]
7 then amark[i] = j
8 bmark[j] = i
9

10 return [amark, bmark]

Algorithm 3.1: Algorithm to compute expected weighted
Hoeffding distance between two ranked lists π and σ. The
online complexity of the above algorithm is O(k1k2). A
slightly more complex algorithm can achieve online com-
plexity O(k1 + k2) as described in Proposition 3.

permutations based on the expected weighted Hoeffding dis-
tance ρ(〈i1, . . . , ik〉, 〈j1, . . . , jl〉) in (8) using constant weights
wt = 1 (left), linear weights wt = t−1 (middle) and quadratic
weights wt = t−2 (right). Ranked lists in each of the differ-
ent groups are displayed in different colors.

We observe a similar conclusion with the expected dis-
tance over partially ranked lists as we did with the distances
over permutations. The five groups are relatively inter-
spersed for uniform weights and get increasingly separated
as the rate of weight decay increases. This represents the
fact that as the decay rate increases, disagreements in top
ranks are emphasized over disagreement at bottom ranks.

We also conducted some comparisons between the weighted
Hoeffding distance and alternative distance measures. Ta-
ble 1 shows how one recently proposed measure, the inverse
measure [3], lacks discriminative power, assigning the same
dissimilarity to very different ranked lists. Kendall’s tau
and the other distances proposed in [9, 10] lack the ability
to distinguish disagreement in top ranks and bottom ranks.
In particular, Kendall’s tau is identical to our weighted Ho-
effding distance with uniform weights (see Figures 1-3 for
a demonstration of its inadequacy). NDCG [16] and other
precision recall measures rely on comparing a ranked list to
a ground truth of relevant and not-relevant websites. As
such they are not symmetric and are not appropriate for
computing MDS embedding based on the matrix of pairwise
distances.

d to 1|2|3|4|5 InverseMeasure wt = t−1 wt = t−2

2 0.8374 0.6500 0.7539
3 0.8374 0.7786 0.8589
4 0.8374 0.8357 0.8901
5 0.8374 0.8571 0.8988

1|3 0.2481 0.3048 0.2049
1|4 0.2481 0.3810 0.2464
1|5 0.2481 0.4095 0.2581

Table 1: A comparison of the inverse measure [3] with the
weighted Hoeffding distance indicates that the inverse mea-
sure lacks discriminative power as it assigns the same dis-
similarity to very different ranked lists (n = 5).

d to 1|2|3|4|5 n = 5 n = 10 n = 103
n = 105

n = 107

1|2|3|5|4| 0.0117 0.0176 0.0670 0.0698 0.0699
2|1|3|4|5| 0.7464 0.6755 0.6660 0.6683 0.6683

1|4|2| 0.1268 0.1362 0.1950 0.1980 0.1981
1| 0.1064 0.1592 0.2656 0.2692 0.2692
2|1 0.7726 0.7283 0.7515 0.7543 0.7543
5| 0.9395 0.9280 0.9820 0.9851 0.9852

5|4|3|2|1| 1.0000 0.9025 0.8727 0.8748 0.8748

Table 2: A comparison of weighted Hoeffding distance with
cubic weight decay wt = t−3 reveals that increasing n be-
yond a certain size does not alter the distances between par-
tially ranked lists. This indicates lack of sensitivity to the
precise value of n as well as computational speedup resulting
from replacing n by n′ ≪ n.

Table 2 shows a comparison of weighted Hoeffding dis-
tances with wt = t−3 for different sizes of the web n. It
reveals that increasing n beyond a certain size does not alter
the distances between partially ranked lists. This indicates
a lack of sensitivity to the precise value of n as well as com-
putational speedup resulting from replacing n by n′ ≪ n.

5. SEARCH ENGINE EXPERIMENTS
We discuss in this section three experiments conducted on

real world search engine data. In the first experiment we vi-
sualize the similarities and differences between nine different
search engines: altavista.com, alltheweb.com, ask.com,
google.com, lycos.com, live.com, yahoo.com, aol.com, and
dogpile.com. We collected 50 popular queries online in
each of six different categories: company names, questions5,
sports, tourism6, university names, and celebrity names.
These queries form a representative sample of queries Q
within each category over which we average the expected
distance ρ according to (3). Figure 4 shows several queries
for each one of the topic categories. We visualize search
result sets within each of the query categories in order to
examine whether the discovered similarity patterns are spe-
cific to a query category, or are generalizable across many
different query types.

5.1 Search Engines Similarities
Figure 5 displays the MDS embedding of each of the nine

engines for the six query categories, based on the expected
weighted Hoeffding distance (3) with linear weight decay.
The ρ quantity was averaged over the 50 representative queries
from that category. Each search engine is represented as a
circle whose center is the 2-D coordinates obtained from the
MDS embedding.

5queries from http://answers.yahoo.com
6queries from http://en.wikipedia.org/wiki/Tourism



Categories Queries

Tourism Times Square, Sydney Opera House, Eiffel Tower, Niagara Falls, Disneyland, British Museum, Giza Pyramids
Celebrity Names Michael Bolton, Michael Jackson, Jackie Chan, Harrison Ford, Halle Berry, Whoopi Goldberg, Robert Zemeckis
Sports Football, Acrobatics, Karate, Pole Vault, Butterfly Stroke, Scuba Diving,Table Tennis, Beach Volleyball, Marathon
University Names Georgia Institute of Technology, University of Florida, Virginia Tech, University of California Berkeley
Company Goldman Sachs, Facebook, Honda, Cisco Systems, Nordstrom, CarMax, Wallmart, American Express, Microsoft
Questions How are flying buttresses constructed, Does toothpaste expire, How are winners selected for the Nobel Prize
Temporal Queries AIG Bonuses, G20 major economies, Timothy Geitner, Immigration Policy, NCAA Tournament Schedule

Figure 4: Selected queries from each of the 6 query categories, and from the set used for examining temporal variations.
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Figure 5: MDS embedding of search engine results over 6 sets of representative queries: company names, university names,
celebrity names, questions, sports, and tourism. The MDS was based on the expected weighted Hoeffding distance with linear
weighting wt = t−1 over the top 100 sites. Circle sizes indicate position variance with respect to within category queries.
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Figure 6: MDS embedding of search engine results over the query category celebrity with different query manipulations.
The MDS was computed based on the expected distance (3) with (8) corresponding to the weighted Hoeffding distance with
quadratic decaying weights (left panel) and Kendall top k distance [10] (right panel). Each marker represents a combination
of one of the 9 search engines and one of the 5 query manipulation techniques. By comparison, the embedding of the Kendall
top-k distance (right) lacks discriminative power and results in a loss of information.



The radii of the circles in Figure 5 were scaled proportion-
ally to the positional stability of the search engine. More
precisely, we scaled the radius of the circle corresponding to
the i-th search engine proportionally to its distance variance
over the 50 queries

stability(i)
def

=
X

j:j 6=i

Var q∼Q{ρ(si(q), sj(q))}. (14)

Scaling the circles according to (14) provides a visual indi-
cation of how much will the position change if one or more
queries are deleted or added to Q. This can also be in-
terpreted as the degree of uncertainty regarding the precise
location of the search engines due to the averaging over Q.

Examining Figure 5 reveals several interesting facts. To
begin with there are five distinct clusters. The first and
largest one contains the engines altavista, alltheweb, lycos,
and yahoo (indicated by the numeric codes 1,2,5,7). These
four search engines are clustered together very tightly in all
6 query categories. The second cluster is composed of google
and AOL (numeric codes 4, 8) who also appear in very close
proximity across all 6 query categories. The remaining three
clusters contain individual engines: live, dogpile, and ask.

The clusters in the embedding do in fact mirror the tech-
nology relationships that have evolved in the search engine
industry. FAST, the company behind alltheweb, bought
Lycos and was subsequently bought by Overture who also
bought Altavista7. Overture was subsequently bought by
the fourth member of the cluster, Yahoo. All four search
engines in the first cluster have close proximity in the em-
bedding and yet are dissimilar from the remaining competi-
tors. The second cluster, for Google and AOL, reflects the
fact that AOL now relies heavily on Google’s web search
technology, leading to extremely similar ranked lists.

The remaining engines are quite distinct. Dogpile is a
meta-search engine which incorporates the input of the other
major search engines. We see that dogpile’s results are
roughly equidistant from both Yahoo and Google clusters
for all query categories. Figure 5 also shows that dogpile is
more similar to the two remaining engines - Live and Ask.
Apparently, dogpile emphasizes pages highly-ranked by Live
and Ask in its meta search more than Google and AOL and
more than Yahoo, Lycos, Altavista, and alltheweb.

5.2 Query Manipulations
In the second experiment we used search engine data to

examine the sensitivity of the search engines to four com-
monly used query manipulation techniques. Assuming that
the queries contained several words w1w2 · · ·wl with l > 1,
the query manipulation techniques that we considered were

(a) w1w2 · · ·wl ⇒ w1w2 · · ·wl

(b) w1w2 · · ·wl ⇒ w1 + w2 + · · · + wl

(c) w1w2 · · ·wl ⇒ “w1w2 · · ·wl”
(d) w1w2 · · ·wl ⇒ w1 and w2 and · · · and wl

(e) w1w2 · · ·wl ⇒ w1 or w2 or · · · or wl

with the first technique (a) being the identity i.e. no query
manipulation. The embeddings of queries in the query cat-
egory celebrity are displayed in Figure 6. The left panel dis-
plays the MDS embedding based on our expected weighted
Hoeffding distance with quadratic decaying weight. As a
comparison, the right panel shows the MDS based on Kendall’s
top k distance as described by Fagin et al. [10]. Each marker

7http://google.blogspace.com/archives/000845.html

Engine/Distance (b) + (c) “ ” (d) and (e) or

Ask 0.5308 0.6903 0.6424 0.6447
Live 0.5625 0.5639 0.5006 0.5374

Google 0.3553 0.4117 0.5584 0.5500
Yahoo 0.4281 0.4647 0.5777 0.5918

Figure 7: The expected distance of different query manipu-
lations from the original query for different search engines.

in the figure represents the MDS embedding of a particu-
lar engine using a particular query manipulation technique
which brings the total number of markers to 9 · 5 = 45.

Comparing the left and right panels shows that visualiz-
ing using Kendall’s top k distance [10] lacks discriminative
power. The points in the right panel fall almost on top of
each other limiting their use for visualization purposes. In
contrast, the points in the left panel (weighted Hoeffding
distance) differentiate among not only different engines but
also different types of query manipulations.

In particular, it shows that most search engines produce
two different clusters of results corresponding to two sets
of query manipulation techniques: transformations {(a),(b),
(c)} in one cluster and transformations {(d),(e)} in the other
cluster. Live and ask form an exception to that rule forming
clusters {(a),(d)}, {(b),(c)}, {(e)} (live) and {(a),(b),(d),(e)},
{(c)} (ask). Figure 7 shows the query manipulations that
produce ranked lists most distinct from the original query:
(c) for ask and live, (d) for google, and (e) for yahoo.

5.3 Temporal Variation
In the third experiment, we visualize search result sets

created by replicating 7 out of the 9 search engines over 7
consecutive days resulting in 7 · 7 = 49 search result sets.
The search engines were queried on a daily basis during
3/25/2009 - 3/31/2009 and the returned results were em-
bedded in 2-D for visualization. In contrast to the previous
two experiments, we used a separate query category which
was specifically aimed at capturing time sensitive matters.
For example, we ignored tourism queries such as Eiffel Tower
due to their time insensitive nature and instead used queries
such as Timothy Geitner or AIG bonuses which dominated
the news in March 2009. See Fig. 4 for more examples.

The embedded rankings are displayed in Figure 8 (top).
The embedding reveals that the yahoo cluster (yahoo, al-
tavista, alltheweb, and lycos) shows a high degree of tem-
poral variability, and in particular a sharp spatial shift on
the third day from the bottom region to the top left region.
This could be interpreted either as a change in the index,
reflecting the dynamic nature of the Web, or an internal
change in the retrieval algorithms underlying the engines.
The other engines were more stable as their ranked lists
changed very little with the temporal variation. Note that
as the queries were time sensitive this should not be inter-
preted as a measure of robustness, but rather as a stability
measure for the internal index and ranking mechanisms. In-
terestingly, Vaughan [27] also reports that Altavista shows
temporal jumps with Google being more stable over a set of
queries in 2004.

Figure 8 (bottom) shows the expected distance between
the yahoo search results across the seven consecutive days
and a reference point (2nd and 6th day). As expected, for
each one of the two plots, the deviation to the reference date
increases monotonically with the temporal difference. The
slope of the curve represents the degree of temporal change
∆(st, st+τ ) between yahoo at time t and at time t + τ as a
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Figure 8: Top: MDS embedding of search engine results over
seven days for a set of queries based on temporal events.
The MDS embedding was based on the expected Hoeffding
distance with linear weighting wt = 1/t over the top 50 sites.
Bottom: The dissimilarity of Yahoo results over seven days
with respective to a reference day for a set of queries based
on temporal events.

function of τ with respect to the reference point t.

5.4 Validation of the MDS Embedding
A central assumption of this study is that MDS embed-

dings can give a faithful representation of the distances in
the original higher-dimensional space. Thus, we now pro-
vide a validation of the MDS embedding as a visualization
tool, diagnosing whether MDS is providing a reasonable em-
bedding and which MDS variant should be preferable.

The most common tool for validating the MDS embedding
is Shepard’s plot (Figure 9, left) which displays a scatter plot
contrasting the original dissimilarities (on the x axis) and
the corresponding distances after the embedding (on the y
axis). Points on the diagonal represent zero distortion and
a curve that deviates substantially from the diagonal repre-
sents substantial distortion. The Shepard’s plot in Figure 9
(left) corresponds to the metric MDS using the standard
stress criterion as described in (2). The plot displays low dis-
tortion with a tendency to undervalue dissimilarities in the
range [0, 0.5] and to overvalue dissimilarities in the range
[0.5, 0.9]. Such a systematic discrepancy between the way
small and large distances are captured is undesirable.

An alternative is non-metric MDS which achieves an em-
bedding by transforming the original dissimilarities into al-
ternative quantities called disparities using a monotonic in-
creasing mapping which are then approximated by the em-
bedding distances [5]. Doing so preserves the relative or-
dering of the original dissimilarities and thus (assuming the
embedding distances approximate well the disparities) accu-
rately represent the spatial relationship between the points.
Figure 9 (middle) displays the Shepard’s plot for the same
data embedded using non-metric stress MDS with the dis-
parities displayed as a red line. Figure 9 (right) displays the
embedded distances as a function of the disparities revealing

no systematic tendency to overestimate or underestimate as
did the metric MDS. Thus, despite the fact that its numeric
distortion is higher, the non-metric MDS is a viable alterna-
tive to the metric MDS, and is what was used to generate
the figures in this paper.

6. DISCUSSION
In this paper we present a framework for visualizing rela-

tionships between search algorithms. The framework starts
by deriving an expected distance based on the earth mover’s
distance on permutations and then extends it to partially
ranked lists by taking expectations over all permutations
consistent with the ranked lists. The expected distance ρ is
then averaged over representative queries q ∈ Q to obtain
a dissimilarity measure for use in multidimensional scaling
embedding. The expected distance has several nice proper-
ties including being computationally efficient, customizable
through a selection of the weight vector w, and interpretable.

We explore the validity of the framework using a simula-
tion study which indicates that the weighted Hoeffding dis-
tance is more appropriate than Kendall’s tau and more dis-
criminative than the inverse measure. It is also more appro-
priate for MDS embedding than non-symmetric precision-
recall measures such as NDCG. We also demonstrate the ro-
bustness of the proposed distance with respect to the choice
of n and its efficient computation with complexity that is
linear in the sizes of the ranked lists (assuming some quan-
tities are precomputed offline). Experiments on search en-
gine data reveal several interesting clusters which are cor-
roborated by examining recent news stories about the web
search industry. We demonstrate how to visualize the posi-
tional stability by scaling the MDS markers proportionally
to the total distance variance and how to visualize sensitivity
of search engines to popular query manipulation techniques.
We also use the visualization framework to examine how the
search results vary over consecutive days.

Search engines use complex proprietary algorithms con-
taining many parameters that are automatically tuned based
on human provided ground truth information. As a result,
it is difficult for search engineers to have a detailed under-
standing of how precisely their search engine works. For ex-
ternal users the problem is even worse as they are not privy
to the internal algorithmic details. Our framework provides
visual assistance in understanding the relationship between
a search algorithm’s ranked results and its dependence on
internal and external parameters. Such visualization may
lead to better designed search engines as the engineers im-
prove their understanding of how search engines depend on
the internal parameters. It may also improve the search ex-
perience as users understand better the relationship between
different engines and their dependency on query manipula-
tion techniques and external parameters such as time.

7. REFERENCES

[1] M. Alvo and P. Cabilio. Rank correlation methods for
missing data. The Canadian Journal of Statistics,
23(4):345–358, 1995.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison Wesley, 1999.

[3] J. Bar-Ilan, K. Keenoy, E. Yaari, and M. Levene. User
rankings of search engine results. Journal of American
Society for Information Science and Technology,
58(9):1254–1266, 2007.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 9: Shepard plots (embedding distances as a function of the original dissimilarities) for 2D MDS embeddings cor-
responding to the weighted hoeffding distance of search engine results over query category celebrity with different query
manipulations. The metric stress MDS [5] (left panel) produces an embedding that has a lower overall distortion than the
non-metric stress MDS [5] (middle panel). The non-metric stress MDS, however, achieves an embedding by transforming the
original dissimilarities into alternative quantities called disparities using a monotonic increasing mapping (red line in middle
panel). Doing so preserves the relative ordering of the distances thus accurately reflecting the spatial relationships between the
points. The right panel displays the embedded distances as a function of the disparities. The displayed spread is symmetric
and with little outliers making the non-metric MDS a viable alternative to the metric MDS. See [5] for more details.

[4] M. M. S. Beg. A subjective measure of web search
quality. Information Sciences, 169(3-4):365–381, 2005.

[5] I. Borg and P. J. F. Groenen. Modern
Multidimensional Scaling. Springer, 2nd edition, 2005.

[6] B. Carterette. On rank correlation and the distance
between rankings. In Proc. of the 32nd ACM SIGIR
Conference, 2009.

[7] D. E. Critchlow. Metric Methods for Analyzing
Partially Ranked Data. Lecture Notes in Statistics,
volume 34, Springer, 1985.

[8] B. Croft, D. Metzler, and T. Strohman. Search
Engines: Information Retrieval in Practice. Addison
Wesley, 2009.

[9] P. Diaconis. Group Representations in Probability and
Statistics. Institute of Mathematical Statistics, 1988.

[10] R. Fagin, R. Kumar, and D. Sivakumar. Comparing
top k lists. In Proc. of ACM SODA, 2003.

[11] M. A. Fligner and J. S. Verducci. Distance based
ranking models. Journal of the Royal Statistical
Society B, 43:359–369, 1986.

[12] M. Gordon and P. Pathak. Finding information on the
world wide web: the retrieval effectiveness of search
engines. Information processing and management,
35(2):141–180, 1999.

[13] L.A. Granka, T. Joachims, and G. Gay. Eye-tracking
analysis of user behavior in www search. In Proc. of
the ACM-SIGIR conference, pages 478–479, 2004.

[14] D. Hawking, N. Craswell, P. Bailey, and K. Griffihs.
Measuring search engine quality. Information
Retrieval, 4(1):33–59, 2001.

[15] B. J. Jansen, A. Spink, and J. Pedersen. A temporal
comparison of altavista web searching. Journal of the
American Society for Information Science and
Technology, 56(6):559–570, 2005.

[16] K. Järvelin and J. Kekäläinen. Cumulated gain-based
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