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Abstract

Incorporating domain knowledge into the modeling process is an effective way to improve learning
accuracy. However, as it is provided by humans, domain knowledge can only be specified with some
degree of uncertainty. We propose to explicitly model such uncertainty through probabilistic constraints
over the parameter space. In contrast to hard parameter constraints, our approach is effective also when
the domain knowledge is inaccurate and generally results in superior modeling accuracy. We focus on
generative and conditional modeling where the parameters are assigned a Dirichlet or Gaussian prior and
demonstrate the framework with experiments on both synthetic and real-world data.

1 Introduction

Incorporating domain knowledge into the modeling process is an effective way to improve learning accuracy.
In some cases the knowledge may be incorporated by modifying the underlying statistical model. In most
cases, however, standard off-the-shelf models are used such as logistic regression, SVM, mixture of Gaussians,
etc., and the domain knowledge is integrated into the training process of these models by constraining the
parameters to a certain region.

For example in document analysis, vocabulary words are treated as abstract orthogonal dimensions. The
statistical relationship among the words and between the words and the predictor variable is determined
solely based on the available data. Modifying the learning process so that it takes into consideration domain
knowledge can substantially improve accuracy, especially when the training data is scarce e.g., [8, 9].

A fundamental difficulty with incorporating domain knowledge is that as it is provided by humans, it
often holds with some degree of uncertainty. For example in sentiment prediction, the presence of the word
good corresponds usually, but not always to a positive opinion. While this difficulty applies to explicitly
formulated domain knowledge, it is even more pronounced when the domain knowledge is obtained implicitly
by interpreting user feedback. For example in web search, clickthrough data or the time a user spent in a
site are usually interpreted as indicating high relevance. This interpretation is correct in many but not all
cases.

In this paper, we propose to explicitly model domain knowledge uncertainty by specifying the probability
with which it is expected to hold. Specifically, we consider the case of a hierarchical prior over the parameter
space with additional parameter constraints holding with certain probabilities. Thus in the case of x ~ p(-|0),
0 ~ p(-]a) we enforce probabilistic parameter constraint P(f € A) > n where A is a set corresponding to
the domain knowledge and 7 corresponds to the uncertainty or confidence level. We derive an equivalence
between the probabilistic constraint P(6 € A) > n and certain hard constraint over the hyperparameters .
Inference can then proceed on the equivalent model using standard techniques such as empirical Bayes or
maximum posterior estimate.

Our proposed framework applies to a large class of practical models. We focus on generative and condi-
tional modeling where the parameters are assigned a Dirichlet or Gaussian prior. This includes the popular



cases of ridge regression, mixture of Gaussians, regularized logistic regression, naive Bayes and smoothed
n-gram estimation. We show that in these cases the framework translates into well defined and computable
hyperparameter constraints and discuss computational schemes for performing Bayesian inference.

From a Bayesian perspective, our framework derives a prior consistent with uncertain domain knowledge
and thus may be considered a form of prior elicitation. Its practical significance is that it enables the use of
a large quantity of somewhat inaccurate knowledge which is otherwise problematic to use.

2 Probabilistic Constraints in Hierarchical Bayes

We consider situations in which the model is a hierarchical Bayes model

s~ D) GER"

0~ g(|a) (1)
a~ h()

where f, g are distributions parameterized by 0, « and h is a hyperprior for a. Abusing notation slightly, we
consider the distribution f to be over z = x in the generative case i.e., f(z|f), or a conditional model over
z = y|z in a discriminative setting i.e., f(y|z,0). Model (1) is fairly standard and contains a wide variety of
popular generative and conditional models such as regularized logistic regression, ridge regression and lasso,
mixture of Gaussians, etc. In some cases the distribution h(«) is uniform or an uninformative prior. In other
cases it is replaced with a fixed value altogether.

We introduce domain knowledge into the model by identifying sets A;,i = 1,...,l which are expected to
contain the parameters € A; with some degree of confidence. A simple case is linear constraints

Ai={0:a/0<b} a;cR"b; cR (2)

which despite its simplicity is general enough to account for many practical situations. Some useful special
cases that are achievable using (2) are
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Equation (3) represents a case where we know some parameters are likely to be larger than others (7 is a
permutation over n letters and k < n). Equation (4) represents a case where we know the parameter values
are bounded, for example in logistic regression we might know that some parameters are positive 6; > 0
(contributing to positive class label) and some are negative §; < 0 (contributing to negative class label).
Equation (5) represents knowledge that two parameters are similar in value and Equation (6) determines
that the total parameter value is somehow bounded.

The constraints § € A; are assigned confidence values 7; and incorporated into the model by pairing (1)
with
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It is important to note that the constraints (7) may or may not be satisfied depending on the value of a. If
a is a fixed parameter the constrained problem is trivial - either (7) is satisfied or not. In the former case we
can proceed with normal Bayesian inference and in the latter case we need to modify either the constraints
(7) or the model (1). However, the situation gets more interesting when « is a random variable. In this case,
standard Bayesian inference is modified to account for the constraints, effectively introducing the domain
knowledge into the modeling process.
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Figure 1: Illustration of proof for Proposition 1. A; is chosen to be [0, ]. For « € [a, @, quz g9(0la) db > n;,
which implies B; = [, @]. Solid lines represent g(-|«) for o € B; while dashed lines represent o ¢ B;.

Proposition 1. The model (1) subject to the constraints (7) is equivalent to the following Bayes model

z~ f(-10)
0~ g(|e) i
a~ch()l{aeBn.nB}

Bi{a:Aig<9|a>deZni}.

Proof. The equivalence follows from considering separately the cases when the constraints are satisfied and
when they are not (see Figure 1). O

where ¢ ensures normalization and

The equivalence derived in Proposition 1 is useful as (8) is an unconstrained Bayesian model on which
inference can proceed as usual, assuming the sets B, ..., B; are determined and N;B; # (). Specifically,
assuming a dataset D = {z(1), ..., ("™} the full Bayesian treatment suggests integrating over the posterior to
obtain expectations of interest. We focus on two alternatives due to computational consideration: empirical
Bayes and maximum posterior.

In the case of empirical Bayes (EB) we obtain a point estimate for o by maximizing the posterior p(«|D)

o =argmax h(«) /f(D|9)g(9|a) de
subject to . € By N---N By (9)

and use a* to compute probabilities of interest. For example, we can classify a new example = by
= argmax [ (ylz.0)g(6]a") b,
y 0

A second alternative that may be used when the integration (9) is computationally intractable is maximum
posterior (MAP) where p(a, 0|D) is maximized to obtain point estimates for both «,

(a",0%) =argmax f(D|6)g(60|a)h(c)
subject to a € By N---N Bj. (10)

In this case new examples may be classified as

j = arg max f (y|z, 0.
Y



In general, it is often hard to invert the constraints (7) and obtain the sets B1,..., B; in Proposition 1.
In the next two sections we derive the inversion for the case of linear constraints with either a Dirichlet
or a Gaussian prior. The maximization problems (9), (10) may be solved using standard interior point
optimization.

3 Dirichlet Prior

Dirichlet prior g(f|«) applies to a variety of models f(z|f) whose parameters take values in the simplex
HePn_lz{QER”:@ZO,Z&:I}. (11)

In particular, it is often used in conjunction with a multinomial f(z|6) modeling the appearance of words
or short phrases called n-grams. The MAP estimate for f(z|6) = Mult(6), g(f|«) = Dir(«) modifies the
observed word counts by adding «; to the count of word ¢ in the text and re-normalizing the modified count
vector to form a probability distribution. Such models serve a key role in a wide variety of text processing
tasks including language modeling, topic analysis, text classification, and syntactic parsing.

Since each dimension in the parameter vector 6 corresponds directly to the probability that a certain
word or phrase appears, it is easy to construct constraints § € A; that correspond to linguistic knowledge.
In the generative case, such knowledge may correspond to the identification of words that are more popular
than others. For example, the following constraint may correspond to plausible linguistic knowledge

6; > 6; if word 4 is much shorter than word j. (12)

Such a statement may often hold as very long words tend to be uncommon and very short words tend to be
common. However, as (12) is not always true it is best to enforce it with some confidence n; < 1 in order to
prevent poor estimation quality.

As a second example consider the conditional case where different multinomial models with Dirichlet
priors are built separately for different class labels y. In this case domain knowledge may reflect the rela-
tionship between the class label and the words, in addition to the relationship among the words as in (12).
For example, consider the case where the label y corresponds to spam or not spam. It is relatively easy
to come up with a list of keywords affiliated with spam emails (free, information, $) and constrain the
corresponding 6; to be large if the label y equals spam and small otherwise. Such domain knowledge, while
plausible, may not hold always and enforcing it categorically may result in poor estimation quality. On the
other hand, enforcing the constraints with confidence n; < 1 will allow the model to use the constraints when
they apply and avoid them when they do not.

As mentioned in the previous section we focus in this paper on linear constraints (2). Such constraints
are relatively flexible and they are able to capture ordered and axis aligned constraints (3)-(4) which include
the two examples presented above as well as additional special cases such as (5)-(6).

The key to inverting the linear constraints (7) and identifying the sets B; in the case of a Dirichlet prior

is the observation that if X; ~ ijv j=1...,n (X?lj represent independent chi-squared variables with d;
degrees of freedom) then
X K ) (e
SN T X 5y )
It follows that if § ~ Dir (a4, ..., @), we may construct independent random variables Y; ~ Xgaj so that

P jz:agﬂjﬁb =P<X§a¢/j§b>=P Z(aj—b)ngo . (13)
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If Aq,..., A\, are u distinct non-zero values of a; — b, j =1,...,n, and T, ~ ka with 7, &2 Zj a;é(a; —
b, \p), k=1,...,u, (13) becomes equivalent to

= 1 1 [>®sin(2X ) retan™t (At
P> MTi<o0 :777/ sin (5 Xz 7 tan T(/f ) gt (14)
e 2 mJo [T, (4 A3

which is a function of ry,...,r, and thus of a[10].

Solving (14) is a difficult problem since it involves integration over a complex expression of rj which
in turn depend on «a. We suggest to use the Edgeworth expansion to approximate (14). The Edgeworth
expansion states that if X is a random variable with finite moments, mean zero and variance one, then its
density function f can be approximated as either (15) or (16)

f(x)

K3

e ()% (15)

f(@) K3 Kyq K3

—~ =~ 1+ Hz(x)— + Hy(x)— + Hg(x)=. 16

L~ L (@) + Ha) 5+ Holo) 3 (16)
Above, k; is the j-th order cumulant, ¢(z) is the pdf of a standard normal distribution, and H}, are the
Hermite polynomials. Note for arbitrary random variable Y, we can always define X to be Y_EIY] g4 that

el
Edgeworth expansion can be applied. See [4] for more details on the Edgeworth expansion.
The first four cumulants for the random variable Y, AxT% in (14) can be computed rather easily. Since
Te ~ X2, k=1,...,u we have

R1 = E li /\ka
k=1
u
> MTx

k=1
u

K3 = E 8/\zr;C
k=1

Rg4 = Z 48)\%7”]C
k=1

u
= E AkTk
=1

=3 ANpVar[Ti] = 2X0r,
k=1

k=1

Ko = Var

The use of the approximation (15) leads to the following inversion of the probabilistic constraint P(a'6 <

b) >n
p-{oo () =5 () (R 21}

where @ is the cumulative density function (cdf) of a standard normal distribution. The derivation follows
from the fact that ¢(™ (z) = (—1)"H,(z)¢(x).

In theory, function (14) can be approximated to arbitrary precision by using higher order cumulants in
the Edgeworth expansion. For random variable > ,'_; AT} in (14), its higher order cumulants have simple
forms which again depend on 71, ...,7,. This implies that the set B can be approximated arbitrarily closely
at very little computational cost. In practice, approximations such as (15) and (16) that use only the first
four cumulants are often considered adequate and usually work well.

4 Gaussian Prior

The most popular prior for continuous unbounded parameters 8 € R™ is the Gaussian distribution. It is
often used in conjunction with a Gaussian model f(z|0) = N(6,7Y), g(6|p, X) = N(u, ¥) where the posterior
p(0]D) is Gaussian as well. In this case the posterior and various integrals over it have a close form.



In the conditional or discriminative setting, a Gaussian prior is often used in conjunction with linear
regression

flylz,0) = N(GTx,az) yEeR (17)

or logistic regression

fylz,0) = (1 + e_yeTg”)_l ye{-1,+1} (18)

In both cases (17)-(18) a Gaussian prior over 6 is the most popular means of introducing domain knowledge
or regularizing the model.

Specifying domain knowledge by constraining 6 is relatively easy as 61, ..., 6, correspond directly to the
expected values of the data dimensions zi,...,z,. For example, consider modeling a physical population
quantity using a mixture of Gaussians. There may be reasons to believe that some mixture components
correspond to specific groups in the population, enabling the use of domain knowledge to constrain the
parameters of the mixture components. If the constraints are uncertain, introducing probabilistic rather
than hard constraints will be more robust in the event of their failure.

In the conditional case, constraints on # may reflect the relationship among the data and the predictor
variable y. For example in a logistic regression model for classifying document topics, we may enforce |6;| < ¢
for some i corresponding to stop-words or non-content words. The assumption that non-content words such
as the or of do not contribute to the topic is a reasonable one. However, there are cases in which the
constraints may not hold which motivate n < 1.

We turn now to inverting the constraints (2) and identifying the sets B, ..., By if 0 ~ N(u, X). We have

def _ _
u = a0 ~ N(i,0?) where @ = a; y, 0% = a, Ya; and

P(aiTGSbi)Zm@P<u;u§bi_u)Zni

g

by — _
A ) (19)
o

sal p+ 0 () af Sa; < b;

(® is the standard normal cdf). Further details concerning this derivation may be found in [2].

Depending on the problem structure, we may assume the hyperparameter « to be (u,X) or just p (X is
considered fixed in this case). One difficulty is that the MAP or EB optimization problem is specified in
terms of X! while the inverted constraints (19) are specified in terms of 3. This difficulty is not substantial
if ¥ is diagonal as =1 = diag(1/311,...,1/Zmn)-

In situations when ¥ is not a diagonal matrix obtaining the EB or MAP estimator subject to the inverted
constraints is highly non-trivial from an optimization perspective. We propose instead to optimize a surrogate
objective function based on the method of Bregman divergences. More details appear in Appendix A.

5 Experiments

We demonstrate our framework using experiments on synthetic and real-world data. The synthetic data
experiments test the applicability of the framework to the multinomial, Gaussian, and linear regression
cases. The real world experiments test the applicability of the framework to two NLP tasks: sentiment
prediction and readability prediction, both using linear regression.

5.1 Synthetic Data Experiments

We start by evaluating the framework on the problem of estimating multinomial parameters under ordering
constraints. We sampled data from Mult(6) for 6 = (&, £, %, 1, 1) and enforced the probabilistic constraints



A=1{0, <0;,i=1,23andj = 4,5} (Figure 2, top left) and B = {0, > 0;, i = 1,2,3 and j = 4,5}
(Figure 2, bottom left). We used in this and other experiments (unless noted otherwise) a confidence value
of n; = 0.95. We assumed a Dirichlet prior for § ~ Dir(«), and a uniform hyperprior for a.

In the Gaussian case we generated data from three normal distributions N(01,1), N(02,1), N(3,1) for
0 = (61,602,0s5) = (0,1/2,1) and enforced the probabilistic constraints C' = {61 < 2,0, < 03,60, > 0,05 < 1}
(Figure 2, top middle) and D = {6; > 65,05 > 65} (Figure 2, bottom middle).

In the case of linear regression, the samples were drawn from the model y ~ N(37z, 1) where (3 is a 10 di-
mensional randomly generated vector whose first and last 5 components are uniformly distributed on (—1,0)
and (0,1) respectively. We enforced the probabilistic constraints E = {{81,0s,05} < 0,{0s, 05,810} >
Oa {627 64} < {/677 69}} (Figure 27 top I‘lght) and F' = {{ﬂla ﬂSa 55} >0, {/667 587 510} < Oa {ﬁZa 64} > {ﬂ7a 69}}
(Figure 2, bottom right). In this case we applied ridge regularization to both the MLE and the constrained
MLE and report the best results from the following set of ridge parameters {0.001,0.01,0.1,0.2,0.5,1,2,5,10,100}.

In all three cases we observe similar results. When the constraints are correct (top row) incorporat-
ing them via constrained MLE (hard constraints) or MAP, EB (probabilistic constraints) provides higher
estimation accuracy over the non-constrained MLE.

However, when some of the constraints are inaccurate, incorporating them as hard constraints hurts
performance substantially and results in much poorer estimation as compared to the unconstrained MLE.
This is to be expected as hard inaccurate constraints force the estimator away from the true parameters. On
the other hand, incorporating inaccurate probabilistic constraints using MAP or EB performs remarkably
well with almost equal performance to the unconstrained MLE. The inaccurate constraints don’t hurt the
estimator as the constraints are simply ignored due to their clash with the information embedded in the data.
Note that this holds even for high confidence values such as n = 0.95 (our choice for these experiments).
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Figure 2: Average test set performance for multinomial (left), Gaussian (middle) and linear regression (right)
over 20 random train/test splits. Multinomial parameters are estimated by MLE, (hard) constrained MLE,
and probabilistic constraint EB and MAP. Gaussian means and regression parameters are estimated by MLE,
(hard) constrained MLE and probabilistic constraint MAP with either diagonal or full covariance matrix.
Ridge regularization is applied to both MLE and constrained MLE for linear regression. In all three cases,
the top row corresponds to correct constraints while the bottom row corresponds to incorrect constraints.
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Table 1: Words chosen for parameter constraints for sentiment prediction. Superscript numbers indicate the
movie critic. Italics blue words indicate positive sentiment while non-italics black words indicate negative
sentiment.

5.2 Sentiment and Readability Prediction

To test the validity of the framework on real world data we experimented with two NLP tasks: sentiment
and readability prediction where the underlying model is linear regression.

For sentiment prediction, we randomly chose 2 out of 4 movie critics from the Cornell sentiment scale
datasets', which results in collections of 1027 and 1307 documents respectively, with 4 sentiment levels
ranging from 1 (very bad) to 4 (very good). For readability prediction, we used the weekly reader dataset,
obtained by crawling the Weekly Reader? commercial website after receiving special permission. The read-
ability dataset contains a total of 1780 documents, with 4 readability levels ranging from 2 to 5 indicating
the school grade levels of the intended audience. Preprocessing includes lower-casing, stop word removal,
stemming, and selecting 1000 top features based on document frequency. The predictor variable is also
centered for ease of applying parameter constraints.

The probabilistic constraints for the sentiment prediction experiment were developed by one of the authors
after being presented with the vocabulary of the dataset. The author was asked to pick two subsets of the
vocabulary - one associated with positive sentiment and one with negative sentiment. A total of 190 and
154 words were chosen for the two critics. A subset of these words starting with ‘a’ are listed in Table 1.
For words that are deemed indicative of positive sentiment, we enforce 8; > b for some nonnegative number
b as the parameter constraints. Similarly, we enforce 8; < —b for the negative words.

In the case of readability prediction, we assume that the appearance of longer words implies higher
readability level than the appearance of shorter words. To this end, we randomly chose 600 pairs of words
of different length, and required that the parameters corresponding to the longer words have a higher value
than the parameters corresponding to the shorter words. Note that in both the sentiment and readability
cases the constraints represent reasonable domain knowledge but may not be entirely accurate.

Figure 3 compares ridge regression, constrained ridge regression and MAP with a full covariance ma-
trix. We chose to use a full rather than a diagonal matrix due to the correlation between the regression
parameters. The ridge parameter was chosen from the set {0.2,0.5,1,2,5}. Variance o of the linear regres-
sion model (17) is assumed to lie in {0.5,1,2} and A in (20) takes the form of 71 where 7 is chosen from
{0.01,0.05,0.1,0.2,0.3}. The parameter value bound b in sentiment prediction is set to be 0.

The results shown in Figure 3 illustrate that the probabilistic constraints help improve accuracy over the
unconstrained MLE. More impressive is the fact that they result in a substantial improvement in modeling
accuracy also over the (hard) constrained MLE. This is due to the uncertain nature of the constraints and
the fact that some of the constraints do not hold. This underscores the main point of the paper that domain
knowledge is often uncertain and better enforced using probabilistic parameter constraints rather than hard
ones.

It is worth mentioning that the framework is not sensitive to the choice of 7 for a broad region of possible
1. For sentiment prediction, we have experimented with n being equal to 0.75, 0.85 and 0.95, and parameter
value bound b being equal to 0, 0.1 and 0.5. For all those combinations of parameters, we found that the
graphs are quite similar to Figure 3 except for individual values of likelihood or accuracy. This is indeed a
desirable property for real-world applications when the confident level expressed by a domain expert may be
subject to uncertainty.

1http://www.cs.cornell.edu/People/pabo/movie—review—data
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Figure 3: Test-set mean square error (MSE, top) and accuracy rates (bottom) over 10 iterations for sentiment
prediction (left, middle corresponding to the two critics) and readability prediction (right). Regression
parameters are estimated by ridge, (hard) constrained ridge and probabilistic constraint MAP with full
covariance matrix.

6 Discussion

Incorporating knowledge into the learning process has been studied extensively by the statistics community.
Frequentists use it to define the model and constrain the parameter space. Bayesians use it to define the
model and the prior over the parameter space. In the Bayesian case, uncertainty is usually handled by
using hierarchical models with diffuse hyperpriors [1]. Obtaining domain knowledge is addressed by prior
elicitation in the subjective Bayes community [7].

Our work differs from the standard prior elicitation approach in that we do not elicit the prior directly.
Rather we elicit parameter constraints and confidence values which are used in turn to derive an equivalent
prior in a hierarchical Bayes setting via Proposition 1. Standard Bayesian inference can then proceed on the
equivalent model in the usual manner.

The advantage of doing so is that it is much easier for domain experts to specify constraints and confidence
values. Directly specifying a prior is considerably less intuitive as it makes it hard to discern the confidence
with which specific assertions are made. Thus, our contribution is in nicely separating the domain assertions
and their confidence values in a simple and intuitive way.

In the machine learning community, parameter uncertainty has been addressed by a variety of techniques,
many of which are algorithmic in nature. Related research on incorporating parameter uncertainty are
[6, 5] which consider a linear classifier with a Gaussian prior over the model parameter, and update the
hyperparameters online using probabilistic parameter constraints.

Using experiments on synthetic and real world data we show that uncertain domain knowledge can be
effectively incorporated in practice. The use of uncertain constraints leads to high modeling accuracy when
the constraints are accurate. In case the constraints are inaccurate, the uncertainty prevents the model from
performing poorly which stands in contrast to hard constraints that push the parameters away from their
true values.

Specifying domain knowledge in real world situations is sometimes bound to be inaccurate. Our approach
enables the use of a large number of domain statements without worrying too much about the validity of



each specific statement. Our experiments indicate that it works well for natural language problems where
domain knowledge is relatively easy to specify. It is likely that the framework performs similarly well in
other areas where domain knowledge is available and the underlying model has a Dirichlet or Gaussian prior.
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A Bregman Projection

We consider the problem of obtaining the MAP for (6, «), with a = (i, ¥), @ ~ N (1, ) in the case of linear
constraints with a non-diagonal ¥. We make a standard assumption regarding the hyperprior h(«a)

h(p,71) o exp (—;tr (zlA)> (20)

(A is a positive definite matrix) which is equivalent to stating that X' ~ Wishart, 1 (A™"), p[S7" is
uniform. Note that the techniques introduced below apply to arbitrary f(:|#) as no assumptions are made
regarding the particular choice of f.

In the case of the non-diagonal ¥ solving the constrained MAP problem (10) is highly non-trivial. We
propose to use an iterative optimization technique, and during the step of optimizing 3 with fixed 6 and p,
maximize instead a surrogate objective function based on the method of Bregman projection. Specifically,
we solve the following problem to obtain the point estimator for ¥ for fixed 6 and p

min Dyogbed (S A+ (0= (0~ 1)) (21)
by —a; p ?
t. Yaa; ) < [ ——L i=1,...,L
s.t tr( a;a; ) < (@1(771-)) , i eyl

The divergence above is the LogDet Bregman divergence between matrices [3]. The hyperparameter 3
estimated by (21) is then used when we subsequently optimize over 6 or p.

The problem (21) has the same constraints as the original subproblem but a different objective function
which is originally Dyegpet(A + (6 — 1)(0 — p) 7, 3). By switching the arguments of the objective function,
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we are able to solve the problem using the method of Bregman projections [3] which achieves the optimal
solution by sequentially projecting to different convex regions defined by the corresponding constraints.

A useful property of Bregman projection is that it can be used to ensure the positive definiteness of X!
and Y. when starting from a positive definite matrix A. This results immediately from the fact that each

update of £¥~! by projecting the matrix divergence onto the convex region defined by tr (Eaiaj) < z; takes

~1
the following form %! = (A—I— (0—p)(0— M)T) +va;a] where v = max {O, (L’Ta(ﬁa(izﬁ%z:z;))ﬁ’);z)’ } > 0.

Detailed derivations are omitted due to lack of space.
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