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Abstract

Nonnegative Matrix Factorization (NMF) is a dimension reduction method that has been widely used for
various tasks including text mining, pattern analysis, clustering, and cancer class discovery. The mathematical
formulation for NMF appears as a non-convex optimization problem, and various types of algorithms have been
devised to solve the problem. The alternating nonnegative least squares (ANLS) framework is a block coordinate
descent approach for solving NMF, which was recently shown to be theoretically sound and empirically efficient.
In this paper, we present a novel algorithm for NMF based on the ANLS framework. Our new algorithm builds
upon the block principal pivoting method for the nonnegativity constrained least squares problem that overcomes
some limitations of active set methods. We introduce ideas to efficiently extend the block principal pivoting
method within the context of NMF computation. Our algorithminherits the convergence theory of the ANLS
framework and can easily be extended to other constrained NMF formulations. Comparisons of algorithms using
datasets that are from real life applications as well as those artificially generated show that the proposed new
algorithm outperforms existing ones in computational speed.

1 Introduction

Nonnegative Matrix Factorization (NMF) [12, 17] has attracted much attention during the past decade as a di-
mension reduction method in machine learning and data mining. NMF is considered for high dimensional data
where each element has a nonnegative value, and it provides alower rank approximation formed by factors whose
elements are also nonnegative. Due to the nonnegativity, the factors of lower rank approximation give a natu-
ral interpretation: each object is explained by an additivelinear combination of intrinsic ‘parts’ of the data [12].
Numerous successes were reported in application areas including text mining [19], text clustering [21], computer
vision [14], and cancer class discovery [4, 9].

A mathematical formulation of NMF is given as follows. Givenan input matrixA ∈ R
m×n where each element

is nonnegative and an integerk < min {m, n}, NMF aims to find two factorsW ∈ R
m×k andH ∈ R

k×n with
nonnegative elements such thatA ≈ WH . The factorsW andH are commonly found by solving the optimization
problem:

min
W,H

f(W, H) =
1

2
‖A − WH‖2

F (1)

subject to∀ij, Wij , Hij ≥ 0.

The problem shown in Eqn. (1) is a non-convex optimization with respect to the variablesW andH , so one only
hopes to find a local minimum.

Many algorithms have been developed for solving Eqn. (1). More than a decade ago, Paatero and Tapper
[17] initially suggested an algorithm for NMF (to be precise, Positive Matrix Factorization in their terms) based
on the alternating nonnegative least squares (ANLS) framework. They used a subroutine for the nonnegativity
constrained least squares which was not well optimized for the NMF context, resulting in a very slow algorithm.
Lee and Seung popularized NMF in their seminal work [12]. Their multiplicative updating algorithm [13] has been
one of the most commonly used for NMF, but several pointed outits poor performance [15, 8, 6] and problem with
convergence [7]. A simple algorithm that solves an unconstrained least squares at every iteration was devised [2],
but it also suffers from lack of convergence. Recently, interest in the ANLS framework was renewed, and several
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fast algorithms were developed using this framework [15, 8,10]. This framework has a convergence property that
every limit point of the sequence of solutions in iterationsis a stationary point [15].

In this paper, we introduce a new and fast algorithm for NMF using a block principal pivoting method in the
ANLS framework. Previous NMF algorithms using the ANLS framework include the active set method [10],
the projected gradient method [15], and the projected quasi-Newton method [8]. The names of each method
tell how each algorithm solves the nonnegativity constrained least squares subproblem. Projected gradient and
projected quasi-Newton methods apply traditional techniques for unconstrained optimization with modifications
for nonnegativity constraints. The active set method searches for the optimal active and passive sets by exchanging
a variable at each iteration. The block principal pivoting method [20] tries to overcome the limitation of the active
set method by exchanging several variables per iteration, with a goal of finding the optimal passive set of variables
faster. In this paper, we adopt the block principal pivotingmethod in the NMF computation. We introduce ideas
that improve the block principal pivoting method and then build a new algorithm for NMF.

Experimental comparisons among several NMF algorithms, including the one proposed in this paper, will
follow the introduction of the new algorithm. As the fast algorithms by Lin [15], Kim et al. [8], and Kim and Park
[10] appeared very recently, no proper comparison among them has yet been completed. Experimental results using
commonly used datasets reveal their relative computational efficiency and show that the proposed new algorithm
exhibits the best performance for NMF computation.

The rest of this paper is organized as follows. In Section 2, the ANLS framework for NMF and related back-
ground are introduced. In Section 3, our new algorithm for NMF is described in detail as well as its extensions. In
Section 4, we present the design of experiments that we used to compare several NMF algorithms, and the results
and their interpretation are provided in Section 5. We conclude the paper in Section 6 with discussions.

2 Alternating Nonnegative Least Squares Framework for NMF

We describe the alternating nonnegative least squares (ANLS) framework for solving Eqn. (1). The ANLS frame-
work is a simple Expectation Maximization type algorithm where variables are divided into two groups that are
updated in turn. The framework is summarized as follows.

1. InitializeW ∈ R
m×k with nonnegative elements.

2. Repeat solving the following problems until a convergence criterion is satisfied:

min
H≥0

‖WH − A‖2

F (2a)

whereW is fixed, and
min
W≥0

∥

∥HT WT − AT
∥

∥

2

F
(2b)

whereH is fixed.

3. The columns ofW are normalized to unitL2-norm and the rows ofH are scaled accordingly.

Alternatively, one may initializeH first and iterate Eqn. (2b) then Eqn. (2a). Note that each subproblem is an
instance of the nonnegativity constrained least squares (NNLS) problem. Although the original problem in Eqn.
(1) is non-convex, the subproblems in Eqns. (2) are convex problems for which optimal solutions can be found.

It is important to observe that the NNLS problems in Eqns. (2)have a special characteristic. NMF is a
dimension reduction algorithm which is applied to high dimensional data. The original dimension is very large,
e.g. several thousands, and the reduced dimension is small,e.g. on the order of tens. Therefore, the matrix
W ∈ R

m×k is very long and thin (m � k), and the matrixHT ∈ R
n×k is also long and thin (n � k) depending

on the number of data points inA. These observations are critical in designing an efficient algorithm for the
subproblems in Eqns. (2), and we will revisit this point in later sections.

For convergence of any NMF algorithm based on the ANLS framework, it is important to find optimal solutions
of Eqns. (2) at each iteration. The ANLS framework is a two block coordinate descent algorithm, and a recent
result by Grippo and Sciandrone [7] shows that any limit point of the sequence of optimal solutions of two block
subproblems is a stationary point. Thus, the ANLS frameworkhas a good optimization property that its limit point
is a stationary point. In a non-convex optimization, most algorithms only guarantee the stationarity of the limit
point. In the alternating least squares (ALS) algorithm [2], on the contrary, the subproblems are solved in a rather
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ad-hoc fashion where an unconstrained least squares solution (without the nonnegativity constraint) is obtained and
every negative elements are set to zero. In this case, it is difficult to analyze convergence because the algorithm
updates, at each iteration, a solution which is not optimal for the subproblem.

In order to fully describe a NMF algorithm, one has to devise aspecific method to solve the subproblems in
Eqns. (2). A classic algorithm for the NNLS problem is the active set method by Lawson and Hanson [11]. Active
set methods search for the optimal active and passive sets byexchanging a variable between the two sets. Note
that if we know the passive (i.e., strictly positive) variables of the solution in advance, then a NNLS problem can
be easily solved by a simple unconstrained least squares procedure on the passive variables. Although the Lawson
and Hanson’s algorithm has been a standard for NNLS problems1, it is extremely slow when it is used for NMF in
a straightforward way. Faster algorithms were recently developed by Bro and de Jong [3] and Van Benthem and
Keenan [1], and Kim and Park made them into a NMF algorithm [10].

A major limitation of active set methods is that typically only one variable is exchanged between active and
passive sets per iteration, making the algorithm slower when the variable size becomes large. Methods based on it-
erative optimization schemes such as the projected gradient method due to Lin [15] and the projected quasi-Newton
method due to Kim et al. [8] are free of the above limitation. These algorithms are modified from traditional
techniques in unconstrained optimization by providing specialized rules to choose step length and projecting the
solution to the feasible nonnegative orthant at every iteration.

Block principal pivoting methods try to overcome the limitation of active set methods in a different fashion.
We now describe this method in detail.

3 Block Principal Pivoting Algorithm

In this section, we present the block principal pivoting algorithm for NNLS problems. We will first describe the
algorithm for the NNLS with a single right-hand side vector in [20] and then introduce methods that improve upon
this to handle multiple right-hand sides efficiently.

3.1 Single right-hand side case

For the moment, let us focus on the NNLS problem with a single right-hand side vector which is formulated as

min
x≥0

‖Cx − b‖2

2
(3)

whereC ∈ R
p×q, b ∈ R

p×1, andx ∈ R
q×1. The subproblems in Eqns. (2) are decomposed into several

independent instances of Eqn. (3) with respect to each right-hand side vector. Thus, an algorithm for Eqn. (3) is a
basic building block for an algorithm for Eqns. (2).

The Karush-Kuhn-Tucker optimality condition for Eqn. (3) is written as follows.

y = CT Cx − CT b (4a)

y ≥ 0 (4b)

x ≥ 0 (4c)

xiyi = 0, i = 1, · · · , q (4d)

We assume that the matrixC has full column rank. In this case the matrixCT C is positive definite, and the
problem in Eqn. (3) is strictly convex. Then, a solutionx that satisfies the conditions in Eqns. (4) is the optimal
solution of Eqn. (3).

We devide the index set{1, · · · , q} into two subgroupsF andG whereF ∪ G = {1, · · · , q} andF ∩ G = φ.
Let xF , xG, yF , andyG denote the subsets of variables with corresponding indices, and letCF andCG denote the
submatrices ofC with corresponding column indices. Initially, we assignxG = 0 andyF = 0. By construction,
x = (xF , xG) andy = (yF , yG) always satisfy Eqn. (4d) for any values ofxF andyG. Now, we computexF and
yG using Eqn. (4a) and check whether the computed values ofxF andyG satisfy Eqns. (4b) and (4c). Computation
of xF andyG is done as follows.

xF = arg min
xF

‖CF xF − b‖2

2
(5a)

yG = CT
G(CF xF − b) (5b)

1Lawson and Hanson’s algorithm is adopted as a MATLAB function lsqnonneg.
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Algorithm 1 Block principal pivoting algorithm for the NNLS with singleright-hand side (Eqn. (3))

1. LetF = φ, G = {1, · · · , q}, x = 0, y = −CT b, p = 3, t = q + 1

2. ComputexF andyG by Eqns. (5).

3. Repeat while(xF , yG) is infeasible

(a) If |H1 ∪ H2| < t, sett = |H1 ∪ H2|, p = 3 and useĤ1 = H1 andĤ2 = H2.

(b) If |H1 ∪ H2| ≥ t andp ≥ 1, setp = p − 1 and useĤ1 = H1 andĤ2 = H2.

(c) If |H1 ∪ H2| ≥ t andp = 0, choose the largest index from|H1 ∪ H2| and exchange it.

(d) UpdatexF andyG by Eqns. (5).

One can first solve forxF in Eqn. (5a) and substitute the result into Eqn. (5b). We callthe pair(xF , yG) a
complementary basic solution if it is obtained by Eqns. (5).

If a complementary basic solution(xF , yG) satisfiesxF ≥ 0 andyG ≥ 0, then it is calledfeasible. In this case,
x = (xF , 0) is the optimal solution of Eqn. (3), and the algorithm completes. Otherwise, a complementary basic
solution(xF , yG) is infeasible, and we need to updateF andG by exchanging variables for which Eqn. (4b) or
Eqn. (4c) does not hold. Formally, we define the following index sets

H1 = {i ∈ F : xi < 0} (6a)

H2 = {i ∈ G : yi < 0} (6b)

and updateF andG by the following rules:

F =
(

F − Ĥ1

)

∪ Ĥ2 (7a)

G =
(

G − Ĥ2

)

∪ Ĥ1 (7b)

whereĤ1 ⊂ H1, Ĥ2 ⊂ H2. If
∣

∣

∣
Ĥ1 ∪ Ĥ2

∣

∣

∣
> 1, then the algorithm is called ablock principal pivoting algorithm.

If
∣

∣

∣
Ĥ1 ∪ Ĥ2

∣

∣

∣
= 1, then the algorithm is called asingle principal pivoting algorithm. The active set algorithm can

be understood as an instance of single principal pivoting algorithms. The algorithm repeats this procedure until the
number of infeasible variables (i.e.,|H1 ∪ H2|) becomes zero.

In order to speed up the search procedure, one usually usesĤ1 = H1 andĤ2 = H2 which we call the block
exchange rule. The block exchange rule means that we exchange all variables ofF andG that do not satisfy Eqns.
(4). However, contrary to the active set algorithm where thevariable to exchange is carefully selected to reduce
the residual, this exchange rule may lead to a cycle and fail to find an optimal solution although it occurs rarely.
Therefore, when the exchange rule fails to decrease the number of infeasible variables, we use a backup exchange
rule [20] where only one variable is exchanged. As soon as thebackup rule reduces the number of infeasible
variables, then we return to the block exchange rule. With this modification, the block principal pivoting algorithm
terminates in a finite number of iterations [20].

One might connect the two sets,F andG, of the block principal pivoting algorithm to the passive and active
sets in the active set algorithm. However, they are not necessarily identical to each other. In the active set algorithm,
variablexi wherei is in the passive set is required to satisfyxi ≥ 0 while in the block principal pivoting algorithm,
variablexi with i ∈ F is not required to do so. Therefore, the block principal pivoting algorithm does not need an
initial solution withx ≥ 0 while the active set algorithm does.

The block principal pivoting algorithm for the NNLS problemwith single right-hand side is summarized in
Alg. 1. The variablep is used as a buffer on the number of the block exchange rules that may be tried. If the block
exchange rule increases the number of infeasible variables, thenp is reduced by one. Once the value ofp becomes
zero, we only exchange the infeasible variable with the largest index in{1, · · · , q}, which is the backup exchange
rule mentioned earlier. We used three as a default value ofp which means that we can try the block exchange
rule up to three times until it reduces the number of infeasible variables. Numerical experiments show that the
algorithm is very efficient for the NNLS [20, 5].
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Figure 1: Reordering of right-hand side vectors. Dark cellsindicate variables with indices inF which need to be
computed by Eqn. (9). By grouping the columns that have a commonF set, i.e., columns{1, 3, 5},{2, 6} and{4},
we can reduce the computational effort to solve Eqn. (9).

3.2 Multiple right-hand sides case

The subproblems in Eqns. (2) comprise of NNLS problems with multiple right-hand side vectors. Suppose we
need to solve the following NNLS problem:

min
x≥0

‖CX − B‖2

F (8)

whereC ∈ R
p×q, B ∈ R

p×r, andX ∈ R
q×r. It is possible to simply run the single right-hand side algorithm (Alg.

1) for each right-hand side vectorb1, · · · , br. However, this is not computationally efficient. Now, we explain how
we obtain an efficient algorithm for the multiple right-handsides case based on ideas from [3] and [1]. Bro and de
Jong [3] and Van Benthem and Keenan [1] suggested these ideasfor active set methods, and we employ them in
the context of block principal pivoting methods here.

In Alg. 1, the major computational burden is with updatingxF andyG using Eqns. (5). We can solve Eqn.
(5a) by a normal equation

CT
F CF xF = CT

F b, (9)

and Eqn. (5b) can be rewritten as
yG = CT

GCF xF − CT
Gb. (10)

Note that we only need to haveCT
F CF , CT

F b, CT
GCF , andCT

Gb for solving Eqns. (9) and (10).
The first improvement is based on the observation mentioned in Section 2. For the NNLS problems arising

from NMF, the matrixC is typically very long and thin. In this particular case, constructing matricesCT
F CF ,

CT
F b, CT

GCF , andCT
Gb is computationally very expensive. Therefore, our algorithm computesCT C andCT B in

the beginning and reuses them in later iterations. One can easily see thatCT
F CF , CT

F bj , CT
GCF , andCT

Gbj , j ∈
{1, · · · , r}, can be directly retrieved as a submatrix ofCT C andCT B. Because the column size ofC is small,
storage needed forCT C andCT B is not an issue.

The second improvement involves further exploiting commoncomputations. Here we simultaneously run
Alg. 1 for many right-hand side vectors. At each iteration, we have the index setsFj andGj for each column
j ∈ {1, · · · , r}, and we must computexFj

andyGj
using Eqns. (9) and (10). The idea is to find groups of columns

that share the same index setsFj andGj . We reorder the columns with respect to these groups and solve Eqn. (9)
for the columns in the same group. By doing this, we avoid repeated computations in Cholesky factorization for
solving Eqn. (9). Figure 1 illustrates this reordering idea.

We summarize the improved block principal pivoting algorithm for multiple right-hand sides in Alg. 2. The
first idea is also applicable to the single right-hand side case, but the impact is more dramatic in the multiple
right-hand sides case.

3.3 NMF by block principal pivoting NNLS

In the previous section, we presented the block principal pivoting algorithm for the NNLS with multiple right-hand
sides (Alg. 2). We use Alg. 2 to solve the subproblems in Eqns.(2), and then we fully described our new algorithm
for NMF. Implementation issues such as a stopping criterionare discussed in Section 4.2.
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Algorithm 2 Block principal pivoting algorithm for the NNLS with multiple right-hand sides (Eqn. (8))

1. PrecomputeCT C andCT B.

2. LetF (∈ R
q×r) = 0, G(∈ R

q×r) = 1, X = 0, Y = −CT B, P (∈ R
r) = 3, T (∈ R

r) = q + 1

3. ComputeXF andYG by Eqns. (5) using column reordering.

4. Repeat while(XF , YG) is infeasible

(a) Forj’s where|H1(j) ∪ H2(j)| < T (j) , setT (j) = |H1(j) ∪ H2(j)|, P (j) = 3 and useĤ1(j) =
H1(j) andĤ2(j) = H2(j).

(b) Forj’s where|H1(j) ∪ H2(j)| ≥ T (j) andP (j) ≥ 1, setP (j) = P (j) − 1 and useĤ1(j) = H1(j)
andĤ2(j) = H2(j).

(c) Forj’s where|H1(j) ∪ H2(j)| ≥ T (j) andP (j) = 0, choose the largest index from|H1(j) ∪ H2(j)|
and exchange it.

(d) UpdateXF andYG by Eqns. (5) using column reordering.

3.4 Extensions

So far, we developed a new algorithm for the original NMF formulation in Eqn. (1), and our results can easily be
extended to further constrained formulations. For example, obtaining sparse factors might be of interest for some
applications [9]. Sparse NMF [9] is formulated as, when the sparsity is considered forH factor,

min
W,H







‖A − WH‖2

F + η ‖W‖2

F + β

n
∑

j=1

‖H(:, j)‖2

1







(11)

subject to∀ij, Wij , Hij ≥ 0.

We can solve Eqn. (11), as shown in [9], by solving the following subproblems alternatingly:

min
H≥0

∥

∥

∥

∥

(

W√
βe1×k

)

H −
(

A
01×n

)
∥

∥

∥

∥

2

F

wheree1×k is a row vector having every element as one and01×n is a zero vector with lengthn, and

min
W≥0

∥

∥

∥

∥

(

H√
ηIk

)

WT −
(

AT

0k×m

)
∥

∥

∥

∥

2

F

whereIk is ak × k identity matrix and0k×m is a zero matrix of sizek × m.
WhenW andHT are not necessarily of full column rank, a regularized formulation can be considered [18]:

min
W,H

{

‖A − WH‖2

F + α ‖W‖2

F + β ‖H‖2

F

}

(12)

subject to∀ij, Wij , Hij ≥ 0.

As shown in [10], Eqn. (12) can also be recast into the ANLS framework. We can iterate solving

min
H≥0

∥

∥

∥

∥

(

W√
βIk

)

H −
(

A
0k×n

)
∥

∥

∥

∥

2

F

where0k×n is a zero matrix of sizek × n, and

min
W≥0

∥

∥

∥

∥

(

HT

√
αIk

)

WT −
(

AT

0k×m

)∥

∥

∥

∥

2

F

until convergence.
The proposed new block principal pivoting algorithm is applicable to the problems shown in Eqns. (11) and

(12), and therefore, can be used for faster sparse or regularized NMF as well.
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4 Comparison - Design and Issues

In this section, we describe the design of experiments and datasets used in our comparison along with a discussion
of implementation issues. Due to space limitations, we do not present details of other algorithms but only refer to
the papers where they are presented.

4.1 Algorithms

We compare the following algorithms for NMF.

1. (mult) Lee and Seung’s multiplicative updating algorithm [13]

2. (als) Berry et al.’s alternating least squares algorithm [2]

3. (lsqnonneg) ANLS with Lawson and Hanson’s algorithm [11]

4. (projnewton) ANLS with Kim et al.’s projected quasi-Newton algorithm [8]

5. (projgrad) ANLS with Lin’s projected gradient algorithm [15]

6. (activeset) ANLS with Kim and Park’s active set algorithm [10]

7. (blockpivot) ANLS with block principal pivoting algorithm which is proposed in this paper

We includedmult, als, andlsqnonneg for the purpose of complete comparison but paid more detailed attention
to algorithms that have not been compared in their entirety previously: projnewton, projgrad, activeset, and
blockpivot. In all executions that we show in Section 5, all algorithms are provided with the same initial values.

4.2 Stopping criterion

Deciding when to stop a NMF algorithm is based on whether we have reached a local minimum of the objective
function‖A − WH‖F . We used the stopping criterion defined in [10] which is basedon the Karush-Kuhn-Tucher
(KKT) optimality condition for Eqn. (1).

According to the KKT condition,(W, H) is a stationary point of Eqn. (1) if and only if

W ≥ 0 (13a)

∂f(W, H)/∂W ≥ 0 (13b)

W. ∗ (∂f(W, H)/∂W ) = 0 (13c)

H ≥ 0 (13d)

∂f(W, H)/∂H ≥ 0 (13e)

H. ∗ (∂f(W, H)/∂H) = 0. (13f)

These conditions can be simplified as

min (W, ∂f(W, H)/∂W ) = 0 (14a)

min (H, ∂f(W, H)/∂H) = 0 (14b)

where the minimum is taken component wise [6]. We use a normalized KKT residual as

∆ =
δ

δW + δH

(15)

where

δ =
m

∑

i=1

k
∑

q=1

∣

∣

∣
min(Wiq , (∂f(W, H)/∂W )iq

∣

∣

∣

+

k
∑

q=1

n
∑

j=1

∣

∣

∣
min(Hqj , (∂f(W, H)/∂H)qj

∣

∣

∣
(16)
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δW = #(min(W, (∂f(W, H)/∂W ) 6= 0) (17)

δH = #(min(H, (∂f(W, H)/∂H) 6= 0) . (18)

Note that the KKT residual is divided by the number of nonzeroelements in order to make the residual independent
of the sizes ofW andH . Using this normalized residual, the convergence criterion is defined as

∆ ≤ ε∆0 (19)

where∆0 is the value of∆ using initial values ofW andH andε is a chosen tolerance. We computed∆0 using
the initial values instead of using the values after the firstiteration as done in [10], because the latter is not fair in
comparing several algorithms.

4.3 Datasets

We use three datasets for comparisons: synthetic, text, andimage. The synthetic dataset is created in the following
way. We usedm = 300 andn = 200. For k = 5, 10, 20, 30, 40, 60, and80, we randomly constructedm × k
matrixW andk×n matrixH with 40% sparsity. Then, we computedA = WH and added Gaussian noise to each
element where the standard deviation is5% of the average magnitude of elements inA. Finally, we normalized
matrix A so that the average element-wise magnitude is the same for all k values. Basically, we created small
synthetic matrices that have latent sparse nonnegative factors.

For text dataset, the Topic Detection and Tracking 2 (TDT2) text corpus2 is used. The TDT2 dataset contains
news articles from various sources such as NYT, CNN, VOA, etc. in 1998. The corpus is manually labeled across
100 different topics, and it has been widely used for text mining research. From the corpus, we randomly selected
20 topics where the number of articles in the topic is greaterthan 20. The term document matrix is created by
TF.IDF indexing and unit-norm normalization [16]. We obtained a 12617× 1491 term-document matrix.

For image dataset, the Olivetti Research Laboratory (ORL) face image database3 is used. The database contains
400 face images of 40 different people with 10 images per person. Each face image has 92×112 pixels in 8-bit
grey level. We obtained 10304×400 matrix.

5 Comparison of the Experimental Results

In this section, we summarize our experimental results and offer interpretation. We implemented our new block
principal pivoting algorithm in MATLAB. For other existingNMF algorithms, we used MATLAB codes presented
in [10, 8, 15] after modifying them with our stopping criterion. All experiments were executed on 3.2 GHz
Pentium4 Xeon EMT64 machines with Linux OS.

5.1 Experimental results with synthetic datasets

We tested all seven algorithms presented in Section 4.1 on the synthetic datasets. The same initial values were
shared in all algorithms, and the average results using 10 different initial values are shown in the Table 1.

As shown in Table 1,multi andals easily exceeded the maximum number of iterations which was set to be
10,000. These results show that the algorithms have difficulties with convergence. The failure to converge resulted
in worse approximations as the residual values show; whenk = 20, multi andals gave larger average residuals
compared to ANLS type algorithms. Since the number of iterations exceeded the limit and the execution times
were among the slowest, we did not include these algorithms in the following experiments.

All ANLS type algorithms appeared to satisfy the convergence criterion within a reasonable number of itera-
tions, giving an empirical confirmation of convergence. Thenumbers of iterations for ANLS type algorithms were
more or less similar to each other except inprojgrad method. This is because thatprojgrad andprojnewton
are based on iterative optimization schemes. In their subroutines for the NNLS problem, another tolerance value
needs to be specified for a stopping criterion, and the tightness of the solution in the subproblem depends upon
the tolerance value. On the other hand,activeset andblockpivot exactly solves the NNLS subproblem at every
iteration. The difference might lead to a variation in the number of iterations of their NMF algorithms.

2http://projects.ldc.upenn.edu/TDT2/
3http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Table 1: Experimental results on 300×200 synthetic datasets with latent nonnegative factors with ε = 10−4. For
eachk, all algorithms were executed with the same initial values,and the average results from using 10 different
initial values are shown in the table. For the execution timecomparison, the shortest execution time is highlighted
in bold type. For slow algorithms, experiments with largerk values take too much time and are omitted. The
residual is computed as‖A − WH‖F / ‖A‖F .

k multi als lsqnonneg projnewton projgrad activeset blockpivot
time (sec) 5 35.336 36.697 23.188 5.756 0.976 0.262 0.252

10 47.132 52.325 82.619 13.43 4.157 0.848 0.786
20 72.888 83.232 45.007 9.32 4.41 4.004
30 127.33 62.317 17.252 14.384
40 81.445 22.246 16.132
60 128.76 37.376 21.368
80 276.29 65.566 30.055

iterations 5 9784.2 10000 25.6 25.8 30 26.4 26.4
10 10000 10000 34.8 35.2 45 35.2 35.2
20 10000 10000 70.8 104 69.8 69.8
30 166 205.2 166.6 166.6
40 234.8 118 117.8
60 157.8 84.2 84.2
80 131.8 67.2 67.2

residual 5 0.04035 0.04043 0.04035 0.04035 0.04035 0.04035 0.04035
10 0.04345 0.04379 0.04343 0.04343 0.04344 0.04343 0.04343
20 0.04603 0.04556 0.04412 0.04414 0.04412 0.04412
30 0.04313 0.04316 0.04327 0.04327
40 0.04944 0.04943 0.04944
60 0.04106 0.04063 0.04063
80 0.03411 0.03390 0.03390

The lsqnonneg algorithm was implemented as a reference point although it is known to be very slow. The
execution time oflsqnonneg as shown in Table 1 was much longer than in other ANLS algorithms. Among
remaining ANLS type algorithms, i.e.,projnewton, projgrad, activeset, andblockpivot, projnewton method
was computationally less efficient than others as can be seenfrom Table 1. Its overall computation time was much
longer than those of other ANLS type algorithms while the required number of iterations was similar to others.
These results imply thatprojnewton is slower in solving the subproblems in Eqns. (2).

Among all algorithms,blockpivot showed the shortest execution time. Note that for small values ofk up to
20, the execution time required foractiveset or projgrad was comparable to that ofblockpivot. However, as
k becomes larger, the difference betweenblockpivot and the other two growed to be nontrivial. As these three
algorithms show the best efficiency, we focus on comparing these algorithms with large real datasets below.

5.2 Experimental results with text and image datasets

Experimental results with text and image datasets are shownin Tables 2 and 3. As we learned that the three algo-
rithms,projgrad, activeset, andblockpivot, are the most efficient from the previous experiments using smaller
synthetic datasets, we focused on comparing the three algorithms.

From Tables 2 and 3, it can be observed thatblockpivot is often the most efficient algorithm for various values
of k. For small values ofk, it appeared thatactiveset was slightly faster thanblockpivot, but the difference
was very small. This result agrees with a general understanding that for solving a NNLS problem where the
number of variables is small, the active set method is preferred. For larger values ofk, blockpivot showed much
better performance than the other two algorithms. Since NMFor sparse NMF was shown to work well as a
clustering method [21, 9] and the value ofk is typically small in clustering problems, we recommendactiveset or
blockpivot method for a clustering use. Exploratory analysis for text or image database might often use relatively
largek values, and our results recommendblockpivot in this case. Overall, the experimental results confirm that
blockpivot is generally superior to the other two algorithms.
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Table 2: Experimental results on12617×1491 text dataset
with ε = 10−4. For eachk, all algorithms were executed
with the same initial values, and the average results from
using 10 different initial values are shown in the table.
The residual is computed as‖A − WH‖F / ‖A‖F .

k projgrad activeset blockpivot
time (sec) 5 107.24 81.476 82.954

10 131.12 87.012 88.728
20 161.56 154.1 144.77
30 355.28 314.78 234.61
40 618.1 753.92 479.49
50 1299.6 1333.4 741.7
60 1616.05 2405.76 1041.78

iterations 5 66.2 60.6 60.6
10 51.8 42 42
20 45.8 44.6 44.6
30 100.6 67.2 67.2
40 118 103.2 103.2
50 120.4 126.4 126.4
60 154.2 171.4 172.6

residual 5 0.9547 0.9547 0.9547
10 0.9233 0.9229 0.9229
20 0.8898 0.8899 0.8899
30 0.8724 0.8727 0.8727
40 0.8600 0.8597 0.8597
50 0.8490 0.8488 0.8488
60 0.8386 0.8387 0.8387

Table 3: Experimental results on10304 × 400 image
dataset withε = 5×10−4. For eachk, all algorithms were
executed with the same initial values, and the average re-
sults from using 10 different initial values are shown in the
table. The residual is computed as‖A − WH‖F / ‖A‖F .

k projgrad activeset blockpivot
time (sec) 16 68.529 11.751 11.998

25 124.05 25.675 22.305
36 109.1 53.528 35.249
49 150.49 115.54 57.85
64 169.7 270.64 91.035
81 249.45 545.94 146.76

iterations 16 26.8 16.4 16.4
25 20.6 15 15
36 17.6 13.4 13.4
49 16.2 12.4 12.4
64 16.6 13.2 13.2
81 16.8 14.4 14.4

residual 16 0.1905 0.1907 0.1907
25 0.1757 0.1751 0.1751
36 0.1630 0.1622 0.1622
49 0.1524 0.1514 0.1514
64 0.1429 0.1417 0.1417
81 0.1343 0.1329 0.1329

Note that the relative efficiency betweenactiveset andprojgrad may be reversed for a largerk. In Table 2,
projgrad appeared faster thanactiveset for k ≥ 40, and in Table 3, fork ≥ 49. In Table 1, however,activeset
appeared faster thanprojgrad throughout allk values. It seems that their relative efficiency depends on different
datasets and different problem sizes although they are bothinferior to blockpivot in all cases.

Although we explored various values fork (from5 to 81), it has to be understood that all these values are much
smaller than the original dimension, which was12617 for the text dataset and10304 for the image dataset. This
trend is what we expect from a dimension reduction method, asmentioned in Section 2. We emphasize that the
long and thin structure of the NNLS problems arising from NMFis a key feature that enables us to use speed-up
techniques explained in Section 3.2 and consequently givesthe successful experimental results ofblockpivot.

5.3 Execution time and tolerance values

We examined the efficiency of the three algorithms with respect to tolerance values and show the results in Figure
2. Note thatprojgrad was comparable to or faster thanblockpivot when a loose tolerance was given. When
a tighter tolerance was used, however,blockpivot was clearly faster thanprojgrad. This result implies that
projgrad quickly minimizes the objective function in earlier iterations but becomes slower in achieving a good
approximation by a tight tolerance.

6 Discussion and Conclusion

In this paper, a new algorithm for computing Nonnegative Matrix Factorization (NMF) based on the alternating
nonnegative least squares (ANLS) framework is proposed. The new algorithm is built upon the block principal
pivoting algorithm for the nonnegativity constrained least squares (NNLS) problem. We introduced ideas for im-
provement in efficient handling of the multiple right-hand sides case of NNLS. The newly constructed algorithm
inherits the convergence theory of the ANLS framework and can easily be extended to other constrained NMF for-
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Figure 2: Execution time with respect to tolerance values on12617 × 1491 text dataset. All algorithms were
executed with the same initial values, and the average results using 10 different initial values are presented.
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mulations such as sparse NMF or regularized NMF. Experimental comparisons with most of the NMF algorithms
presented in literature using synthetic, text, and image datesets show that the new algorithm is generally the most
efficient method for computing NMF.

A limitation of a NMF algorithm based on active set or block principal pivoting method is that it may break
down if the matrixC in Eqn. (3) does not have full column rank. However, the algorithm is expected to behave well
in practice as observed in our experiments. The regularization method mentioned in Section 3.4 can be adopted to
remedy this problem making these algorithms generally applicable for computations of NMF.
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