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Abstract

Traditional Non-Negative Matrix Factorization (NMF) [19]
is a successful algorithm for decomposing datasets into
One
problem of NMF is that the original Euclidean distances

basis function that have reasonable interpretation.

are not preserved. Isometric embedding (IE) is a manifold
learning technique that traces the intrinsic dimensionality
of a data set, while preserving local distances. In this
paper we propose a hybrid method of NMF and IE IsoNMF.
IsoNMf combines the advantages of both NMF and Isometric
Embedding and it gives a much more compact spectrum
compared to the original NMF.

1 Introduction.

Maximum Variance Unfolding (MVU) [29] and its vari-
ant Maximum Furthest Neighbor Unfolding (MEFNU)
[22] are very successful manifold learning methods that
reduce significantly the dimension of a dataset. It has
been proven experimentally that they can recover the in-
trinsic dimension of a dataset very effectively, compared
to other methods like ISOMAP [27] Laplacian Eigen-
Maps [1] and Diffusion Maps [5]. In some toy exper-
iments the above methods manage to decompose data
in meaningful dimensions. The statue dataset for ex-
ample consists of images of a statue photographed from
different horizontal and vertical angles. After manifold
learning with any of the above methods the initial di-
mension is reduced to two, where each of them repre-
sents the horizontal and the vertical camera angle. For
more complex datasets it is not possible to find an in-
terpretation of the dimensions in the low dimensional
space.

Non-Negative Matrix Factorization (NMF) is an-
other dimensionality reduction method [19]. Although
NMF is targeted for non-negative data, in reality it is an
additive component model, the sign doesn’t really mat-
ter as long as the components have the same sign. As
we will prove later NMF can never give better dimen-
sionality reduction than Singular Value Decomposition
although the principal components of NMF are more
meaningful than SVD. Another drawback of NMF is
that points that are close in the original domain may
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actually land up far away after NMF.

In this paper we present a hybrid of NMF and
MFNU in one algorithm that we call IsoNMF and
show that it combines the advantages of both (local
neighborhood preservation and interpretability of the
results) plus it gives a more sparsity compared to
traditional NMF.

Non

2 Convexity in Matrix

Factorization.

Negative

Given a non-negative matrix V € %fxm the goal of
NMF is to decompose it in two matrices W € %f Xk,
H € R%*™ such that V = WH. Such a factorization
always exists for & > m. The factorization has a trivial
solution where W = V and H = I,,. Determining
them minimum £ is a difficult problem and no algorithm
exists for finding it. In general we can show that NMF
can be cast as a Completely Positive (CP) Factorization
problem [2].

DEFINITION 2.1. A matriz A € RY*N is Completely

Positive if it can be factored in the form A = BBT,
where B € %ﬁXk. The minimum k for which A = BBT
holds is called the CP rank of A.

Up to now there is no algorithm of polynomial com-
plexity that can decide if a given positive matrix is CP.
A simple observation can show that A has to be posi-
tive definite, but this is a necessary and not a sufficient
condition.

THEOREM 2.1. If A s
ep-rank(A) < @ -1

CP then rank(4) <

The proof can be found in [2]p.156. It is also conjectured
that the upper bound can be tighter ’%f.

THEOREM 2.2. if A € RN is diagonally dominant'
then it is also CP.

The proof of the theorem can be found in [16].
Next we prove that non-trivial NMF always exists.

THEOREM 2.3. FEvery non-negative matrix V € %fXM

has a non-trivial, non-negative factorization of the form

V=WH.

TA matrix is diagonally dominant if a;; > Ej# laij]



Proof. Consider the following matrix:
7 [ D V ]

VT FE
We want to prove that there exists B € %f Xk such that
Z = BBT. If this is true then B can take the form:

W
5=
Notice that D and E are arbitrary positive matrices. We
can always adjust them so that 7 is diagonally dominant

and according to theorem 2.2 Z is always CP. Since Z
is CP then B exists so do W and H [

(2.1)

(2.2)

Although theorem 2.2 also provides an algorithm for
constructing the CP-factorization, the cp-rank is usually
high. A corollary of theorems 2.1 (cp-rank(A) >
rank(A)) and 2.3(existence of NMF) is that SVD has
always a more compact spectrum than NMF since the.
There is no algorithm known yet for computing an
exact NMF despite its existence. In practice, scientists
try to minimize the norm of the factorization error.

(2.3) min ||V — WHI|,

2.1 Solving the optimization problem of NMF.
Although in the current literature it is widely believed
that NMF is a non-convex problem and only local min-
ima can be found, we will show in the following subsec-
tions that a convex formulation does exist. Despite the
existence of the convex formulation, we also show that
a formulation of the problem as a generalized geometric
program could give us a better approach to the global
optimum.

2.1.1 NMF as a convex conic program.

THEOREM 2.4. The set of Completely Positive Matri-
ces KCF is a convex cone.

Proof. See [2].71.

Finding the minimum rank NMF can be cast as the
following optimization problem:

(2.4) VH\},I% rank(7)
subject to:
W e K°P
H e K7
w v
25 e

Since minimizing the function rank(Z) is non-convex we
can use it’s convex envelope that according to [25] is the

trace of the matrix. So a convex relaxation of the above
problem is:

(2.6) min trace(2)
(2.7) subject to:
W e K¢
H e K7
w v
2= [0 ]

After determining W, H, W and H can be recovered
by CP factorization of W, H, which again is not an
easy problem. In fact there is no practical barrier
function known yet for the CP cone so that Interior
Point Methods can be employed. Finding a practical
description of the CP cone is an open problem. So
although the problem is convex there is no algorithm
known for solving it.

2.2 Convex relaxations of the NMF problem.
In the following subsections we investigate convex relax-
ations of the NMF problem with the Positive Semidefi-
nite Cone [23].

2.2.1 A simple convex upper bound with Sin-
gular Value Decomposition. Singular Value Decom-
position (SVD) can decompose a matrix in two factors:

(2.8) A=UV

Unfortunately the sign of the SVD components of A > 0
cannot be guaranteed to be non-negative except for the
first eigenvector [21]. However if we project U,V on
the nonnegative orthant (U, V > 0) we get a very good
estimate (upper bound) for NMF. We will call it clipped
SVD, (CSVD). CSVD was used as a benchmark for the
relaxations that follow. It has also been used as an
initializer for NMF algorithms [18].

2.2.2 Relaxation with a positive semidefinite
cone. In the minimization problem of eq. 2.3 where the
cost function is the Ly norm, the nonlinear terms w;; h;;
appear. A typical way to get these terms [23] would
be to generate a large vector 2 = [W'(:); H(:)], where
we use the MATLAB notation (H(:) is the column-wise
unfolding of a matrix). If Z = 227 and z > 0 is true
then the terms appearing in ||V — W H||3 are linear in
Z. In the following example eq. 2.9, 2.10 (see next page)
where V € R23 W € R?*2. H € R2%3 we show the
structure of Z. Terms in bold are the ones we need to



express the constraint V =W H.

w22
h11
hay
hio
hao
his
hos

Now the optimization problem is equivalent to:

i=N,j=m k

Yo Q. Zivvinwriert = Vig)?)

i=1,j=1 I=1

(2.11)min

subject to:
rank(Z) =1

This is not a convex problem but it can be easily
approximated by

(2.12) min Trace(Z)
subject to:
AeZ =V
Z = 0
Z = 227
Z > 0

where A is a matrix that selects the appropriate ele-
ments from Z. Here is an example for a matrix A that
selects the elements of Z that should sum to the Vij
element:

000010
o0 000001

(213) Az = 000000
000000
0 0

In the second formulation (2.12) we have relaxed
Z = 22" with Z > z2". The objective function tries to
minimize the rank of the matrix, while the constraints
try to match the values of the given matrix V. After
solving the optimization problem the solution can be
found on the first eigenvector of Z. The quality of the
relaxation depends on the ratio of the first eigenvalue
to the rest. The positivity of Z will guarantee that
the first eigenvector will have elements with the same
sign according to the Peron Frobenious Theorem [21].

Ideally if the rest of the eigenvectors are positive they
can also be included. One of the problem of this method

is the complexity. Z is (N +m)k x (N +m)k and there
(N+m)k)((N+m)k—1)

are 5 positivity constraints.
quickly the problem becomes unsolvable.

In practice the problem as posed in (??) always
gives W and H matrices that are rank one. After
testing the method exhaustively with random matrices
V that either had a product V' = W H representation
or not the solution was always a rank one on both
W and H. This was always the case with any of the
convex formulations presented in this paper. This is
because there is a missing constraint that will let the
energy of the dot products spread among dimensions.
This is something that should characterize the spectrum
of H. The H matrix is often interpreted as the
basis vectors of the factorization and W as the matrix
that has the coefficients. It is widely known that
in nature spectral analysis is giving spectrum that
decays either exponentially e=*/ or more slowly 1/f7.
Depending on the problem we can try different spectral
functions. In our experiments we chose the exponential
one. Of course the decay parameter A is something
that should be set adhoc. We experimented with
several values of A, but we couldn’t come up with a
systematic, heuristic and practical rule. In some cases
the reconstruction error was low but in some others
not. Another relaxation that was necessary for making
the optimization tractable was to reduce the the non-
negativity constraints only on the elements that are
involved in the equality constraints.

Very

2.2.3 Approximating the SDP scone with
smaller ones. A different way to deal with the com-
putational complexity of SDP is to approximate the big
SDP cone (N +m)k x (N 4+ m)k with smaller ones. Let
W; be the ith row of W and H; the js, column of H.
Now z; = [W;(:); H;(:)] (2k dimensional vector) and
Zij = zijzL (2k x 2k matrix), or

i
wIw, WTH,;
Zi=| wre wa?
W H; HjHj
or it is better to think it in the form:

7 W,  Zwn
K ZwH H;

and once W, 'H are found then W;, H; can be found from
SVD decomposition of W, H and again the quality of the
relaxation will be judged upon the magnitude of the first
eigenvalue compared to the sum of the others.

Now the optimization problem becomes:

(2.14)

(2.15)

Nm
minz Trace(Z,;)

i=1

(2.16)



w wiiwiz Wiiwr  wiiwe Wiithig
wWi12W11 w%z wi2w21  Wi2W22  wizhi1
W21Wi1  W21Wi2 w3y wa1w22  Waihii
W22W11 W2rWi2 W22W21 w3, wazhi11

(2.10) Z = hiiwir  hiiwiz  hiiwer  hiiwes hi
haiwir  haiwiz  hoiwar  hoiwsz  hoihin
higwir  hizwiz  hiswer  hizwee  hizhin
hoowir  hoowiz  hoowar  hoowez  hozhin
hizwir  hiswiz  hiswzr  hiswez  hizhi

| h2swir  haswiz  hazwar  hazwae  haszhin
Zij > 0
Zij = 0
Aij o Zij Vij

The above method has Nm constraints. In terms of

storage it needs

e (N 4+ m) symmetric positive definite k& x k& ma-

trices for every row/column of W, H, which is
(N+m)k(k+1)
2

e Nm symmetric positive definite k x k& matrices for

every W;H; product, which is w

In total the storage complexity is (N +m + Nm) (kH)
which is significantly smaller by an order of magmtude
from (N+m)k((év+m)k71) which is the complexity of the
previous method. There is also significant improve-
ment in the computational part. The SDP problem
is solved with interior point methods [23] that require
the inversion of a symmetric positive definite matrix
at some point. In the previous method that would re-
quire O((N + m)3k?) steps, while with this method we
have to invert Nm 2k x 2k matrices, that would cost
Nm(2k)3. Because of their special structure the actual
cost is (Nm)k®+max(N, m)k3 = (Nm+max(N,m))k>.
We know that W;,’H; = 0. Since Z;; is PSD and
according to Schur’s complement on eq. 2.15:

(2.17) H; — ZwaW; ' 2w = 0

So instead of inverting (2.15) that would cost 8k3 we
can invert 2.17. This formulation gives similar results
with the big SDP cone and most of the cases the results
are comparable to the CSVD.

2.2.4 NMF as a convex multi-objective prob-
lem. A different approach would be to find a convex
set in which the solution of the NMF lives and search
for it over there. Assume that we want to match
V;] = WH Zl 1 llHlj Define WllHl] = V;Jl and

21:1 350 = Vij. We form the following matrix that we

wirther  withiz  withees  withis  withes ]
wizh21  wizhiz  wizhaz  wi2hiz  wizheos
warher  Waihiz  waihas  waihiz  waihes
wazha1  wa2hiz  wazhaz  wa2hiz wazhas
hith21  hithi2 hithes  hithizs  hiihes
h3, haihi2 haihea  haihiz hoihos
hi2ha21 hia hi2h2a  hizhiz  hizhas
hasha1  ha2hi2 h32 hashiz  ha2has
hisha1  hizhi2  highoo his hizhas
hazha1  h2shiz  hoghoa  hazhis h33
require to be PSD:
1 Wy Hy
(2.18) Wa tu Viyg | =0
Hy; Vige  ty

If we use the Schur complement we have:

ti — Wzl Viii — WauHy;
2.19 i = AR -0
(2.19) Viga — Wiy Hp; tj — Hlj -
An immediate consequence is that
(2.20) ta > Wi
(2.21) tq > Hj
(2.22)(ta = W)t — H) > (Vijy — WaHy,)?

In the above inequality we see that the mean square
error becomes zeros if t; = W3 or tj;; = HZ. In
general we want to minimize ¢ while maximizing ||W||?
and ||H||>. Ly Norm maximization is not convex, but
instead we can maximize ) Wy, Y H;; which are equal
to the L1 norms since everything is positive. This can be
cast as convex multi-objective problem 2 on the second
order cone [3].

min Z Zz 1 Kta + Zl 1 Kty
L Zi:l D=1 kWi — 23:1 =1 kHi;
(2.23)  subject to:
[ty —W3 Viji — WaHy;
2 =0
L ‘/z_], Wlel] tjl - Hlj

Unfortunately multi-objective optimization problems
even when they are convex they have local minima
that are not global too. An interesting direction would
be to test the robustness of existing multi-objective
algorithms on NMF.

2.2.5 Local solution of the non-convex prob-
lem. In the previous sections we show several convex
formulations and relaxations of the NMF problem that

—_—

also known as vector optimization



unfortunately are either unsolvable or they give triv-
ial rank one solutions that are not useful at all. In
practice the the non-convex formulation of eq. 2.3 along
with other like the KL distance between V and W H are
used in practice. All of them are non-convex and several
methods have been recommended, such as alternating
least squares, gradient decent or active set methods [17].
In our experiments we used the L-BFGS method that
scales very well for large matrices.

2.2.6 NMF as a Generalized Geometric Pro-
gram and it’s Global Optimum. The objective
function can be written in the following form:

N m k
224) [V - WH|2 =Y >3 (v

i=1j=1 I=1

’LlHlj)

The above function is twice differential so according
o [10] the function can be cast as the difference of
convex (d.c.) functions. The problem can be solved
with general of the shelf global optimization algorithms.
The problem can also e formulated as a special case of dc
programming, the generalized geometric programming.
With the following transformation W; = ef”“,Hlj =
e™i the objective becomes:

k

N m
(225) |IV-WH[2=3> "> (v;-j —e

i=1 j=1 I=1

= 2
ﬁ)iz-i-hzj)

The first term is constant and it can be ignored for the
optimization. The other two terms:

(2.26) f (W1, hyj) =

(2-27)9(@1,’3”) =

are convex functions also known as the exponential form
of posynomials ® [3]. For the global solution of the
problem o o
(2'28) f(WvH) —g(W,H)

min =

s

the algorithm proposed in [6] can be employed.

SPosynomial is a product of positive variables exponentiated

in any real number

Since the above method is impractical in its form
as it requires too many iterations to converge, it is
worthwhile to compare it with the local non-convex
NMEF solver on a small matrix. We tried to do NMF
of order 2 on the following random matrix:

0.45 0.434 0.35
0.70 0.64 0.43
022 0.01 0.3

After 10000 restarts of the local solver the best error
we got was 2.7% while the global optimizer very quickly
gave 0.015% error, which is 2 orders of magnitude less
than the local optimizer.

Another direction that is not investigated in this
paper is the recently developed algorithm for Difference
Convex problems by Tao [26] that has been applied
successfully to other data mining applications such as
Multidimensional Scaling. [9].

3 Isometric Embedding

The key concept in Manifold Learning (ML)is to repre-
sent a dataset in a lower dimensional space by preserving
the local distances. The differences between methods
Isomap [27], Maximum Variance unfolding [29], Lapla-
cian EigenMaps [1] and Diffusion Maps [5] is how they
treat distances between points that are not in the local
neighborhood. For example IsoMap preserves exactly
the geodesic distances, while Diffusion Maps preserves
distances that are based on the diffusion kernel. Max-
imum Furthest Neighbor Unfolding (MFNU) [22] that
is a variant of Maximum Variance Unfolding (MVU),
preserves local distance and it tries to maximize the
distance between furthest neighbors. In this section we
are going to present the MFNU method as it will be the
basis for building IsoNmf.

3.1 Convex Maximum Furthest Neighbor Un-
folding. Weinberger formulated the problem of isomet-
ric unfolding as a Semidefinite Programming algorithm
[29]. In [22] Vasiloglou presented a variance of MVU the
MFENU. The latest formulation tends to be more robust
and scalable than MVU, this is why we will employ it
as the basis of [soNMF. Both methods can be cast as a
semidefinite programming problem [28].

Given a set of data X € RV*? where N is the
number of points and d is the dimensionality. The dot
product or Gramm matrix is defined as G = XX7.
The goal is to find a new Gramm matrix K such
that rank(K) < rankj(G) in other words K = XX7T
where X € RV*? and d < d. Now the dataset
is represented by X which has fewer dimensions that
X. The requirement of isometric unfolding is that the
euclidian distances in the R? for a given neighborhood



around every point have to be the same as in the R¢.
This is expressed in:

Kii—Fij —Kij —Kji = Gm‘-Fij —Gij —Gji,Vi,j S Ii

where I; is the set of the indices of the neighbors of
the ¢th point. From all the K matrices MFNU chooses
the one that maximizes the distances between furthest
neighbor pairs. So the algorithm is presented as an SDP:

N
max E Ao K
K

-

i, j furthest neighbors
subject to
A'L] o K =

dy Vjel

where the A @ B = Trace(ABT) is the dot product
between matrices. A;; has the following form:

1 0 -1 0
0 0 0 O
-1 ... 0 1 0
0 0 0
L0 0 0 ]
and
(3.30) dij = Gii + Gj; — Gij — Gji

The last condition is just a centering constraint
for the covariance matrix. The new dimensions X are
the eigenvectors of K. In general MFNU gives Gram
matrices that have compact spectrum at least more
compact than traditional linear Principal Component
Analysis (PCA). Unfortunately this method can handle
datasets of no more than hundreds of points because of
its complexity.

3.2 The Non Convex Maximum Furthest
Neighbor Unfolding. By replacing the constraint
K = 0 [4] with an explicit rank constraint K = RRT
the problem becomes non-convex and it is reformulated
to

N

Z Ay; @ RRT

i=1

i, j furth. neighbors

(3.31)

max

subject to:
Al‘j (] RRT = dij

The above problem can be solved with the aug-
mented Lagrangian method [24].

N
~> A e RR"

i=1

N
=3 > Nij(Aij e RRT — djj)

i=1Vjel;

N
+% Z Z (A” L RRT - dij)2

i=1Vjel;

(332) £ =

Our goal is to minimize the Lagrangian that’s why the
objective function is —RR” and not RRT
The derivative of the augmented Lagrangian is:

oL a

N
—2) > NjAGR

i=1vjecl;

(3.33)

N
QJZ Z (A” L] RRT - dZ])AwR

i=1Vjel;

Gradient descent is a possible way to solve the mini-
mization of the Lagrangian, but it is rather slow. The
Newton method is also prohibitive. The Hessian of this
problem is a sparse matrix although the cost of the
inversion might be high it is worth investigating. In
our experiments we used the limited memory BFGS (L-
BFGS) method [20, 24] that is known to give a good
rate for convergence.

4 Isometric NMF.

NMF and MFNU are optimization problems. The goal
of IsoNMF is to combine these optimization problems
in one optimization problem. MFNU has a convex and
a non-convex formulation, while for NMF only a non-
convex formulation that can be solved is known.

4.1 Convex IsoNMF. By using the theory pre-
sented in section 2.1.1 we can cast IsoNMF as a convex
problem:

N
(4.34) max ZAU o7
i=1

W.H

i, j furthest neighbors

subject to:

Aij o W = dij
WV

| v i)



Z € K°P

W e K¢P

H e K7
Then W, H can be found by the complete factorization
of W = WWT H = HH”. Again this problem
although it is convex, there is no polynomial algorithm
known for solving it.

4.2 Non-convex IsoNMF. The non
IsoNMF can be cast as the following problem:

convex

N
> Ayeww”
i=1
i, j furthest neighbors

(4.35)

max

subject to:

Ay e WWT = dj
WH=V

W >0

H>0

The augmented lagrangian with quadratic penalty func-
tion is the following:

N
(4.36) L = =) Ajyeww”

i=1

N
- Z Z Xij(Aij e WWT — dyj)

i=1Vjel;
N m k
=D ni (Y (WaHig = Vij))
i=1j=1 =1
o N
1
+3 Z Z (Azj [ ] WWT - dij)z
i=1Vjel;

The non-negativity constraints are missing from the
Lagrangian. This is because we can enforce them
through the limited bound BFGS also known as L-
BFGS-B. The derivative of the augmented Lagrangian
is:

oL al
(437) o= —2;Aijw

N
—2 Z Z )\iinjW

i=1Vjel;

N m
=22 mW

i=1 j=1

N
201 Y (A e WWT —dij) Ay W
i=1Vjel;
N m k
+202 ) D> (O (WaHy — Vij)W
i=1j=1 l=1
oL N m
(4.38) o9H ~ ZZMU‘H
i=1 j=1
N m ’ k
+200 ) > (O (WyH,; — Vi) H

4.3 Computing the local neighborhoods. As al-
ready discussed in previous section MFNU and IsoNMF
require the computation of all-nearest and all-furthest
neighbors. The all-nearest neighbor problem is a special
case of a more general class of problems called N-body
problems [8]. In the following sections we give a sort
description of the nearest neighbor computation. The
actual algorithm is a four-way recursion. More details
can be found in [8].

4.4 Kd-tree. The kd-tree is a hierarchical partition-
ing structure for fast nearest neighbor search [7]. Every
node is recursively partitioned in two nodes until the
points contained are less than a fixed number. This
is a leaf. Nearest neighbor search is based on a top
down recursion until the query point finds the closest
leaf. When the recursion hits a leaf then it searches lo-
cally for a candidate nearest neighbor. At this point we
have an upper bound for the nearest neighbor distance,
meaning that the true neighbor will be at most as far
away as the candidate one. As the recursion backtracks
it eliminates (prunes) nodes that there are further away
than the candidate neighbor. Kd-trees provide on the
average nearest neighbor search in O(log N) time, al-
though for pathological cases the kd-tree performance
can asymptotically have linear complexity like the naive
method.

4.5 The Dual Tree Algorithm for nearest neigh-
bor computation. In the single tree algorithm the
reference points are ordered on a kd-tree. Every near-
est neighbor computation requires O(log(N)) computa-
tions. Since there are N query points the total cost is
O(Nlog(N)). The dual-tree algorithm [8] orders the
query points on a tree too. If the query set and the
reference set are the same then they can share the same
tree. Instead of querying a single point at a time the
dual-tree algorithm always queries a group of points
that live in the same node. So instead of doing the
top-down recursion individually for every point it does



it for the whole group at once. Moreover instead of
computing distances between points and nodes it com-
putes distances between nodes. This is the reason why
most of the times the dual-tree algorithm can prune
larger portions of the tree than the single tree algorithm.
The complexity of the dual-tree algorithm is empirically
O(N). If the dataset is pathological then the algorithm
can be of quadratic complexity too. The pseudo-code
for the algorithm is described in fig. 1.

recurse(q : KdTree, r : KdTree) {
if (max_nearest_neighbor_distance_in_node(q)
< distance(q, r) {
/* prune *x/
} else if (IsLeaf(q)==true and IsLeaf (r)==true) {
/* search for every point in q node */
/* its nearest neighbor in the r node */
/* at leaves we must resort to */
/* exhaustive search 0(n~2) */
/*update the maximum_neighbor_distance_in_node(q)*/
} else if (IsLeaf(q)==false and IsLeaf(r)=true {
/* choose the child that is closer to r */
/* and recurse first */
recurse(closest(r, q.left, q.right), r)
recurse(furthest(r, q.left, q.right), r)
} else if (IsLeaf(q)==true and IsLeaf(r)==false) {
/* choose the child that is closer to q */
/* and recurse first */
recurse(q, closest(q, r.left, r.right))
recurse(q, furthest(q, r.left, r.right))
} else {
recurse(q.left,closest(q.left, r.left, r.right));
recurse(q.left,furthest(q.left, r.left, r.right));
recurse(q.right,closest(q.right, r.left, r.right));
recurse(q.right,furthest(q.right, r.left, r.right));
}
}

Figure 1: Pseudo-code for the dual-tree all nearest
neighbor algorithm

4.6 The Dual Tree Algorithm for all furthest
neighbor algorithm. Computing the furthest neigh-
bor with the naive computation is also of quadratic com-
plexity. The use of trees can speed up the computations
too. It turns out that furthest neighbor search for a sin-
gle query point is very similar to the nearest neighbor
search presented in the original paper of kd-tree [7]. The
only difference is that in the top-down recursion the al-
gorithm always chooses the furthest node. Similarly in
the bottom up recursion we prune a node only if the
maximum distance between the point and the node is
smaller than the current furthest distance. The pseudo
code is presented in fig. 2.

recurse(q : KdTree, r : KdTree) {
if (min_furthest_neighbor_distance_in_node(q)
< distance(q, r) {
/* prune */
} else if (IsLeaf(q)==true and IsLeaf (r)==true) {
/* search for every point in q node its
/* furthest neighbor in the r node */
/* at leaves we must resort to */
/* exhaustive search 0(n"2) */
/*update the minimum_furthest_distance_in_node(q)*/
} else if (IsLeaf(q)==false and IsLeaf(r)=true {
/*choose the child that is furthest to r */
/* and recurse first x/
recurse(furthest(r, q.left, q.right), r)
recurse(closest(r, q.left, q.right), r)
} else if (IsLeaf(q)==true and IsLeaf(r)==false) {
/* choose the child that is furthest to q */
/* and recurse first */
recurse(q, furthest(q, r.left, r.right))
recurse(q, closest(q, r.left, r.right))
} else {
recurse(q.left,furthest(q.left, r.left, r.right));
recurse(q.left,closest(q.left, r.left, r.right));
recurse(q.right,furthest(q.right, r.left, r.right));
recurse(q.right,closest(q.right, r.left, r.right));
}
}

Figure 2: Pseudo-code for the dual-tree all furthest
neighbor algorithm

5 Experimental Results

In order to evaluate and compare the performance of
IsoNMF with traditional NMF we picked 3 benchmark
datasets that have been tested in the literature:

1. The CBCL faces database fig. 3(a,b) [12], used in
the experiments of the original paper on NMF [19].
It consists of 2429 grayscale 19 x 19 images that
they are hand aligned. The dataset was normalized
as in [19].

2. The isomap statue dataset fig. 3(c) [13] consists
of 698 64 x 64 synthetic face photographed from
different angles. The data was downsampled to
32 x 32 with the Matlab imresize function (bicubic
interpolation).

3. The ORL faces [14] fig. 3(d) presented in [11]. The
set consists of 472 19 x 19 gray scale images that
are not aligned. For visualization of the results we
used the nmfpack code available on the web [15].

The results for classic NMF and IsoNmf with k-
neighborhood equal to 3 are presented in fig. 4 and
tables 1, 2. We observe that classic NMF gives always
lower reconstruction error rates that are not that far
away from the IsoNMF. Classic NMF fails to preserve
distances contrary to IsoNMF that always does a good



job in preserving distances. Another observation is
that IsoNMF gives more sparse solution than classic
NMF. The only case where NMF has a big difference
in reconstruction error is in the CBCL-face database
when it is being preprocessed. This is mainly because
the preprocessing distorts the images and spoils the
manifold structure. If we don’t do the preprocessing
fig. 4(f), the reconstruction error of NMF and IsoNMF
are almost the same.

In fig. 6 we see a comparison of the energy spec-
trums of classic NMF and IsoNMF. We define the spec-
trum as

N
_ > Wi

VL, HE

This represents the energy of the component normalized
by the energy of the prototype image generated by
NMF /IsoNMF. Although the results show that IsoNMF
is much more compact than NMF it is not a reasonable
metric. This is because the prototypes (rows of the
H matrix are not orthogonal to each other. So in
reality Y% s, < SN, L (WH)Z; and actually
much smaller. This is because the dot product between
the rows is not zero.
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classic NMF | cbcl norm. cbel statue orl
Tec. error 22.01% 9.20% | 13.62% | 8.46%
sparsity 63.23% 29.06% | 48.36% | 46.80%
dist. error 92.10% 98.61% | 97.30% | 90.79%

Table 1: Classic NMF, the relative root mean square
error, sparsity and distance error for the four different
datasets (cbcl normalized and plain, statue and orl)

IsoNMF cbcl norm. cbcl statue orl
Tec error 33.34% 10.16% | 16.81% | 11.77%
sparsity 77.69% 43.98% | 53.84% | 54.86%
dist. error 4.19% 3.07% | 0.03% | 0.01%

“|to larger matrices.

Figure 3: (a)Some images from the cbcl face database
(b)The same images after variance normalization, mean
set to 0.25 and thresholding in the interval [0,1] (¢)The
synthetic statue dataset from the isomap website [13]
(d)472 images from the orl faces database [14]

Table 2: IsoNMF, the relative root mean square error,
sparsity and distance error for the four different datasets
(cbel normalized and plain, statue and orl)

6 Summary

In this paper we presented a study on the optimization
schemes, convex and non-convex, global and local of
Non Negative Matrix Factorization (NMF). Despite the
existence of convex formulations there is no algorithm to
solve them, so local non-convex optimizers are preferred.
A global optimization scheme was presented too that
outperforms local optimizers, but it cannot scale yet
We also presented a variant of
NMF the isometric NMF (IsoNMF), that preserves local

{distances between points in the original dimensions.

Our experiments on benchmark datasets indicate that

< +| IsoNMF except for maintaining the original distances
also gives more sparse prototypes with the cost of a

slightly higher reconstruction error. We also showed
that if the dataset doesn’t have a manifold structure

s 18 then IsoNMF fails.
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Figure 5: Scatter plots of two largest components of
classic NMF(in blue) and Isometric NMF(in red) for
(a)cbel faces (b)isomap faces (c)orl faces
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Figure 6: In this set of figures we show the spectrum
of classic NMF (solid line) and Isometric NMF (dashed
line) for the three datasets (a)cbcl face (b)isomap statue
(c)orl faces. Although IsoNMf gives much more compact
spectrum we have to point that the basis functions are
not orthogonal, so this figure is not comparable to SVD
type spectrums



