
Convex Optimization Methods for Dimension Reduction and

Coefficient Estimation in Multivariate Linear Regression

Zhaosong Lu∗ Renato D. C. Monteiro† Ming Yuan‡

January 10, 2008 (Revised: March 6, 2009)

Abstract

In this paper, we study convex optimization methods for computing the trace norm regular-
ized least squares estimate in multivariate linear regression. The so-called factor estimation and
selection (FES) method, recently proposed by Yuan et al. [22], conducts parameter estimation and
factor selection simultaneously and have been shown to enjoy nice properties in both large and
finite samples. To compute the estimates, however, can be very challenging in practice because
of the high dimensionality and the trace norm constraint. In this paper, we explore a variant
of Nesterov’s smooth method [20] and interior point methods for computing the penalized least
squares estimate. The performance of these methods is then compared using a set of randomly
generated instances. We show that the variant of Nesterov’s smooth method [20] generally out-
performs the interior point method implemented in SDPT3 version 4.0 (beta) [19] substantially .
Moreover, the former method is much more memory efficient.

Key words: Cone programming, smooth saddle point problem, first-order method, interior point
method, multivariate linear regression, trace norm, dimension reduction.
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1 Introduction

Multivariate linear regression is routinely used in statistics to model the predictive relationships of
multiple related responses on a common set of predictors. In general multivariate linear regression,
we have l observations on q responses b = (b1, . . . , bq)′ and p explanatory variables a = (a1, . . . , ap)′,
and

B = AU + E, (1)
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where B = (b1, . . . ,bl)′ ∈ <l×q and A = (a1, . . . ,al)′ ∈ <l×p consists of the data of responses and
explanatory variables, respectively, U ∈ <p×q is the coefficient matrix, E = (e1, . . . , el)′ ∈ <l×q is
the regression noise, and all eis are independently sampled from N (0,Σ).

Classical estimators for the coefficient matrix U such as the least squares estimate are known to
perform sub-optimally because they do not utilize the information that the responses are related.
This problem is exacerbated when the dimensionality p or q is moderate or large. Linear factor models
are widely used to overcome this problem. In the linear factor model, the response B is regressed
against a small number of linearly transformed explanatory variables, which are often referred to as
factors. More specifically, the linear factor model can be expressed as

B = FΩ + E, (2)

where Ω ∈ <r×q, and F = AΓ for some Γ ∈ <p×r and r ≤ min{p, q}. The columns of F , namely,
Fj (j = 1, . . . , r) represent the so-called factors. Clearly (2) is an alternative representation of (1)
with U = ΓΩ, and the dimension of the estimation problem reduces as r decreases. Many popular
methods including canonical correction (Hotelling [9, 10]), reduced rank (Anderson [1], Izenman [11],
Reinsel and Velu [18]), principal components (Massy [14]), partial least squares (Wold [21]) and joint
continuum regression (Brooks and Stone [6]) among others can all be formulated in the form of linear
factor regression. They differ in the way in which the factors are determined.

Given the number of factors r, estimation in the linear factor model most often proceeds in two
steps: the factors, or equivalently Γ, are first constructed, and then Ω is estimated by least squares
for (2). It is obviously of great importance to be able to determine r for (2). For a smaller number
of factors, a more accurate estimate is expected since there are fewer free parameters. But too few
factors may not be sufficient to describe the predictive relationships. In all of the aforementioned
methods, the number of factors r is chosen in a separate step from the estimation of (2) through
either hypothesis testing or cross-validation. The coefficient matrix is typically estimated on the
basis of the number of factors selected. Due to its discrete nature, this type of procedure can be very
unstable in the sense of Breiman [5]: small changes in the data can result in very different estimates.

Recently, Yuan et al. [22] proposed a novel method that can simultaneously choose the number
of factors, determine the factors and estimate the factor loading matrix Ω. It has been demonstrated
that the so-called factor estimation and selection (FES) method combines and retains the advantages
of the existing methods. FES is a constrained least square estimate where the trace norm or the
nuclear norm (or the Ky Fan m-norm where m := min{p, q}) of the coefficient matrix U is forced to
be smaller than an upper bound:

min
U

Tr((B −AU)W (B −AU)′)

s.t.
m∑
i=1

σi(U) ≤M.
(3)

where W is a positive definite weight matrix. Common choices of the weight matrix W include Σ−1

and I. To fix ideas, we assume throughout the paper that W = I. Under this assumption, (3) is
equivalent to

min
U

‖B −AU‖2F

s.t.
m∑
i=1

σi(U) ≤M.
(4)
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It is shown in Yuan et al. [22] that the constraint used by FES encourages sparsity in the factor space
and at the same time gives shrinkage coefficient estimates and thus conducts dimension reduction
and estimation simultaneously in the multivariate linear model. Recently, Bach [2] further provided
necessary and sufficient conditions for rank consistency of trace norm minimization with the square
loss by considering the Lagrangian relaxation of (4). He also proposed a Newton-type method for
finding an approximate solution to the latter problem. It shall be mentioned that his method is only
suitable for the problems where p and q are not too large.

In addition, the trace norm relaxation has been used in literature for rank minimization problem.
In particular, Fazel et al. [7] considered minimizing the rank of a matrix U subject to U ∈ C, where
C is a closed convex set. They proposed a convex relaxation to this problem by replacing the rank of
U by the trace norm of U . Recently, Recht et al. [17] showed that under some suitable conditions,
such a convex relaxation is tight when C is an affine manifold. The authors of [17] also discussed
some first- and second-order optimization methods for solving the trace norm relaxation problem.

The goal of this paper is to explore convex optimization methods, namely, a variant of Nesterov’s
smooth method [20], and interior point methods for solving (4). We also compare the performance
of these methods on a set of randomly generated instances. We show that the variant of Nesterov’s
smooth method [20] generally outperforms the interior point method implemented in the code SDPT3
version 4.0 (beta) [19] substantially, and that the former method requires much less memory than
the latter one.

The rest of this paper is organized as follows. In Subsection 1.1, we introduce the notation that
is used throughout the paper. In Section 2, we present some technical results that are used in our
presentation. In Section 3, we provide a simplification for problem (4), and present cone programming
and smooth saddle point reformulations for it. In Section 4, we review a variant of Nesterov’s
smooth method [20] and discuss the details of its implementation for solving the aforementioned
smooth saddle point reformulations of (4). In Section 5, we present computational results comparing
a well-known second-order interior-point method applied to the aforementioned cone programming
reformulations of (4) with the variant of Nesterov’s smooth method for solving smooth saddle point
reformulations of (4). Finally, we present some concluding remarks in Section 6 and state some
additional technical results in the Appendix.

1.1 Notation

The following notation is used throughout our paper. For any real number α, [α]+ denotes the
nonnegative part of α, that is, [α]+ = max{α, 0}. The symbol <p denotes the p-dimensional Euclidean
space. We denote by e the vector of all ones whose dimension should be clear from the context. For
any w ∈ <p, Diag(w) denotes the p × p diagonal matrix whose ith diagonal element is wi for
i = 1, . . . , p. The Euclidean norm in <p is denoted by ‖ · ‖.

We let Sn denote the space of n × n symmetric matrices, and Z � 0 indicate that Z is positive
semidefinite. We also write Sn+ for {Z ∈ Sn : Z � 0}, and Sn++ for its interior, the set of positive
definite matrices in Sn. For any Z ∈ Sn, we let λi(Z), for i = 1, ..., n, denote the ith largest
eigenvalue of Z, λmin(Z) (resp., λmax(Z)) denote the minimal (resp., maximal) eigenvalue of Z, and
define ‖Z‖∞ := max1≤i≤n |λi(Z)| and ‖Z‖1 =

∑n
i=1 |λi(Z)|. Either the identity matrix or operator

will be denoted by I.
The space of all p × q matrices with real entries is denoted by <p×q. Given matrices X and

Y in <p×q, the standard inner product is defined by X • Y = Tr(XTY ), where Tr(·) denotes the
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trace of a matrix. The operator norm and the Frobenius norm of a p × q-matrix X are defined as
‖X‖ := max{‖Xu‖ : ‖u‖ ≤ 1} = [λmax(XTX)]1/2 and ‖X‖F :=

√
X •X, respectively. Given any

X ∈ <p×q, we let vec(X) denote the vector in <pq obtained by stacking the columns of X according
to the order in which they appear in X, and σi(X) denote the ith largest singular value of X for
i = 1, . . . ,min{p, q}. (Recall that σi(X) = [λi(XTX)]1/2 = [λi(XXT )]1/2 for i = 1, . . . ,min{p, q}.)
Also, let G : <p×q → <(p+q)×(p+q) be defined as

G(X) :=
(

0 XT

X 0

)
, ∀X ∈ <p×q. (5)

The following sets are used throughout the paper:

Bp×qF (r) := {X ∈ <p×q : ‖X‖F ≤ r},
∆n

=(r) := {Z ∈ Sn : ‖Z‖1 = r, Z � 0},
∆n
≤(r) := {Z ∈ Sn : ‖Z‖1 ≤ r, Z � 0},

Lp :=
{
x ∈ <p : x1 ≥

√
x2

2 + . . .+ x2
p

}
,

where the latter is the well-known p-dimensional second-order cone.
Let U be a normed vector space whose norm is denoted by ‖ · ‖U . The dual space of U , denoted

by U∗, is the normed vector space consisting of all linear functionals of u∗ : U → <, endowed with
the dual norm ‖ · ‖∗U defined as

‖u∗‖∗U = max
u
{〈u∗, u〉 : ‖u‖U ≤ 1}, ∀u∗ ∈ U∗,

where 〈u∗, u〉 := u∗(u) is the value of the linear functional u∗ at u.
If V denotes another normed vector space with norm ‖ · ‖V , and E : U → V∗ is a linear operator,

the operator norm of E is defined as

‖E‖U ,V = max
u
{‖Eu‖∗V : ‖u‖U ≤ 1}. (6)

A function f : Ω ⊆ U → < is said to be L-Lipschitz-differentiable with respect to ‖ · ‖U if it is
differentiable and

‖∇f(u)−∇f(ũ)‖∗U ≤ L‖u− ũ‖U , ∀u, ũ ∈ Ω. (7)

2 Some results on eigenvalues and singular values

In this subsection, we establish some technical results about eigenvalues and singular values which
will be used in our presentation.

The first result gives some well-known identities involving the maximum eigenvalue of a real
symmetric matrix.

Lemma 2.1. For any Z ∈ Sn and scalars α > 0 and β ∈ <, the following statements hold:

λmax(Z) = max
W∈∆n

=(1)
Z •W, (8)

[αλmax(Z) + β]+ = max
W∈∆n

≤(1)
αZ •W + βTr(W ). (9)

4



Proof. Identity (8) is well-known. We have

[αλmax(Z) + β]+ = [λmax(αZ + βI)]+ = max
t∈[0,1]

tλmax(αZ + βI)

= max
t∈[0,1],W∈∆n

=(1)
t(αZ + βI) •W = max

W∈∆n
≤(1)

(αZ + βI) •W,

where the third equality is due to (8) and the fourth equality is due to the fact that tW takes all
possible values in ∆n

≤(1) under the condition that t ∈ [0, 1] and W ∈ ∆n
=(1).

The second result gives some characterizations of the sum of the k largest eigenvalues of a real
symmetric matrix.

Lemma 2.2. Let Z ∈ Sn and integer 1 ≤ k ≤ n be given. Then, the following statements hold:

a) For t ∈ <, we have
k∑
i=1

λi(Z) ≤ t ⇔


t− ks− Tr(Y ) ≥ 0,
Y − Z + sI � 0,
Y � 0,

for some Y ∈ Sn and s ∈ <;

b) The following identities hold:

k∑
i=1

λi(Z) = min
Y ∈Sn+

max
W∈∆n

=(1)
k(Z − Y ) •W + Tr(Y ) (10)

= max
W∈Sn

{Z •W : Tr(W ) = k, 0 �W � I}. (11)

c) For every scalar α > 0 and β ∈ <, the following identities hold:[
α

k∑
i=1

λi(Z) + β

]+

= min
Y ∈Sn+

max
W∈∆n

≤(1)
k(αZ − Y ) •W + [β + Tr(Y )] Tr(W ) (12)

= max
W∈Sn, t∈<

{αZ •W + βt : Tr(W ) = tk, 0 �W � tI, 0 ≤ t ≤ 1} .(13)

Proof. a) This statement is proved on pages 147-148 of Ben-Tal and Nemirovski [3].
b) Statement (a) clearly implies that

k∑
i=1

λi(Z) = min
s∈<,Y ∈Sn

{ks+ Tr(Y ) : Y + sI � Z, Y � 0}. (14)

Noting that the condition Y +sI � Z is equivalent to s ≥ λmax(Z−Y ), we can eliminate the variable
s from the above min problem to conclude that

k∑
i=1

λi(Z) = min {kλmax(Z − Y ) + Tr(Y ) : Y ∈ Sn+}. (15)
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This relation together with (8) clearly implies identity (10). Moreover, noting that the max problem
(11) is the dual of min problem (14) and that they both have strictly feasible solutions, we conclude
that identity (11) holds in view of a well-known strong duality result.

c) Using (15), the fact that infx∈X [x]+ = [inf X]+ for any X ⊆ < and (9), we obtain[
α

k∑
i=1

λi(Z) + β

]+

=

[
k∑
i=1

λi

(
αZ +

β

k
I

)]+

=
[

min
Y ∈Sn+

kλmax

(
αZ +

β

k
I − Y

)
+ Tr(Y )

]+

= min
Y ∈Sn+

[
kλmax

(
αZ +

β

k
I − Y

)
+ Tr(Y )

]+

= min
Y ∈Sn+

max
W∈∆n

≤(1)
k

(
αZ +

β

k
I − Y

)
•W + Tr(Y )Tr(W ),

from which (12) immediately follows. Moreover, using (11), the fact that [γ]+ = maxt∈[0,1] tγ for
every γ ∈ < and performing the change of variable Y = tỸ in the last equality below, we obtain[

α
k∑
i=1

λi(Z) + β

]+

=

[
k∑
i=1

λi

(
αZ +

β

k
I

)]+

=
[

max
Ỹ ∈Sn

{(
αZ +

β

k
I

)
• Ỹ : Tr(Ỹ ) = k, 0 � Ỹ � I

}]+

= max
Ỹ ∈Sn, t∈<

{
t

(
αZ +

β

k
I

)
• Ỹ : Tr(Ỹ ) = k, 0 � Ỹ � I, 0 ≤ t ≤ 1

}
= max

Y ∈Sn, t∈<

{(
αZ +

β

k
I

)
• Y : Tr(Y ) = tk, 0 � Y � tI, 0 ≤ t ≤ 1

}
,

i.e., (13) holds.

Lemma 2.3. Let X ∈ <p×q be given. Then, the following statements hold:

a) the p + q eigenvalues of the symmetric matrix G(X) defined in (5), arranged in nonascending
order, are

σ1(X), · · · , σm(X), 0, · · · , 0,−σm(X), · · · ,−σ1(X),

where m := min(p, q);

b) For any positive integer k ≤ m, we have

k∑
i=1

σi(X) =
k∑
i=1

λi(G(X)).

Proof. Statement (a) is proved on page 153 of [3] and statement (b) is an immediate consequence
of (a).

The following result about the sum of the k largest singular values of a matrix follows immediately
from Lemmas 2.2 and 2.3.
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Proposition 2.4. Let X ∈ <p×q and integer 1 ≤ k ≤ min{p, q} be given and set n := p+ q. Then:

a) For t ∈ <, we have
k∑
i=1

σi(X) ≤ t ⇔


t− ks− Tr(Y ) ≥ 0,
Y − G(X) + sI � 0,
Y � 0,

for some Y ∈ Sn and s ∈ <;

b) The following identities hold:

k∑
i=1

σi(X) = min
Y ∈Sn+

max
W∈∆n

=(1)
k(G(X)− Y ) •W + Tr(Y ) (16)

= max
W∈Sn

{G(X) •W : Tr(W ) = k, 0 �W � I}. (17)

c) For every scalar α > 0 and β ∈ <, the following identities hold:[
α

k∑
i=1

σi(X) + β

]+

= min
Y ∈Sn+

max
W∈∆n

≤(1)
k(αG(X)− Y ) •W + [β + Tr(Y )] Tr(W ) (18)

= max
W∈Sn, t∈<

{αG(X) •W + βt : Tr(W ) = tk, 0 �W � tI, 0 ≤ t ≤ 1} . (19)

3 Problem reformulations

This section consists of three subsections. The first subsection shows that the restricted least squares
problem (4) can be reduced to one which does not depend on the (usually large) number of rows of
the matrices A and/or B. In the second and third subsections, we provide cone programming and
smooth saddle point reformulations for (4), respectively.

3.1 Problem simplification

Observe that the number of rows of the data matrices A and B which appear in (4) is equal to the
number of observations l, which is usually quite large in many applications. However, the size of the
decision variable U in (4) does not depend on l. In this subsection we show how problem (4) can be
reduced to similar types of problems in which the new matrix A is a p×p diagonal matrix and hence
to problems which do not depend on l. Clearly, from a computational point of view, the resulting
formulations need less storage space and can be more efficiently solved.

Since in most applications, the matrix A has full column rank, we assume that this property
holds throughout the paper. Thus, there exists an orthonormal matrix Q ∈ <p×p and a positive
diagonal matrix Λ ∈ <p×p such that ATA = QΛ2QT . Letting

X := QTU, H := Λ−1QTATB, (20)

we have

‖B −AU‖2F − ‖B‖2F = ‖AU‖2F − 2 (AU) •B = Tr(UTATAU)− 2 Tr(UTATB)
= Tr(UTQΛ2QTU)− 2 Tr(UTQΛH)
= ‖ΛX‖2F − 2(ΛX) •H = ‖ΛX −H‖2F − ‖H‖2F .
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Noting that the singular values of X = QTU and U are identical, we immediately see from the above
identity that (4) is equivalent to

min
X

1
2‖ΛX −H‖

2
F

s.t.
m∑
i=1

σi(X) ≤M,
(21)

where Λ and H are defined in (20).
In view of Theorem 6.2, we observe that for any λ ≥ 0 and ε ≥ 0, any ε-optimal solution Xε of

the following Lagrangian relaxation problem

min
X

1
2
‖ΛX −H‖2F + λ

m∑
i=1

σi(X). (22)

is an ε-optimal solution of problem (21) with M =
∑m

i=1 σi(Xε). In practice, we often need to solve
problem (21) for a sequence of M values. Hence, one way to solve such problems is to solve problem
(22) for a sequence of λ values.

We will later present convex optimization methods for approximately solving the formulations
(21) and (22), and hence, as a by-product, formulation (4).

Before ending this subsection, we provide bounds on the optimal solutions of problems (21) and
(22).

Lemma 3.1. For every M > 0, problem (21) has a unique optimal solution X∗M . Moreover,

‖X∗M‖F ≤ r̃x := min
{

2‖ΛH‖F
λ2

min(Λ)
,M

}
. (23)

Proof. Using the fact that Λ is a p×p positive diagonal matrix, it is easy to see that the objective
function of (21) is a (quadratic) strongly convex function, from which we conclude that (21) has a
unique optimal solution X∗M . Since ‖H‖2F /2 is the value of the objective function of (21) at X = 0,
we have ‖ΛX∗M −H‖2F /2 ≤ ‖H‖2F /2, or equivalently ‖ΛX∗M‖2F ≤ 2(ΛH) •X∗M . Hence, we have

(λmin(Λ))2 ‖X∗M‖2F ≤ ‖ΛX∗M‖2F ≤ 2(ΛH) •X∗M ≤ 2‖X∗M‖F ‖ΛH‖F ,

which implies that ‖X∗M‖F ≤ 2‖ΛH‖F /λ2
min(Λ). Moreover, using the fact that ‖X‖2F =

∑m
i=1 σ

2
i (X)

for any X ∈ <p×q, we easily see that

‖X‖F ≤
m∑
i=1

σi(X). (24)

Since X∗M is feasible for (21), it then follows from (24) that ‖X∗M‖F ≤M . We have thus shown that
inequality (23) holds.

Lemma 3.2. For every λ > 0, problem (22) has a unique optimal solution X∗λ. Moreover,

‖X∗λ‖F ≤
m∑
i=1

σi(X∗λ) ≤ rx := min

{
‖H‖2F

2λ
,

m∑
i=1

σi(Λ−1H)

}
. (25)
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Proof. As shown in Lemma 3.1, the function X ∈ <p×q → ‖ΛX −H‖2F is a (quadratic) strongly
convex function. Since the term λ

∑m
i=1 σi(X) is convex in X, it follows that the objective function

of (22) is strongly convex, from which we conclude that (22) has a unique optimal solution X∗λ. Since
‖H‖2F /2 is the value of the objective function of (22) at X = 0, we have

λ

m∑
i=1

σi(X∗λ) ≤ 1
2
‖ΛX∗λ −H‖2F + λ

m∑
i=1

σi(X∗λ) ≤ 1
2
‖H‖2F . (26)

Also, considering the objective function of (22) at X = Λ−1H, we conclude that

λ

m∑
i=1

σi(X∗λ) ≤ 1
2
‖ΛX∗λ −H‖2F + λ

m∑
i=1

σi(X∗λ) ≤ λ
m∑
i=1

σi(Λ−1H). (27)

Now, (25) follows immediately from (24), (26) and (27).

3.2 Cone programming reformulations

In this subsection, we provide cone programming reformulations for problems (21) and (22), respec-
tively.

Proposition 3.3. Problem (22) can be reformulated as the following cone programming:

min
r,s,t,X,Y

2r + λt

s.t.

 r + 1
r − 1

vec(ΛX −H)

 ∈ Lpq+2,

Y − G(X) + sI � 0,

ms+ Tr(Y )− t ≤ 0, Y � 0,

(28)

where (r, s, t,X, Y ) ∈ < × <× <× <p×q × Sn with n := p+ q and G(X) is defined in (5).

Proof. We first observe that (22) is equivalent to

min
r,X

2r + λt

s.t. ‖ΛX −H‖2F ≤ 4r
m∑
i=1

σi(X)− t ≤ 0.
(29)

Using Lemma 2.3 and the following relation

4r ≥ ‖v‖2 ⇔

 r + 1
r − 1
v

 ∈ Lk+2,

for any v ∈ <k and r ∈ <, we easily see that (29) is equivalent to (28)

The following proposition can be similarly established.
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Proposition 3.4. Problem (21) can be reformulated as the following cone programming:

min
r,s,X,Y

2r

s.t.

 r + 1
r − 1

vec(ΛX −H)

 ∈ Lpq+2,

Y − G(X) + sI � 0,

ms+ Tr(Y ) ≤M, Y � 0,

(30)

where (r, s,X, Y ) ∈ < × <× <p×q × Sn with n := p+ q and G(X) is defined in (5).

3.3 Smooth saddle point reformulations

In this section, we provide smooth saddle point reformulations for problems (21) and (22).

3.3.1 Smooth saddle point reformulations for (22)

In this subsection, we reformulate (22) into a smooth saddle point problem that can be suitably
solved by a variant of Nesterov’s smooth method as described in Subsections 4.1 and 4.2.

We start by introducing the following notation. For every t ≥ 0, we let Ωt denote the set defined
as

Ωt := {W ∈ Sp+q : 0 �W � tI/m,Tr(W ) = t}. (31)

Theorem 3.5. For some ε ≥ 0, assume that Xε is an ε-optimal solution of the smooth saddle point
problem

min
X∈Bp×qF (rx)

max
W∈Ω1

{
1
2
‖ΛX −H‖2F + λmG(X) •W

}
, (32)

where G(X) and rx are defined in (5) and (25), respectively. Then, Xε is an ε-optimal solution of
problem (22).

Proof. This result follows immediately from Lemma 3.2 and relations (17) with k = m, (22) and
(31) with t = 1.

In addition to the saddle point (min-max) reformulation (32), it is also possible to develop an
alternative saddle point reformulation based on the identity (16). These two reformulations can
in turn be solved by a suitable method, namely Nesterov’s smooth approximation scheme [16], for
solving these min-max type problems, which we will not describe in this paper. In our computational
experiments, we found that, among these two reformulations, the first one is computationally superior
than the later one. Details of the computational comparison of these two approaches can be found
in the technical report (see [13]), which this paper originated from.

A more efficient method than the ones outlined in the previous paragraph for solving (22) is
based on solving the dual of (32), namely the problem

max
W∈Ω1

min
X∈Bp×qF (rx)

{
1
2
‖ΛX −H‖2F + λmG(X) •W

}
, (33)
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whose objective function has the desirable property that it has Lipschitz continuous gradient (see
Subsection 4.2 for specific details). In Subsections 4.1 and 4.2, we describe an algorithm, namely, a
variant of Nesterov’s smooth method, for solving (33) which, as a by-product, yields a pair of primal
and dual nearly-optimal solutions, and hence a nearly-optimal solution of (32). Finally, Section 5
only reports computational results for the approach outlined in this paragraph since it is far superior
than the other two approaches outlined in the previous paragraph.

3.3.2 Smooth saddle point reformulations for (21)

In this subsection, we will provide a smooth saddle point reformulation for (21) that can be suitably
solved by a variant of Nesterov’s smooth method as described in Subsection 4.1.

By directly applying Theorem 6.1 to problem (21), we obtain the following result.

Lemma 3.6. Let m := min(p, q). Suppose that X̄ ∈ <p×q satisfies
m∑
i=1

σi(X̄) < M and let γ be a

scalar such that γ ≥ γ̄, where γ̄ is given by

γ̄ =
‖ΛX̄ −H‖2F/2

M −
m∑
i=1

σi(X̄)
. (34)

Then, the following statements hold:

a) The optimal values of (21) and the penalized problem

min
X∈<p×q

{
1
2
‖ΛX −H‖2F + γ

[
m∑
i=1

σi(X)−M

]+}
(35)

coincide, and the optimal solution solution X∗M of (21) is an optimal solution of (35);

b) if ε ≥ 0 and Xε is an ε-optimal solution of problem (35), then the point Xε defined as

Xε :=
Xε + θX̄

1 + θ
, where θ :=

[
m∑
i=1

σi(Xε)−M
]+

M −
m∑
i=1

σi(X̄)
, (36)

is an ε-optimal solution of (21).

We next provide a smooth saddle point reformulation for problem (21).

Theorem 3.7. Let m := min(p, q). Suppose that X̄ ∈ <p×q satisfies
m∑
i=1

σi(X̄) < M and let γ be a

scalar such that γ ≥ γ̄, where γ̄ is defined in (34). For some ε ≥ 0, assume that Xε is an ε-optimal
solution of the problem

min
X∈Bp×qF (r̃x)

max
(t,W )∈Ω̃

{
1
2
‖ΛX −H‖2F + γ(mG(X) •W −Mt)

}
, (37)

11



where r̃x is defined in (23) and Ω̃ is defined as

Ω̃ := {(t,W ) ∈ < × Sp+q : W ∈ Ωt, 0 ≤ t ≤ 1}. (38)

Let Xε be defined in (36). Then, Xε is an ε-optimal solution of (21).

Proof. Let X∗M denote the unique optimal solution of (21). Then, X∗M is also an optimal solution
of (35) in view of Lemma 3.6(a), and X∗M satisfies X∗M ∈ B

p×q
F (r̃x) due to Lemma 3.1. Also, relation

(19) with α = 1, β = −M and k = m implies that the objective functions of problems (35) and (37)
are equal to each other over the whole space <p×q. The above observations then imply that X∗M is
also an optimal solution of (37) and that problems (35) and (37) have the same optimal value. Since
by assumption Xε is an ε-optimal solution of (37), it follows that Xε is also an ε-optimal solution of
problem (35). The latter conclusion together with Lemma 3.6(b) immediately yields the conclusion
of the theorem.

The saddle point (min-max) reformulation (37) can be solved by a suitable method, namely,
Nesterov’s smooth approximation scheme [16], which we will not describe in this paper. A more
efficient method for solving (21) is based on solving the dual of (37), namely the problem

max
(t,W )∈Ω̃

min
X∈Bp×qF (r̃x)

{
1
2
‖ΛX −H‖2F + γ(mG(X) •W −Mt)

}
, (39)

whose objective function has the desirable property that it has Lipschitz continuous gradient (see
Subsection 4.3 for specific details). In Subsections 4.1 and 4.3, we describe an algorithm, namely a
variant of Nesterov’s smooth method, for solving (39) which, as a by-product, yields a pair of primal
and dual nearly-optimal solutions, and hence a nearly-optimal solution of (37).

4 Numerical methods

In this section, we discuss numerical methods for solving problem (22). More specifically, Subsection
4.1 reviews a variant of Nesterov’s smooth method [20], for solving a convex minimization problem
over a relatively simple set with a smooth objective function that has Lipschitz continuous gradient.
In Subsections 4.2 and 4.3, we present the implementation details of the variant of Nesterov’s smooth
methd for solving the reformulations (33) of problem (22) and (39) of problem (21), respectively.

The implementation details of the other formulations discussed in the paper, more specifically,
the reformulations (32) of problem (22) and (37) of problem (21) will not be presented here. The
implementation details of some other reformulations of problems (22) and (21) can be found in
Subsection 4.2 of [13].

4.1 Review of a variant of Nesterov’s smooth method

In this subsection, we review a variant of Nesterov’s smooth first-order method [15, 16] that is
proposed by Tseng [20] for solving a class of smooth convex programming (CP) problems.

Let U and V be normed vector spaces with the respective norms denoted by ‖ · ‖U and ‖ · ‖V . We
will discuss a variant of Nesterov’s smooth first-order method for solving the class of CP problems

min
u∈U

f(u) (40)

12



where the objective function f : U → < has the form

f(u) := max
v∈V

φ(u, v), ∀u ∈ U, (41)

for some continuous function φ : U × V → < and nonempty compact convex subsets U ⊆ U and
V ⊆ V. We make the following assumptions regarding the function φ:

B.1 for every u ∈ U , the function φ(u, ·) : V → < is strictly concave;
B.2 for every v ∈ V , the function φ(·, v) : U → < is convex differentiable;
B.3 the function f is L-Lipschitz-differentiable on U with respect to ‖ · ‖U (see (7)).

It is well-known that Assumptions B.1 and B.2 imply that the function f is convex differentiable,
and that its gradient is given by

∇f(u) = ∇uφ(u, v(u)), ∀u ∈ U, (42)

where v(u) denotes the unique solution of (41) (see for example Proposition B.25 of [4]). Moreover,
problem (40) and its dual, namely:

max
v∈V
{g(v) := min

u∈U
φ(u, v)}, (43)

both have optimal solutions u∗ and v∗ such that f(u∗) = g(v∗). Finally, using Assumption B.3,
Lu [12] recently showed that problem (40)-(41) and its dual problem (43) can be suitably solved by
Nesterov’s smooth method [16], simultaneously. We shall notice, however, that Nesterov’s smooth
method [16] requires solving two prox-type subproblems per iteration. More recently, Tseng [20]
proposed a variant of Nesterov’s smooth method described as follows, which needs to solve one prox
subproblem per iteration only.

Let pU : U → < be a differentiable strongly convex function with modulus σU > 0 with respect
to ‖ · ‖U , i.e.,

pU (u) ≥ pU (ũ) + 〈∇pU (ũ), u− ũ〉+
σU
2
‖u− ũ‖2U , ∀u, ũ ∈ U. (44)

Let u0 be defined as
u0 = arg min{pU (u) : u ∈ U}. (45)

By subtracting the constant pU (u0) from the function pU (·), we may assume without any loss of
generality that pU (u0) = 0. The Bregman distance dpU : U ×U → < associated with pU is defined as

dpU (u; ũ) = pU (u)− lpU (u; ũ), ∀u, ũ ∈ U, (46)

where lpU : U × U → < is the “linear approximation” of pU defined as

lpU (u; ũ) = pU (ũ) + 〈∇pU (ũ), u− ũ〉, ∀(u, ũ) ∈ U × U.

Similarly, we can define the function lf (·; ·) that will be used subsequently.
We now describe the variant of Nesterov’s smooth method proposed by Tseng [20] for solving

problem (40)-(41) and its dual problem (43). It uses a sequence {αk}k≥0 of scalars satisfying the
following condition:

0 < αk ≤

(
k∑
i=0

αi

)1/2

, ∀k ≥ 0. (47)
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Clearly, (47) implies that α0 ∈ (0, 1].

Variant of Nesterov’s smooth algorithm:

Let u0 ∈ U and {αk}k≥0 satisfy (45) and (47), respectively.

Set usd0 = u0, v0 = 0 ∈ V, τ0 = 1 and k = 1;

1) Compute v(uk−1) and ∇f(uk−1).

2) Compute (usdk , u
ag
k ) ∈ U × U and vk ∈ V as

vk ≡ (1− τk−1)vk−1 + τk−1v(uk−1)

uagk ≡ argmin

{
L

σU
dpU (u;u0) +

k−1∑
i=0

αi lf (u;ui) : u ∈ U

}
(48)

usdk ≡ (1− τk−1)usdk−1 + τk−1u
ag
k .

3) Set τk = αk/(
∑k

i=0 αi) and uk = (1− τk)usdk + τku
ag
k .

4) Set k ← k + 1 and go to step 1).

end

We now state the main convergence result regarding the variant of Nesterov’s smooth algorithm
for solving problem (40)and its dual (43). Its proof is given in Corollary 3 of Tseng [20].

Theorem 4.1. The sequence {(usdk , vk)} ⊆ U × V generated by the variant of Nesterov’s smooth
algorithm satisfies

0 ≤ f(usdk )− g(vk) ≤
LDU

σU (
∑k−1

i=0 αi)
, ∀k ≥ 1, (49)

where
DU = max{pU (u) : u ∈ U}. (50)

A typical sequence {αk} satisfying (47) is the one in which αk = (k + 1)/2 for all k ≥ 0. With
this choice for {αk}, we have the following specialization of Theorem 4.1.

Corollary 4.2. If αk = (k + 1)/2 for every k ≥ 0, then the sequence {(usdk , vk)} ⊆ U × V generated
by the variant of Nesterov’s smooth algorithm satisfies

0 ≤ f(usdk )− g(vk) ≤
4LDU

σUk(k + 1)
, ∀k ≥ 1,

where DU is defined in (50). Thus, the iteration-complexity of finding an ε-optimal solution to (40)
and its dual (43) by the variant of Nesterov’s smooth algorithm does not exceed 2[(LDU )/(σU ε)]1/2.

Before ending this subsection, we state sufficient conditions for the function φ to satisfy Assump-
tions B.1-B.3. The proof of the following result can be found in Theorem 1 of [16].

Proposition 4.3. Let a norm ‖ · ‖V on V be given. Assume that φ : U × V → < has the form

φ(u, v) = θ(u) + 〈u, Ev〉 − h(v), ∀(u, v) ∈ U × V, (51)
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where E : V → U∗ is a linear map, θ : U → < is Lθ-Lipschitz-differentiable in U with respect to ‖·‖U ,
and h : V → < is a differentiable strongly convex function with modulus σV > 0 with respect to ‖ ·‖V .
Then, the function f defined by (41) is (Lθ+‖E‖2U ,V/σV )-Lipschitz-differentiable in U with respect to
‖ · ‖U . As a consequence, φ satisfies Assumptions B.1-B.3 with norm ‖ · ‖U and L = Lθ +‖E‖2U ,V/σV .

We will see in Section 4 that all saddle-point reformulations (40)-(41) of problems (21) and (22)
studied in this paper have the property that the corresponding function φ can be expressed as in
(51).

4.2 Implementation details of the variant of Nesterov’s smooth method for (33)

The implementation details of the variant of Nesterov’s smooth method (see Subsection 4.1) for
solving formulation (33) (that is, the dual of (32)) are addressed in this subsection. In particular,
we describe in the context of this formulation the prox-function, the Lipschitz constant L and the
subproblem (48) used by the variant of Nesterov’s smooth algorithm of Subsection 4.1.

For the purpose of our implementation, we reformulate problem (33) into the problem

min
W∈Ω1

max
X∈Bp×qF (1)

{
−λmrxG(X) •W − 1

2
‖rxΛX −H‖2F

}
(52)

obtained by scaling the variable X of (33) as X ← X/rx, and multiplying the resulting formulation
by −1. From now on, we will focus on formulation (52) rather than (33).

Let n := p+ q, u := W , v := X and define

U := Ω1 ⊆ Sn =: U ,

V := Bp×qF (1) ⊆ <p×q =: V,

and
φ(u, v) := −λmrxG(v) • u− 1

2
‖rxΛv −H‖2F , ∀(u, v) ∈ U × V, (53)

where Ω1 is defined in (31). Also, assume that the norm on U is chosen as

‖u‖U := ‖u‖F , ∀u ∈ U .

Our aim now is to show that φ satisfies Assumptions B.1-B.3 with ‖ ·‖U as above and some Lipschitz
constant L > 0, and hence that the variant of Nesterov’s method can be applied to the corresponding
saddle-point formulation (52). This will be done with the help of Proposition 4.3. Indeed, the function
φ is of the form (51) with θ ≡ 0 and the functions E and h given by

Ev := −λmrxG(v), ∀v ∈ V,

h(v) :=
1
2
‖rxΛv −H‖2F , ∀v ∈ V.

Assume that we fix the norm on V to be the Frobenius norm, i.e., ‖ · ‖V = ‖ · ‖F . Then, it is easy to
verify that the above function h is strongly convex with modulus σV := r2

x/‖Λ−1‖2 with respect to
‖ · ‖V = ‖ · ‖F . Now, using (6), we obtain

‖E‖U ,V = max {‖λmrxG(v)‖∗U : v ∈ V, ‖v‖V ≤ 1} ,

= λmrx max {‖G(v)‖F : v ∈ V, ‖v‖F ≤ 1} ,

= λmrx max
{√

2‖v‖F : v ∈ V, ‖v‖F ≤ 1
}

=
√

2λmrx. (54)
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Hence, by Proposition 4.3, we conclude that φ satisfies Assumptions B.1-B.3 with ‖ · ‖U = ‖ · ‖F and

L = ‖E‖2U,V /σV = 2λ2m2‖Λ−1‖2.

The prox-function pU (·) for the set U used in the variant of Nesterov’s algorithm is defined as

pU (u) = Tr(u log u) + log n, ∀u ∈ U = Ω1. (55)

We can easily see that pU (·) is a strongly differentiable convex function on U with modulus σU = m
with respect to the norm ‖ · ‖U = ‖ · ‖F . Also, it is easy to verify that min{pU (u) : u ∈ U} = 0 and
that

u0 := arg min
u∈U

pU (u) = I/n, (56)

DU := max
u∈U

pU (u) = log(n/m).

As a consequence of the above discussion and Theorem 4.2, we obtain the following result.

Theorem 4.4. For a given ε > 0, the variant of Nesterov’s smooth method applied to (33) finds an
ε-optimal solution of problem (33) and its dual, and hence of problem (22), in a number of iterations
which does not exceed ⌈

2
√

2λ‖Λ−1‖√
ε

√
m log(n/m)

⌉
. (57)

We observe that the iteration-complexity given in (57) is in terms of the transformed data of
problem (4). We next relate it to the original data of problem (4).

Corollary 4.5. For a given ε > 0, the variant of Nesterov’s smooth method applied to (33) finds an
ε-optimal solution of problem (33) and its dual, and hence of problem (22), in a number of iterations
which does not exceed ⌈

2
√

2λ‖(ATA)−1/2‖√
ε

√
m log(n/m)

⌉
.

Proof. We know from Subsection 3.1 that ATA = QΛ2QT , where Q ∈ <p×p is an orthonormal
matrix. Using this relation, we have

‖Λ−1‖ = ‖Λ−2‖1/2 = ‖(ATA)−1‖1/2 = ‖(ATA)−1/2‖.

The conclusion immediately follows from this identity and Theorem 4.4.

It is interesting to note that the iteration-complexity of Corollary 4.5 depends on the data matrix
A but not on B. Based on the discussion below, the arithmetic operation cost per iteration of the
variant of Nesterov’s smooth method when applied to problem (39) is bounded by O(mpq) where
m = min(p, q), due to the fact that its most expensive operation consists of finding a partial singular
value decomposition of a p × q matrix h as in (60). Thus, the overall arithmetic-complexity of the
variant of Nesterov’s smooth method when applied to (33) is

O

(
λ‖(ATA)−1/2‖√

ε
m3/2pq

√
log(n/m)

)
.
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After having completely specified all the ingredients required by the variant of Nesterov’s smooth
method for solving (52), we now discuss some of the computational technicalities involved in the
actual implementation of the method.

First, recall that, for a given u ∈ U , the optimal solution for the maximization subproblem
(41) needs to be found in order to compute the gradient of ∇f(u). Using (53) and the fact that
V = Bp×qF (1), we see that the maximization problem (41) is equivalent to

min
v∈Bp×qF (1)

1
2
‖rxΛv −H‖2F +G • v, (58)

where G := G∗(u) ∈ <p×q. We now briefly discuss how to solve (58). For any ξ ≥ 0, let

v(ξ) = (r2
xΛ2 + ξI)−1(rxΛH −G), Ψ(ξ) = ‖v(ξ)‖2F − 1.

If Ψ(0) ≤ 0, then clearly v(0) is the optimal solution of problem (58). Otherwise, the optimal solution
of problem (58) is equal to v(ξ∗), where ξ∗ is the root of the equation Ψ(ξ) = 0. The latter can be
found by well-known root finding schemes specially taylored for solving the above equation.

In addition, each iteration of the variant of Nesterov’s smooth method requires solving subproblem
(48). In view of (42) and (53), it is easy to see that for every u ∈ U , we have ∇f(u) = G(v) for some
v ∈ <p×q. Also, ∇pU (u0) = (1− log n)I due to (55) and (56). These remarks together with (46) and
(55) imply that subproblem (48) is of the form

min
u∈Ω1

(ςI + G(h)) • u+ Tr(u log u) (59)

for some real scalar ς and h ∈ <p×q, where Ω1 is given by (31).
We now present an efficient approach for solving (59) which, instead of finding the eigenvalue

factorization of the (p + q)-square matrix ςI + G(h), computes the singular value decomposition of
the smaller p× q-matrix h. First, we compute a singular value decomposition of h, i.e., h = ŨΣṼ T ,
where Ũ ∈ <p×m, Ṽ ∈ <q×m and Σ are such that

ŨT Ũ = I, Σ = Diag(σ1(h), . . . , σm(h)), Ṽ T Ṽ = I, (60)

where σ1(h), . . . , σm(h) are the m = min(p, q) singular values of h. Let ξi and ηi denote the ith
column of Ũ and Ṽ , respectively. Using (5), it is easy to see that

f i =
1√
2

(
ηi
ξi

)
, i = 1, . . . ,m; fm+i =

1√
2

(
ηi
−ξi

)
, i = 1, . . . ,m, (61)

are orthonormal eigenvectors of G(h) with eigenvalues σ1(h), . . . , σm(h),−σ1(h), . . . ,−σm(h), respec-
tively. Now let f i ∈ <n for i = 2m+ 1, . . . , n be such that the matrix F := (f1, f2, . . . , fn) satisfies
F TF = I. It is well-known that the vectors f i ∈ <n, i = 2m + 1, . . . , n, are eigenvectors of G(h)
corresponding to the zero eigenvalue (e.g., see [3]). Thus, we obtain the following eigenvalue decom-
position of ςI + G(h):

ςI + G(h) = FDiag(a)F T , a = ςe+ (σ1(h), . . . , σm(h),−σ1(h), . . . ,−σm(h), 0, . . . , 0)T .
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Using this relation and (31) with t = 1, it is easy to see that the optimal solution of (59) is v∗ =
FDiag(w∗)F T , where w∗ ∈ <n is the unique optimal solution of the problem

min aTw + wT logw
s.t. eTw = 1,

0 ≤ w ≤ e/m.
(62)

It can be easily shown that w∗i = min{exp(−ai − 1 − ξ∗), 1/m}, where ξ∗ is the unique root of the
equation

n∑
i=1

min{exp(−ai − 1− ξ), 1/m} − 1 = 0.

Let ϑ := min{exp(−ς − 1− ξ∗), 1/m}. In view of the above formulas for a and w∗ , we immediately
see that

w∗2m+1 = w∗2m+2 = · · · = w∗n = ϑ. (63)

Further, using the fact that FF T = I, we have

n∑
i=2m+1

f i(f i)T = I −
2m∑
i=1

f i(f i)T .

Using this result and (63), we see that the optimal solution v∗ of (59) can be efficiently computed as

v∗ = FDiag(w∗)F T =
n∑
i=1

w∗i f
i(f i)T = ϑI +

2m∑
i=1

(w∗i − ϑ)f i(f i)T ,

where the scalar ϑ is defined above and the vectors {f i : i = 1, . . . 2m} are given by (61).
Finally, to terminate the variant of Nesterov’s smooth method, we need to evaluate the primal

and dual objective functions of problem (52). As mentioned above, the primal objective function
f(u) of (52) can be computed by solving a problem of the form (58). Additionally, in view of (17)
and (31), the dual objective function g(v) of (52) can be computed as

g(v) = −1
2
‖rxΛv −H‖2F − λrx

m∑
i=1

σi(v), ∀v ∈ V.

4.3 Implementation details of the variant of Nesterov’s smooth method for (39)

The implementation details of the variant of Nesterov’s smooth method (see Subsection 4.1) for
solving formulation (39) (that is, the dual of (37)) are addressed in this subsection. In particular,
we describe in the context of this formulation the prox-function, the Lipschitz constant L and the
subproblem (48) used by the variant of Nesterov’s smooth algorithm of Subsection 4.1.

For the purpose of our implementation, we reformulate problem (39) into the problem

min
(t,W )∈Ω̃

max
X∈Bp×qF (1)

{
−γ[mr̃xG(X) •W −Mt]− 1

2
‖r̃xΛX −H‖2F

}
(64)
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obtained by scaling the variables X of (39) as X ← X/r̃x, and multiplying the resulting formulation
by −1. From now on, our discussion in this subsection will focus on formulation (64) rather than
(39).

Let n := p+ q, u := (t,W ), v := X and define

U := Ω̃ ⊆ <× Sn =: U ,

V := Bp×qF (1) ⊆ <p×q =: V

and
φ(u, v) := −γ[mr̃xG(v) •W −Mt]− 1

2
‖r̃xΛv −H‖2F, ∀(u, v) ∈ U × V, (65)

where Ω̃ is defined in (38). Also, assume that the norm on U is chosen as

‖u‖U := (ξt2 + ‖W‖2F )1/2, ∀u = (t,W ) ∈ U ,

where ξ is a positive scalar that will be specified later. Our aim now is to show that φ satisfies
Assumptions B.1-B.3 with ‖ · ‖U as above and some Lipschitz constant L > 0, and hence that the
variant of Nesterov’s method can be applied to the corresponding saddle-point formulation (64).
This will be done with the help of Proposition 4.3. Indeed, the function φ is of the form (51) with
θ, E and h given by

θ(u) := γMt, ∀u = (t,W ) ∈ U ,
Ev := (0,−γmr̃xG(v)), ∀v ∈ V, (66)

h(v) :=
1
2
‖r̃xΛv −H‖2F , ∀v ∈ V.

Clearly, θ is a linear function, and thus it is a 0-Lipschitz-differentiable function on U with respect to
‖ · ‖U . Now, assume that we fix the norm on V to be the Frobenius norm, i.e., ‖ · ‖V = ‖ · ‖F . Then,
it is easy to verify that the above function h is strongly convex with modulus σV := r̃2

x/‖Λ−1‖2 with
respect to ‖ · ‖V = ‖ · ‖F . Now, using (6), (66) and the fact that

‖u‖∗U = (ξ−1t2 + ‖W‖2F )1/2, ∀u = (t,W ) ∈ U∗ = U , (67)

we obtain

‖E‖U ,V = max {‖(0,−γmr̃xG(v))‖∗U : v ∈ V, ‖v‖V ≤ 1} ,

= γmr̃x max {‖G(v)‖F : v ∈ V, ‖v‖F ≤ 1} ,

= γmr̃x max
{√

2‖v‖F : v ∈ V, ‖v‖F ≤ 1
}

=
√

2γmr̃x. (68)

Hence, by Proposition 4.3, we conclude that φ satisfies Assumptions B.1-B.3 with ‖ · ‖U = ‖ · ‖F and

L = Lθ + ‖E‖2U,V /σV = 2γ2m2‖Λ−1‖2. (69)

We will now specify the prox-function pU for the set U used in the variant of Nesterov’s algorithm.
We let

pU (u) = Tr(W logW ) + at log t+ bt+ c, ∀u = (t,W ) ∈ U, (70)
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where
a := log

n

m
, b := log n− a− 1 = logm− 1, c := a+ 1. (71)

For a fixed t ∈ [0, 1], it is easy to see that

min
W∈Ωt

pU (t,W ) = ψ(t) := t log
t

n
+ at log t+ bt+ c,

and that the minimum is achieved at W = tI/n. Now,

ψ′(1) = log
1
n

+ 1 + a(log 1 + 1) + b = 1− log n+ a+ b = 0,

where the last equality follows from the second identity in (71). These observations together with
(38) allow us to conclude that

arg minu∈U pU (u) = u0 := (1, I/n), (72)
minu∈U pU (u) = ψ(1) = − log n+ b+ c = 0, (73)

where the last equality is due to second and third identities in (71). Moreover, it is easy to see that

DU := max
u∈U

pU (u) = max
t∈[0,1]

t log
t

m
+ at log t+ bt+ c = c+ max {0, b− logm} = 1 + log

n

m
, (74)

where the last identity is due to (71). Also, we easily see that pU (·) is a strongly differentiable convex
function on U with modulus

σU = min(a/ξ, m) (75)

with respect to the norm ‖ · ‖U .
In view of (69), (74), (75) and Corollary 4.2, it follows that the iteration-complexity of the variant

of Nesterov’s smooth method for finding an ε-optimal solution of (64) and its dual is bounded by

Γ(ξ) =

⌈
2γm‖Λ−1‖√

ε

√
2[1 + log(n/m)]

min(a/ξ, m)

⌉
.

As a consequence of the above discussion and Corollary 4.2, we obtain the following result.

Theorem 4.6. For a given ε > 0, the variant of Nesterov’s smooth method, with prox-function
defined by (70)-(71), L given by (69) and σU given by (75) with ξ = a/m , applied to (64), finds an
ε-optimal solution of problem (64) and its dual in a number of iterations which does not exceed⌈

2
√

2γ‖Λ−1‖
√
m√

ε

√
1 + log(n/m)

⌉
. (76)

Proof. We have seen in the discussion preceding this theorem that the iteration-complexity of
the variant of Nesterov’s smooth method for finding an ε-optimal solution of (64) and its dual is
bounded by Γ(ξ) for any ξ > 0. Taking ξ = a/m, we obtain the iteration-complexity bound (76).

We observe that the iteration-complexity given in (76) is in terms of the transformed data of
problem (4). We next relate it to the original data of problem (4). The proof of the following
corollary is similar to that of Corollary 4.5.
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Corollary 4.7. For a given ε > 0, the variant of Nesterov’s smooth method, with prox-function
defined by (70)-(71), L given by (69) and σU given by (75) with ξ = a/m , applied to applied to (39)
finds an ε-optimal solution of problem (39) and its dual in a number of iterations which does not
exceed ⌈

2
√

2γ‖(ATA)−1/2‖
√
m√

ε

√
log(n/m) + 1

⌉
. (77)

Observe that, in view of Lemma 3.6 with X̄ = 0 and Theorem 3.7, (77) is also an iteration-
complexity bound for finding an ε-optimal solution of problem (21) whenever

γ =
‖H‖2F
M

=
‖(ATA)−1/2ATB‖2F

M
,

where the later equality is due to (20).
Based on the discussion below and in Subsection 4.2, the arithmetic operation cost per iteration

of the variant of Nesterov’s smooth method when applied to problem (39) is bounded by O(mpq)
where m = min(p, q), due to the fact that its most expensive operation consists of finding a partial
singular value decomposition of a p× q matrix h as in (60). Thus, the overall arithmetic-complexity
of the variant of Nesterov’s smooth method when applied to (39) is

O

(
γ‖(ATA)−1/2‖√

ε
m3/2pq

√
log(n/m)

)
.

After having completely specified all the ingredients required by the variant of Nesterov’s smooth
method for solving (64), we now discuss some of the computational technicalities involved in the
actual implementation of the method.

First, for a given u ∈ U , the optimal solution for the maximization subproblem (41) needs to be
found in order to compute the gradient of ∇f(u). The details here are similar to the corresponding
ones described in Subsection 4.2 (see the paragraph containing relation (58)).

In addition, each iteration of the variant of Nesterov’s smooth method requires solving subproblem
(48). In view of (42) and (65), it is easy to observe that for every u = (t,W ) ∈ U , we have
∇f(u) = (η,G(v)) for some η ∈ < and v ∈ <p×q. Also, by (70), (71) and (72), we easily see that
∇pU (u0) = (logn − 1)(1,−I). Using these results along with (46) and (55), we easily see that
subproblem (48) is equivalent to one of the form

min
(t,W )∈Ω̃

{(ςI + G(h)) •W + αt+ Tr(W logW ) + at log t} (78)

for some α, ς ∈ < and h ∈ <p×q, where a and Ω̃ are given by (71) and (38), respectively.
We now discuss how the above problem can be efficiently solved. First, note that by (38), we

have (t,W ) ∈ Ω̃ if, and only if, W = tW ′ for some W ′ ∈ Ω1. This observation together with the fact
that TrW ′ = 1 for every W ′ ∈ Ω1 allows us to conclude that problem (78) is equivalent to

min
W ′∈Ω1, t∈[0,1]

{
t (ςI + G(h)) •W ′ + αt+ t

[
Tr(W ′ logW ′) + (log t)Tr(W ′)

]
+ at log t

}
(79)

= min
t∈[0,1]

αt+ (a+ 1)t log t+ td, (80)
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where
d := min

W ′∈Ω1

(ςI + G(h)) •W ′ + Tr(W ′ logW ′). (81)

Moreover, if W ′ is the optimal solution of (81) and t is the optimal solution of (80), then W = tW ′

is the optimal solution of (79). Problem (81) is of the form (59) where an efficient scheme for solving
it is described in Subsection 4.2. It is easy to see that the optimal solution of (80) is given by

t = min
[
1 , exp

(
−1− α+ d

a+ 1

)]
.

Finally, to terminate the variant of Nesterov’s smooth approximation scheme, we need to properly
evaluate the primal and dual objective functions of problem (64) at any given point. As seen from
(41) and (65), the primal objective function f(u) of (64) can be computed by solving a problem in
the form of (58). Additionally, in view of (19) and (38), the dual objective function g(v) of (64) can
be computed as

g(v) = −1
2
‖r̃xΛv −H‖2F − γ

[
r̃x

m∑
i=1

σi(v)−M

]+

, ∀v ∈ V.

5 Computational results

In this section, we report the results of our computational experiment which compares the perfor-
mance of the variant of of Nesterov’s smooth method discussed in Subsection 4.2 for solving problem
(22) with the interior point method implemented in SDPT3 version 4.0 (beta) [19] on a set of ran-
domly generated instances.

The random instances of (22) used in our experiments were generated as follows. We first ran-
domly generated matrices A ∈ <l×p and B ∈ <l×q, where p = 2q and l = 10q, with entries uniformly
distributed in [0, 1] for different values of q. We then computed H and Λ for (22) according to the
procedures described in Subsection 3.1 and set the parameter λ in (22) to one. In addition, all
computations were performed on an Intel Xeon 5320 CPU (1.86GHz) and 12GB RAM running Red
Hat Enterprise Linux 4 (kernel 2.6.9).

In this experiment, we compared the performance of the variant of Nesterov’s smooth method
(labeled as VNS) discussed in Subsection 4.2 for solving problem (22) with the interior point method
implemented in SDPT3 version 4.0 (beta) [19] for solving the cone programming reformulation (28).
The code for VNS is written in C, and the initial point for this method is set to be u0 = I/(p+ q). It
is worth mentioning that the code SDPT3 uses MATLAB as interface to call several C subroutines
to handle all its heavy computational tasks. SDPT3 can be suitably applied to solve a standard cone
programming with the underlying cone represented as a Cartesian product of nonnegative orthant,
second-order cones, and positive semidefinite cones. The method VNS terminates once the duality
gap is less than ε = 10−8, and SDPT3 terminates once the relative accuracy is less than 10−8.

The performance of VNS and SDPT3 for our randomly generated instances are presented in Table
1. The problem size (p, q) is given in column one. The numbers of iterations of VNS and SDPT3 are
given in columns two and three, and the objective function values are given in columns four and five,
CPU times (in seconds) are given in columns six to seven, and the amount of memory (in mega bytes)
used by VNS and SDPT3 are given in the last two columns, respectively. The symbol “N/A” means
“not available”. The computational result of SDPT3 for the instance with (p, q) = (120, 60) is not
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Table 1: Comparison of VNS and SDPT3
Problem Iter Obj Time Memory

(p, q) VNS SDPT3 VNS SDPT3 VNS SDPT3 VNS SDPT3

(20, 10) 36145 17 4.066570508 4.066570512 16.6 5.9 2.67 279
(40, 20) 41786 15 8.359912031 8.359912046 55.7 77.9 2.93 483
(60, 30) 35368 15 13.412029944 13.412029989 96.7 507.7 3.23 1338
(80, 40) 36211 15 17.596671337 17.596671829 182.9 2209.8 3.63 4456
(100, 50) 33602 19 22.368563640 22.368563657 272.6 8916.1 4.23 10445
(120, 60) 33114 N/A 26.823206950 N/A 406.6 N/A 4.98 > 16109

available since it ran out of the memory in our machine (about 15.73 giga bytes). We conclude from
this experiment that the method VNS, namely, the variant of Nesterov’s smooth method, generally
outperforms SDPT3 substantially even for relatively small-scale problems. Moreover, VNS requires
much less memory than SDPT3. For example, for the instance with (p, q) = (100, 50), SDPT3 needs
10445 mega (≈ 10.2 giga) bytes of memory, but VNS only requires about 4.23 mega bytes of memory;
for the instance with (p, q) = (120, 60), SDPT3 needs at least 16109 mega (≈ 15.73 giga) bytes of
memory, but VNS only requires about 4.98 mega bytes of memory.

6 Concluding remarks

In this paper, we studied convex optimization methods for computing the trace norm regularized least
squares estimate in multivariate linear regression. In particular, we explore a variant of Nesterov’s
smooth method proposed by Tseng [20] and interior point methods for computing the penalized
least squares estimate. The performance of these methods is then compared using a set of randomly
generated instances. We showed that the variant of Nesterov’s smooth method generally substantially
outperforms the interior point method implemented in SDPT3 version 4.0 (beta) [19]. Moreover, the
former method is much more memory efficient.

In Subsection 3.1 we provided an approach for simplifying problem (4) which changes the variable
U , in addition to the data A and B. A drawback of this approach is that it can not handle extra
constraints (not considered in this paper) on U . It turns out that there exists an alternative scheme
for simplifying problem (4), i.e. one that eliminates the dependence of the data on the (generally,
large) dimension l, which does not change U . Indeed, by performing either a QR factorization of A
or a Cholesky factorization of ATA, compute an upper triangular matrix R such that RTR = ATA.
Letting G := R−TATB, it is straightforward to show that problem (4) can be reduced to

min
U

{
‖G−RU‖2F :

m∑
i=1

σi(U) ≤M

}
. (82)

Clearly, in contrast to reformulation (21), the above one does not change the variable U and hence
extra constraints on U can be easily handled. On the other hand, a discussion similar to that in
Subsection 4.2 shows that each iteration of the variant of Nesterov’s smooth method applied to (82),
or its Lagrangian relaxation version, needs to solve subproblem (58) with Λ replaced by R. Since R
is an upper triangular matrix and Λ is a diagonal matrix, the later subproblems are much harder to
solve than subproblems of the form (58). For this reason, we have opted to use reformulation (21)
rather than (82) in this paper.
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Appendix

In this section, we discuss some technical results that are used in our presentation. More specifi-
cally, we discuss two ways of solving a constrained nonlinear programming problem based on some
unconstrained nonlinear programming reformulations.

Given a set ∅ 6= X ⊆ <n and functions f : X → < and h : X → <k, consider the nonlinear
programming problem:

f∗ = inf {f(x) : x ∈ X, hi(x) ≤ 0, i = 1, . . . , k}. (83)

The first reformulation of (83) is based on the exact penalty approach, which consists of solving the
exact penalization problem

fγ
∗ = inf {fγ(x) := f(x) + γ[g(x)]+ : x ∈ X}, (84)

for some large penalty parameter γ > 0, where g(x) = max{hi(x) : i = 1, . . . , k}. To obtain stronger
consequences, we make the following assumptions about problem (83):

A.1) The set X is convex and functions f and hi are convex for each i = 1, . . . , k;

A.2) f∗ ∈ < and there exists a point x0 ∈ X such that g(x0) < 0.

We will use the following notion throughout the paper.

Definition 1. Consider the problem of minimizing a real-valued function f(x) over a certain
nonempty feasible region F contained in the domain of f and let f̄ := inf{f(x) : x ∈ F}. For
ε ≥ 0, we say that xε is an ε-optimal solution of this problem if xε ∈ F and f(xε) ≤ ε+ f̄ .

We note that the existence of an ε-optimal solution for some ε > 0 implies that f̄ is finite.

Theorem 6.1. Suppose Assumptions A.1 and A.2 hold and define

γ̄ :=
f(x0)− f∗

|g(x0)|
≥ 0.

For x ∈ X, define

z(x) :=
x+ θ(x)x0

1 + θ(x)
, where θ(x) :=

[g(x)]+

|g(x0)|
. (85)

Then, the following statements hold:

a) for every x ∈ X, the point z(x) is a feasible solution of (83);

b) fγ
∗ = f∗ for every γ ≥ γ̄;

c) for every γ ≥ γ̄ and ε ≥ 0, any ε-optimal solution of (83) is also an ε-optimal solution of (84);

d) if γ ≥ γ̄, ε ≥ 0 and xγε is an ε-optimal solution of (84), then the point z(xγε ) is an ε-optimal
solution of (83).

e) if γ > γ̄, ε ≥ 0 and xγε is an ε-optimal solution of (84), then f(xγε ) − f∗ ≤ ε and [g(xγε )]+ ≤
ε/(γ − γ̄).
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Proof. Let x ∈ X be arbitrarily given. Clearly, convexity of X, the assumption that x0 ∈ X and
the definition of z(x) imply that z(x) ∈ X. Moreover, Assumption A.1 implies that g : X → < is
convex. This fact, the assumption that g(x0) < 0, and the definitions of z(x) and θ(x) then imply
that

g(z(x)) ≤ g(x) + θ(x)g(x0)
1 + θ(x)

≤ [g(x)]+ − θ(x)|g(x0)|
1 + θ(x)

= 0.

Hence, statement (a) follows.
To prove statement (b), assume that γ ≥ γ̄ and let x ∈ X be given. Convexity of f yields

(1 + θ(x))f(z(x)) ≤ f(x) + θ(x)f(x0), which, together with the definitions of γ̄ and θ(x), imply that

fγ(x)− f∗ = f(x) + γ[g(x)]+ − f∗

≥ (1 + θ(x))f(z(x))− θ(x)f(x0) + γ[g(x)]+ − f∗

= (1 + θ(x))(f(z(x))− f∗)− θ(x)(f(x0)− f∗) + γ[g(x)]+

= (1 + θ(x))(f(z(x))− f∗) + (γ − γ̄)[g(x)]+. (86)

In view of the assumption that γ ≥ γ̄ and statement (a), the above inequality implies that fγ(x)−f∗ ≥
0 for every x ∈ X, and hence that fγ∗ ≥ f∗. Since the inequality fγ

∗ ≤ f∗ obviously holds for any
γ ≥ 0, we then conclude that fγ∗ = f∗ for any γ ≥ γ̄. Statement (c) follows as an immediate
consequence of (b).

For some γ ≥ γ̄ and ε ≥ 0, assume now that xγε is an ε-optimal solution of (84). Then, statement
(b) and inequality (86) imply that

ε ≥ fγ(xγε )− fγ∗ ≥ (1 + θ(xγε ))(f(z(xγε ))− f∗) + (γ − γ̄)[g(xγε )]+. (87)

Using the assumption that γ ≥ γ̄, the above inequality clearly implies that f(z(xγε )) − f∗ ≤ ε/(1 +
θ(xγε )) ≤ ε, and hence that z(xγε ) is an ε-optimal solution of (83) in view of statement (a). Hence,
statement (d) follows. Moreover, if γ > γ̄, we also conclude from (87) that [g(xγε )]+ ≤ ε/(γ − γ̄).
Also, the first inequality of (87) implies that f(xγε )−f∗ ≤ f(xγε )+γ[g(xγε )]+−f∗ = fγ(xγε )−fγ∗ ≤ ε,
showing that statement (e) holds.

We observe that the threshold value γ̄ depends on the optimal value f∗, and hence can be
computed only for those problems in which f∗ is known. If instead a lower bound fl ≤ f∗ is known,
then choosing the penalty parameter γ in problem (84) as γ := (f(x0)− fl)/|g(x0)| guarantees that
an ε-optimal solution xγε of (84) yields the ε-optimal solution z(xγε ) of (83), in view of Theorem 6.1(c).

The following result, which is a slight variation of a result due to H. Everett (see for example
pages 147 and 163 of [8]), shows that approximate optimal solutions of Lagrangian subproblems
associated with (83) yield approximate optimal solutions of a perturbed version of (83).

Theorem 6.2. (Approximate Everett’s theorem) Suppose that for some λ ∈ <k+ and ε ≥ 0, xλε is an
ε-optimal solution of the problem

f∗λ = inf

{
f(x) +

k∑
i=1

λihi(x) : x ∈ X

}
. (88)

Then, xλε is an ε-optimal solution of the problem

f∗ελ = inf
{
f(x) : x ∈ X, hi(x) ≤ hi(xλε ), i = 1, . . . , k

}
. (89)
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Proof. Let x̃ be a feasible solution of (89). Since xλε is an ε-optimal solution of (88), we have
f(xλε ) +

∑k
i=1 λihi(x

λ
ε ) ≤ f∗λ + ε. This inequality together with the definition of f∗λ in (88) implies

that

f(xλε ) ≤ f∗λ −
k∑
i=1

λihi(xλε ) + ε ≤ f(x̃) +
k∑
i=1

λi[hi(x̃)− hi(xλε )] + ε ≤ f(x̃) + ε,

where the last inequality is due to the fact that λi ≥ 0 for all i = 1, . . . , k and x̃ is feasible solution
of (89). Since the latter inequality holds for every feasible solution x̃ of (89), we conclude that
f(xλε ) ≤ f∗ελ + ε, and hence that xλε is an ε-optimal solution of (89).

If our goal is to solve problem inf{f(x) : x ∈ X, hi(x) ≤ bi, i = 1, . . . , k} for many different right
hand sides b ∈ <k, then, in view of the above result, this goal can be accomplished by minimizing
the Lagrangian subproblem (88) for many different Lagrange multipliers λ ∈ <k+. We note that this
idea is specially popular in statistics for the case when k = 1.
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