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Abstract

The method of stable random projections is an efficient
tool for computing the lα distances using low memory,
where 0 < α ≤ 2 may be viewed as a tuning parameter.
This method boils down to a statistical estimation task and
various estimators have been proposed, based on the geo-
metric mean, harmonic mean, and fractional power etc.

This study proposes the optimal quantile estimator,
whose main operation is selecting, which is considerably
less expensive than taking fractional power, the main opera-
tion in previous estimators. Our experiments report that this
estimator is nearly one order of magnitude more computa-
tionally efficient than previous estimators. For large-scale
tasks in which storing and computing pairwise distances is
a serious bottleneck, this estimator should be desirable.

In addition to its computational advantage, the optimal
quantile estimator exhibits nice theoretical properties. It is
more accurate than previous estimators when α > 1. We
derive its theoretical error bound and establish the explicit
(i.e., no hidden constants) sample complexity bound.

1 Introduction

The method of stable random projections[36, 16, 21,
30], as an efficient tool for computing pairwise distances
in massive, high-dimensional, and possibly dynamic data,
provides a powerful mechanism to tackle some of the chal-
lenges in modern data mining and machine learning. In this
paper, we provide an easy-to-implement algorithm for sta-
ble random projections. Our algorithm is both statistically
accurate and computationally efficient.

1.1 Massive High-dimensional Data

We denote a data matrix by A ∈ R
n×D, i.e., n data

points in D dimensions. Data sets in modern applications

exhibit important characteristics which impose tremendous
challenges in data mining and machine learning [5]:

• Modern data sets with n = 105 or even n = 106 points
are not uncommon in supervised learning, e.g., in im-
age/text classification, ranking algorithms for search
engines (e.g., [24]), etc. In the unsupervised domain
(e.g., Web clustering, ads clickthroughs, word/term as-
sociations), n can be even much larger.

• Modern data sets are often of ultra high dimensions
(D), sometimes in the order of millions or higher, e.g.,
image and text. In image analysis, D may be 103 ×
103 = 106 if using pixels as features, or D = 2563 ≈
16 million if using color histograms as features.

• Modern data sets are sometimes collected in a dynamic
fashion, e.g., data streams[32].

• Large-scale data are often heavy-tailed, e.g., image,
text, and Internet data.

1.2 Dynamic Streaming Data

“Scaling up for high dimensional data and high speed
data streams” has been identified to be among the “ten chal-
lenging problems in data mining research”[37]. The method
of stable random projections is often regarded as the stan-
dard algorithm for stream computations, provided that the
data are generated from the following Turnstile model[32].

The input stream st = (it, It), it ∈ [1, D] arriving se-
quentially describes the underlying signal St, meaning

St[it] = St−1[it] + It. (1)

The increment It can be either positive (insertion) or nega-
tive (deletion). For example, in an online bookstore, St−1[i]
may represent the number of books that the user i has or-
dered up to time t − 1 and It is the additional orders (or
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cancels of orders) at the time t. If a user is identified by
his/her IP address, then D = 264 is possible.

This study mainly concerns computing pairwise dis-
tances. We can view the data matrix A ∈ R

n×D as n data
streams, whose entries are subject to updating. In reality,
the data may not be stored (even on disks)[32]. Thus, a
one-pass algorithm is needed to compute and update dis-
tances for training. Learning with dynamic (or incremental)
data has become an active topic of research, e.g., [11, 2].

1.3 Pairwise Distances and Kernels

Many mining and learning algorithms require a similar-
ity matrix computed from pairwise distances of the data
matrix A ∈ R

n×D. Examples include clustering, near-
est neighbors, multidimensional scaling, and kernel SVM
(support vector machines). The similarity matrix requires
O(n2) storage space and O(n2D) computing time.

This study focuses on the lα distance (0 < α ≤ 2). Con-
sider two vectors u1, u2 ∈ R

D (e.g., the leading two rows
in A), the lα distance between u1 and u2 is

d(α) =
D∑

i=1

|u1,i − u2,i|α. (2)

Note that, strictly speaking, the lα distance should be de-
fined as d

1/α
(α) . However, since the power operation (.)1/α is

the same for all pairs, it often makes no difference whether
we use d

1/α
(α) or just d(α); and hence we focus on d(α).

The radial basis kernel (e.g., for SVM) is constructed
from d(α) [7, 35], i.e., for 0 < α ≤ 2,

K(u1, u2) = exp

(
−γ

D∑
i=1

|u1,i − u1,i|α
)

. (3)

When α = 2, this is the Gaussian radial basis kernel. Here
α can be viewed as a tuning parameter. For example, in their
histogram-based image classification project using SVM,
[7] reported that α = 0 and α = 0.5 achieved good per-
formance. For heavy-tailed data, tuning α has the similar
effect as term-weighting the original data, often a critical
step in a lot of machine learning applications [19, 34].

For popular kernel SVM solvers including the Sequential
Minimal Optimization (SMO) algorithm[33], storing and
computing kernels is the major bottleneck. Three compu-
tational challenges were summarized in [5, page 12]:

• Computing kernels is expensive.

• Computing full kernel matrix is wasteful.
Efficient SVM solvers often do not need to evaluate all
pairwise kernels.

• Kernel matrix does not fit in memory.
Storing the kernel matrix at the memory cost O(n2) is

challenging when n > 105, and is currently not real-
istic for n > 106, because O

(
1012

)
consumes at least

1000 GBs memory.

A popular strategy in large-scale learning is to evaluate
distances on the fly[5]. That is, instead of loading the sim-
ilarity matrix in memory at the cost O(n2), one can load
the original data matrix at the cost O(nD) and recompute
pairwise distances on-demand. Apparently this strategy is
problematic when D is not too small. For high-dimensional
data, either loading the data matrix in memory is unrealistic
or computing distances on-demand becomes too expensive.

Those challenges are general issues in distanced-based
algorithms, not unique to kernel SVM. The method of stable
random projections provides a promising scheme to reduce
the dimension D to a small k (e.g., k ≤ 100), facilitating
compact data storage and efficient distance computations.

1.4 Stable Random Projections

The basic procedure of stable random projections is to
multiply A ∈ R

n×D by a random matrix R ∈ R
D×k (k is

small), which is generated by sampling each entry rij i.i.d.
from a symmetric stable distribution S(α, 1). The resultant
matrix B = A × R ∈ R

n×k is much smaller than A and
hence it may fit in memory.

In general, a stable random variable x ∼ S(α, d), where
d is the scale parameter, does not have a closed-form den-
sity. However, its characteristic function (Fourier transform
of the density function) has a closed-form:

E
(
exp

(√−1xθ
))

= exp (−d|θ|α) , for any θ, (4)

which does not have a closed-form inverse (i.e., density) ex-
cept for α = 2 (normal) or α = 1 (Cauchy). Note that when
α = 2, d corresponds to “σ2” (not “σ”) in a normal. The
fact that stable distributions in general do not have closed-
form density makes the estimation task more difficult.

Corresponding to the leading two rows in A, u1, u2 ∈
R

D, the leading two rows in B are v1 = RTu1, v2 = RTu2.
The entries of the difference, for j = 1 to k,

xj = v1,j − v2,j =
D∑

i=1

rij (u1,i − u2,i)

∼ S

(
α, d(α) =

D∑
i=1

|u1,i − u2,i|α
)

,

are i.i.d. samples of a stable distribution whose scale pa-
rameter is the lα distance d(α), due to properties of Fourier
transforms. For example, a weighted sum of i.i.d. standard
normals (α = 2) is also normal with the scale parameter
(i.e., variance) being the sum of squares of all weights.

After obtaining the stable samples, one can discard the
original matrix A and the remaining task is to estimate d(α).
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Sampling from stable distributions is based on the
Chambers-Mallows-Stuck method[6]. Recently, [20] sug-
gested a much simpler (but approximate) procedure.

1.5 Summary of Applications

• Computing all pairwise lα distances The cost
of computing all pairwise distances of A ∈ R

n×D ,
O(n2D), is significantly reduced to O(nDk + n2k).

• Estimating lα distances online For n > 105, it
is challenging or unrealistic to materialize all pairwise
distances in A. In applications such as online learning,
databases, search engines, and online recommendation
systems, it may be more efficient if we store B ∈ R

n×k

in memory and estimate distances on-demand.

• Learning with (Turnstile) dynamic streaming data
In reality, the data matrix may be updated over time. In
fact, with streaming data arriving at high-rate[16, 3],
the “data matrix” may be never stored and hence all
operations (such as clustering and classification) must
be conducted on the fly. Because the Turnstile model
(1) is linear and the matrix multiplication B = A × R
for random projection is also linear, we can conduct
the A × R incrementally, assuming the data in A are
updated according to the Turnstile model.

• Estimating entropy There is a recent trend in entropy
computations using stable random projections and the
αth frequency moments with α close to 1 [38, 15, 14,
22, 23]. We will not delve into this new topic.

2 The Statistical Estimation Problem

Recall that the method of stable random projections
boils down to estimating the scale parameter d(α) from k
i.i.d. samples xj ∼ S(α, d(α)), j = 1 to k. We consider a

good estimator d̂(α) should have the following properties:

• (Asymptotically) unbiased and small variance.

• Computationally efficient.

• Exponential decrease of error (tail) probabilities.

The arithmetic mean estimator 1
k

∑k
j=1 |xj |2 is good for

α = 2. When α < 2, the task is less straightforward be-
cause (1) no explicit density of xj exists unless α = 1 or
0+; and (2) E(|xj |t) < ∞ only when −1 < t < α.

2.1 Several Previous Estimators

[21] proposed the geometric mean estimator

d̂(α),gm =

∏k
j=1 |xj |α/k[

2
π Γ
(

α
k

)
Γ
(
1 − 1

k

)
sin
(

π
2

α
k

)]k ,

where Γ(.) is the Gamma function, and the harmonic mean
estimator

d̂(α),hm =
− 2

π
Γ(−α) sin

(
π
2
α
)

∑k
j=1 |xj |−α

(
k +

πΓ(−2α) sin (πα)[
Γ(−α) sin

(
π
2
α
)]2 + 1

)
.

More recently, [28] proposed the fractional power estimator

d̂(α),fp =

⎛
⎝ 1

k

∑k
j=1 |xj|λ∗α

2
π Γ(1 − λ∗)Γ(λ∗α) sin

(
π
2 λ∗α

)
⎞
⎠1/λ∗

×

(
1 − 1

k

1

2λ∗

(
1

λ∗ − 1

) ( 2
π Γ(1 − 2λ∗)Γ(2λ∗α) sin (πλ∗α)[ 2
π Γ(1 − λ∗)Γ(λ∗α) sin

(
π
2 λ∗α

)]2 − 1

))
,

where
λ∗ = argmin

− 1
2α

λ< 1
2

1

λ2

(
2
π
Γ(1 − 2λ)Γ(2λα) sin (πλα)[

2
π
Γ(1 − λ)Γ(λα) sin

(
π
2
λα
)]2 − 1

)
.

All three estimators are unbiased or asymptotically (as
k → ∞) unbiased. Figure 1 compares their asymptotic vari-
ances in terms of the Cramér-Rao efficiency, which is the
ratio of the smallest possible asymptotic variance over the
asymptotic variance of the estimator, as k → ∞.
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Figure 1. The Cramér-Rao efficiencies (the
higher the better, max = 1.00) of various es-
timators, including the optimal quantile estima-
tor proposed in this study.

The geometric mean estimator d̂(α),gm exhibits exponen-
tial tail bounds, i.e., the errors decrease exponentially fast:

Pr
(
|d̂(α),gm − d(α)| ≥ εd(α)

)
≤ 2 exp

(
−k

ε2

Ggm

)
.

where the constant Ggm was explicitly provided in [21].
The harmonic mean estimator, d̂(α),hm, works well for

small α, and has exponential tail bounds when α = 0+.
The fractional power estimator, d̂(α),fp, has smaller

asymptotic variance than both the geometric mean and har-
monic mean estimators. However, it does not have expo-
nential tail bounds, due to the restriction −1 < λ∗α < α

in its definition. As shown in [28], it only has finite mo-
ments slightly higher than the 2nd order, when α → 2 (be-
cause λ∗ → 0.5), meaning that large errors may have a good
chance to occur. We will demonstrate this by simulations.
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2.2 The Issue of Computational Efficiency

All three estimators, d̂(α),gm, d̂(α),hm and d̂(α),fp, re-
quire evaluating fractional powers, e.g., |xj |α/k. This op-
eration is expensive, especially if we need to conduct this
tens of billions of times (e.g., n2 = 1010). For example,
[7, 17] reported that, although the radial basis kernel (3)
with α = 0.5 achieved good performance, it was not pre-
ferred because evaluating the square root was expensive.

2.3 Our Proposed Estimator

We propose the optimal quantile estimator, by selecting
the (q∗ × k)th smallest |xj | (i.e., 0 ≤ q∗ ≤ 1):

d̂(α),oq ∝ (q∗-quantile{|xj |, j = 1, 2, ..., k})α , (5)

where q∗ = q∗(α) is chosen to minimize the asymptotic
variance. This estimator is computationally attractive be-
cause selecting should be much less expensive than evalu-
ating fractional powers. If we are interested in d

1/α
(α) instead,

then we do not even need to evaluate any fractional powers.
As mentioned previously, in many cases using either d(α)

or d
1/α
(α) makes no difference. The radial basis kernel (3)

requires d(α) and hence this study focuses on d(α). On the
other hand, if applications only need d

1/α
(α) , we can simply

use (5) without the αth power.
In addition to the computational advantages, this estima-

tor also has good theoretical properties, in terms of both the
variances and tail probabilities:

1. Figure 1 illustrates that, compared with the geometric
mean estimator, the asymptotic variance of the optimal
quantile estimator is about the same when α < 1, and
is considerably smaller when α > 1. Compared with
the fractional power estimator, it has smaller asymp-
totic variance when 1 < α ≤ 1.8. In fact, as will be
shown by simulations, when the sample size k is not
too large, the optimal quantile estimator actually has
considerably smaller mean square errors than the frac-
tional power estimator, for all 1 < α ≤ 2.

2. The optimal quantile estimator exhibits tail bounds in
exponential form. This theoretical result is practically
important, for selecting the sample size k. While it is
well-known that the generalization bounds in machine
learning theory are often loose, our bounds are tight
and practical because the distribution is specified.

The next section will be devoted to analyzing the optimal
quantile estimator.

3 The Optimal Quantile Estimator

Recall the goal is to estimate d(α) from {xj}k
j=1, where

xj ∼ S(α, d(α)), i.i.d. Since the distribution belongs to the

scale family, one can estimate the scale parameter d(α) from
quantiles. Due to symmetry, it is natural to consider the
absolute values:

d̂(α),q =
(

q-Quantile{|xj |, j = 1, 2, ..., k}
q-Quantile{|S(α, 1)|}

)α

, (6)

which can be understood by the fact that if x ∼ S(α, 1), then
d1/αx ∼ S(α, d), or more obviously, if x ∼ N(0, 1), then(
σ2
)1/2

x ∼ N
(
0, σ2

)
. By properties of order statistics[10],

d̂(α),q provides an asymptotically unbiased estimator.

Lemma 1 provides the asymptotic variance of d̂(α),q.

Lemma 1 Denote fX

(
x;α, d(α)

)
and FX

(
x;α, d(α)

)
the

probability density function and the cumulative density
function of X ∼ S(α, d(α)), respectively.

The asymptotic variance of d̂(α),q defined in (6) is

Var
(
d̂(α),q

)
=

1

k

(q − q2)α2/4

f2
X (W ;α, 1) W 2

d2
(α) + O

(
1

k2

)
(7)

where W = F−1
X ((q + 1)/2; α, 1) = q-Quantile{|S(α, 1)|}.

Proof: See Appendix A. �.

3.1 The Optimal Quantile q∗(α)

We choose q = q∗(α) so that the asymptotic variance (7)
is minimized, i.e.,

q∗(α) = argmin
q

g(q; α), g(q;α) =
q − q2

f2
X (W ;α, 1) W 2

. (8)
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Figure 2. (a) The optimal values for q∗(α),
which minimizes asymptotic variance of
d̂(α),q, i.e., the solution to (8). (b) The constant
Wα(q∗) = {q∗-quantile{|S(α, 1)|}}α.

The convexity of g(q; α) ensures a unique minimum.
Graphically, g(q; α) is a convex function of q. An algebraic
proof, however, is difficult. Nevertheless, we can obtain an-
alytical solutions when α = 1 and α = 0+.

Lemma 2 When α = 1 or α = 0+, the function g(q; α)
defined in (8) is a convex function of q. When α = 1, the
optimal q∗(1) = 0.5. When α = 0+, q∗(0+) = 0.203 is
the solution to − log q∗ + 2q∗ − 2 = 0.

Proof: See Appendix B. �.
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It is also easy to show that when α = 2, q∗(2) = 0.862.
We denote the optimal quantile estimator by d̂(α),oq ,

which is same as d̂(α),q∗ . For general α, we resort to nu-
merical solutions, as presented in Figure 2.

3.2 Bias Correction

Although d̂(α),oq (i.e., d̂(α),q∗ ) is asymptotically (as k →
∞) unbiased, it is seriously biased for small k. Thus, it
is practically important to remove the bias. The unbiased
version of the optimal quantile estimator is

d̂(α),oq,c = d̂(α),oq/Bα,k, (9)

where Bα,k is the expectation of d̂(α),oq at d(α) = 1. For
α = 1, 0+, or 2, we can evaluate the expectations (i.e., inte-
grals) analytically or by numerical integrations. For general
α, because the probability density is not available, the task
is difficult and prone to numerical instability. On the other
hand, since the Monte-Carlo simulation is a popular alter-
native for evaluating difficult integrals, a practical solution
is to simulate the expectations, as presented in Figure 3.
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Figure 3. The bias correction factor Bα,k in
(9), obtained from 108 simulations for every
combination of α (spaced at 0.05) and k. Note
that Bα,k = E

(
d̂(α),oq; d(α) = 1

)
.

Figure 3 illustrates that Bα,k > 1, meaning that this
correction also reduces variance while removing bias (be-
cause Var(x/c) = Var(x)/c2). For example, when α = 0.1
and k = 10, Bα,k ≈ 1.24, which is significant, because
1.242 = 1.54 implies a 54% difference in terms of variance,
and even more considerable in terms of the mean square er-
rors MSE = variance + bias2.

Bα,k can be tabulated for small k, and absorbed into
other coefficients, i.e., it does not increase the computa-
tional cost. We fix Bα,k as reported in Figure 3. The simu-
lations in Section 4 directly used those fixed Bα,k values.

3.3 Computational Efficiency

Figure 4 compares the computational costs of the geo-
metric mean, the fractional power, and the optimal quantile
estimators. The harmonic mean estimator was not included
as it costs very similarly to the fractional power estimator.

We used the build-in function pow in gcc for evaluat-
ing the fractional powers. We implemented a “quick select”
algorithm, which is similar to quick sort and requires on av-
erage linear time. For simplicity, our implementation used
recursions and the middle element as pivot. Also, to ensure
fairness, for all estimators, coefficients which are functions
of α and/or k were pre-computed.
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Figure 4. Relative computational cost (d̂(α),gm

over d̂(α),oq,c and d̂(α),gm over d̂(α),fp), from 106

simulations at each combination of α and k.
The left panel averages over all k and the
right panel averages over all α. Note that
the cost of d̂(α),oq,c includes evaluating the αth
fractional power once.

Normalized by the computing time of d̂(α),gm, we
observe that relative computational efficiency does not
strongly depend on α. We do observe that the ratio of com-
puting time of d̂(α),gm over that of d̂(α),oq,c increases consis-
tently with increasing k. This is because, in the definition
of d̂(α),oq (and hence also d̂(α),oq,c), it is required to evalu-
ate the fractional power once, which contributes to the total
computing time more significantly at smaller k.

Figure 4 illustrates that, (A) the geometric mean estima-
tor and the fractional power estimator are similar in terms of
computational efficiency; (B) the optimal quantile estima-
tor is nearly one order of magnitude more computationally
efficient than the geometric mean and fractional power es-
timators. Because we implemented a naı́ve “quick select”
using recursions and simple pivoting, the actual improve-
ment may be more significant. Also, if applications require
only d

1/α

(α)
, then no fractional power operations are needed

and hence the improvement will be even more considerable.

3.4 Error (Tail) Bounds

Error (tail) bounds are crucial for determining k; the
variance in general is not sufficient for this purpose. If
an estimator of d, say d̂, is normally distributed, d̂ ∼
N
(
d, 1

k
V
)
, then the variance factor V suffices for choos-

ing k because its error (tail) probability Pr
(
|d̂ − d| ≥ εd

)
≤

2 exp
(
−k ε2

2V

)
is determined by V . Usually, a reasonable

estimator will be asymptotically normal, for small enough
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ε and large enough k. For a finite k and a fixed ε, however,
the normal approximation may be (very) poor.

Lemma 3 provides the error (tail) probability bounds of
d̂(α),q for any q, not just for the optimal quantile q∗.

Lemma 3 Denote X ∼ S(α, d(α)) and its probability den-
sity function by fX(x; α, d(α)) and cumulative function by
FX(x;α, d(α)). Given xj ∼ S(α, d(α)), i.i.d., j = 1 to k.
Using d̂(α),q in (6), then

Pr
(
d̂(α),q ≥ (1 + ε)d(α)

)
≤ exp

(
−k

ε2

GR,q

)
, ε > 0, (10)

Pr
(
d̂(α),q ≤ (1 − ε)d(α)

)
≤ exp

(
−k

ε2

GL,q

)
, 0 < ε < 1,

(11)

ε2

GR,q
= −(1 − q) log (2 − 2FR) − q log(2FR − 1) (12)

+ (1 − q) log(1 − q) + q log q,

ε2

GL,q
= −(1 − q) log (2 − 2FL) − q log(2FL − 1) (13)

+ (1 − q) log(1 − q) + q log q,

W = F−1
X ((q + 1)/2; α, 1) = q-quantile{|S(α, 1)|},

FR = FX

(
(1 + ε)1/αW ; α, 1

)
, FL = FX

(
(1 − ε)1/αW ; α, 1

)
.

As ε → 0+

lim
ε→0+

GR,q = lim
ε→0+

GL,q =
q(1 − q)α2/2

f2
X (W ; α, 1) W 2

. (14)

Proof: See Appendix C. �

The limit in (14) as ε → 0 is precisely twice the asymp-
totic variance factor of d̂(α),q in (7), consistent with the nor-
mality approximation mentioned previously. This explains
why we express the constants as ε2/G. (14) also indicates
that the tail bounds achieve the “optimal rate” for this esti-
mator, in the language of large deviation theory.

The Bonferroni bound can determine the sample size k

Pr
(
|d̂(α),q − d(α)| ≥ εd(α)

)
≤ 2 exp

(
−k

ε2

G

)
≤ δ/(n2/2)

=⇒ k ≥ G

ε2
(2 log n − log δ) .

Lemma 4 Using d̂(α),q with k ≥ G
ε2

(2 log n − log δ), any
pairwise lα distance among n points can be approximated
within a 1 ± ε factor with probability ≥ 1 − δ. It suffices
to let G = max{GR,q , GL,q}, where GR,q, GL,q are given in
Lemma 3.

The Bonferroni bound can be too conservative. It is often
reasonable to replace δ/(n2/2) by δ/T , meaning that except
for a 1/T fraction of pairs, any distance can be approxi-
mated within a 1 ± ε factor with probability 1 − δ.

Figure 5 plots the error bound constants for ε < 1, for
both the recommended optimal quantile estimator d̂(α),oq

and the baseline sample median estimator d̂(α),q=0.5. Al-
though we choose d̂(α),oq based on the asymptotic variance,
it turns out d̂(α),oq also exhibits (much) better tail behaviors
(i.e., smaller constants) than d̂(α),q=0.5, at least for ε < 1.
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Figure 5. Tail bound constants for quan-
tile estimators; the lower the better. Upper
panels: optimal quantile estimators d̂(α),q∗ .
Lower panels: median estimators d̂(α),q=0.5.

Consider k = G
ε2

(log 2T − log δ) (recall we suggest re-
placing n2/2 by T ), with δ = 0.05, ε = 0.5, and T = 10.
Because GR,q∗ ≈ 5 ∼ 9 around ε = 0.5, we obtain
k ≈ 120 ∼ 215.

It is possible k = 120 ∼ 215 might be still conservative,
for three reasons: (A) the tail bounds, although “sharp,” are
still upper bounds; (B) using G = max{GR,q∗ , GL,q∗} is
conservative because GL,q∗ is usually much smaller than
GR,q∗ ; (C) this type of tail bounds is based on relative error,
which may be stringent for small (≈ 0) distances.

In fact, some earlier studies on normal random projec-
tions (i.e., α = 2) [4, 13] empirically demonstrated that
k ≥ 50 appeared sufficient.

4 Experiments

One advantage of stable random projections is that we
know the (manually generated) distributions and the only
source of errors is from random number generations. After
stable projections, the projected data follow exactly the sta-
ble distribution, regardless of the original real data distribu-
tion. Therefore, for the purpose of evaluating the proposed
estimator, it suffices to simply rely on simulations.
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Without loss of generality, we simulate samples from
S(α, 1) and estimate the scale parameter (i.e., 1) from the
samples. Repeating the procedure 107 times, we can evalu-
ate the mean square errors (MSE) and tail probabilities.

4.1 Mean Square Errors (MSE)

As illustrated in Figure 6, in terms of the MSE, the op-
timal quantile estimator d̂(α),oq,c outperforms both the ge-
ometric mean and fractional power estimators when α > 1
and k ≥ 20. The fractional power estimator does not ap-
pear to be very suitable for α > 1, especially for α close to
2, even when k is not too small (e.g., k = 50). For α < 1,
however, the fractional power estimator has good perfor-
mance in terms of MSE, even for small k.
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Figure 6. Empirical mean square errors (MSE,
the lower the better), from 107 simulations at
every combination of α and k. The values are
multiplied by k so that four plots can be at
about the same scale. The MSE for the ge-
ometric mean (gm) estimator is computed ex-
actly since its closed-form expression exists.
The lower dashed curves are the asymptotic
variances of the optimal quantile (oq) estimator.

4.2 Error(Tail) Probabilities

Figure 7 presents the simulated right tail probabilities,
Pr
(
d̂(α) ≥ (1 + ε)d(α)

)
, illustrating that, when α > 1,

the optimal quantile estimator consistently outperforms the
fractional power and the geometric mean estimators. In
fact, when α > 1, the fractional power estimator exhibits
very bad tail behaviors. However, for α < 1, the fractional
power estimator demonstrates good performance at least in
the simulated probability range.
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Figure 7. The right tail probabilities (the lower
the better), from 107 simulations at each com-
bination of α and k.

5 The Related Work

5.1 Normal Random Projections

For α = 2, there have been many studies of normal
random projections in machine learning, for dimension re-
duction in the l2 norm, e.g., [36, 13], highlighted by the
Johnson-Lindenstrauss (JL) Lemma [18], which says k =
O
(
log n/ε2

)
suffices when using normal (or normal-like,

e.g., [1, 29]) projection methods.
This paper studies 0 < α ≤ 2, not just α = 2. The tail

bounds and sample complexity bounds are provided for all
0 < α ≤ 2. We should mention that our bounds at α = 2
do not precisely recover the (optimal) bounds for normal
random projections, because the optimal quantile estimator
is not statistically optimal at α = 2, as shown in Figure 1.

5.2 Previous Quantile-Based Estimators

Quantile-based estimators for stable distributions were
studied in statistics literature[12, 31]. [12] focused on 1 ≤
α ≤ 2 and recommended using q = 0.44 quantiles (mainly
for the sake of smaller bias). [31] focused on 0.6 ≤ α ≤ 2
and recommended q = 0.5 quantiles.

This study considers all 0 < α ≤ 2 and recommends
q based on the minimum asymptotic variance. Because the
bias can be easily removed (at least in the practical sense),
it appears not necessary to use other quantiles only for the
sake of smaller bias. Tail bounds, which are useful for
choosing q and k, were not provided in [12, 31].

For α = 1, the classical work[16] suggested the median
(i.e., q = 0.5 quantile) estimator for α = 1 and argued
that the sample complexity bound should be O

(
1/ε2

)
(n =
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1 in their study), although their bound did not specify the
constant and required an “ε small enough” argument.

For α = 1, [9] used a linear combination of quantiles
with carefully chosen coefficients to obtain an asymptoti-
cally optimal estimator of the scale parameter. While it is
possible to extend their result to general 0 < α < 2 (requir-
ing some non-trivial work), whether it will be practically
better than the optimal quantile estimator is unclear because
the extreme quantiles severely affect the performance. Dis-
carding (truncating) extreme quantiles reduces the sample
size. Also, exponential tail bounds of the linear combina-
tion of quantiles for stable distributions may not exist or
may not be feasible to derive. In addition, the optimal quan-
tile estimator is computationally more efficient.

5.3 Compressed Counting (CC)

This paper and all previous work on stable random pro-
jections used symmetric stable distributions, i.e., the dis-
tribution specified by the Fourier transform (4). Recently,
[23] proposed Compressed Counting (CC), which dramat-
ically improves the performance of (symmetric) stable ran-
dom projections, especially as α → 1. One application of
CC is for estimating entropy of data stream[15, 14, 22].

CC used skewed stable random projections and is only
applicable to the strict Turnstile model, which restricts
St[i] ≥ 0 in the Turnstile model (1) (but the increment It

can be either negative or positive). In most data stream com-
putations, the strict Turnstile model suffices. For example,
one can only cancel an order if he/she did place the order.

A limitation of CC is that it is not applicable to estimat-
ing pairwise distances (e.g., comparing two streams).

5.4 Conditional Random Sampling (CRS)

One competitor of stable random projections is the tech-
nique called Conditional Random Sampling (CRS)[25, 26,
27]. CRS only works well in sparse data such as text and
histogram-based image data. A distinct feature of CRS is
One-Sketch-for-All, meaning that the same set of sketches
(samples) can be utilized for approximating many different
types of distances including the lα distance and χ2 distance.

6 Conclusion

Many data mining and machine learning algorithms op-
erate on the training data only through pairwise distances.
Computing, storing, updating and retrieving the “matrix” of
pairwise distances is challenging in applications involving
massive, high-dimensional, and possibly streaming, data.
For example, the pairwise distance matrix can not fit in
memory when the number of observations exceeds 106.

The method of stable random projections provides an ef-
ficient mechanism for computing pairwise distances using

low memory, by transforming the original high-dimensional
data into sketches, i.e., a small number of samples from α-
stable distributions, which are much easier to store and re-
trieve. This method provides a uniform scheme for comput-
ing the lα pairwise distances for all 0 < α ≤ 2.

To recover the original distances, we face an estimation
task. Compared with previous estimators based on the geo-
metric mean, harmonic mean, or fractional power, the pro-
posed optimal quantile estimator exhibits two advantages.
Firstly, the optimal quantile estimator is nearly one order of
magnitude more efficient (e.g., reducing the training time
from one week to one day). Secondly, the optimal quan-
tile estimator is considerably more accurate when α > 1, in
terms of both the variances and error (tail) probabilities.

One theoretical contribution is the explicit tail bounds
for general quantile estimators and consequently the sam-
ple complexity bound k = O

(
log n/ε2

)
, which may guide

practitioners in choosing k, the number of projections.
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A Proof of Lemma 1

Denote fX

(
x; α, d(α)

)
and FX

(
x; α, d(α)

)
the proba-

bility density function and the cumulative density func-
tion of X ∼ S(α, d(α)), respectively. Similarly we use
fZ

(
z; α, d(α)

)
and FZ

(
z; α, d(α)

)
for Z = |X |. Due to

symmetry, the following relations hold

fZ

(
z; α, d(α)

)
= 2fX

(
z; α, d(α)

)
= 2/d

1/α
(α) fX

(
z/d

1/α
(α) ; α, 1

)
,

FZ

(
z; α, d(α)

)
= 2FX

(
z; α, d(α)

)− 1 = 2FX

(
z/d

1/α

(α) ; α, 1
)
− 1,

F−1
Z

(
q; α, d(α)

)
= F−1

X

(
(q + 1)/2; α, d(α)

)
= d

1/α

(α) F−1
X ((q + 1)/2; α, 1) .

Let W = q-Quantile{|S(α, 1)|} = F−1
X ((q + 1)/2; α, 1)

and Wd = F−1
Z

(
q; α, d(α)

)
= d

1/α
(α) W . Then, follow-

ing known statistical results, e.g., [10, Theorem 9.2], the
asymptotic variance of d̂

1/α
α,q should be

Var
(
d̂1/α

α,q

)
=

1

k

q − q2

f2
Z

(
Wd; α, d(α)

)
W 2

+ O

(
1

k2

)

=
1

k

q − q2

d
−2/α

(α)
f2

Z (W ;α, 1) W 2
+ O

(
1

k2

)

=
1

k

q − q2

4d
−2/α

(α)
f2

X (W ;α, 1) W 2
+ O

(
1

k2

)
.
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By “delta method,” i.e., Var (h(x)) ≈ Var (x) (h′(E(x)))
2,

Var
(
d̂α,q

)
= Var

(
d̂α,q

) (
αd

(α−1)/α

(α)

)2

+ O

(
1

k2

)

=
1

k

(q − q2)α2/4

f2
X (W ; α, 1) W 2

d2
(α) + O

(
1

k2

)
.

B Proof of Lemma 2

First, consider α = 1. In this case,

fX(x; 1, 1) =
1

π

1

x2 + 1
, W = F−1

X ((q + 1)/2; 1, 1) = tan
(π

2
q
)

,

g(q; 1) =
q − q2(

2
π

1

tan2( π
2 q)+1

)2

tan2
(

π
2
q
) =

q − q2

sin2(πq)
π2.

It suffices to study L(q) = log g(q; 1).

L′(q) =
1

q
− 1

1 − q
− 2π cos(πq)

sin(πq)
,

L′′(q) = − 1

q2
− 1

(1 − q)2
+

2π2

sin2(πq)
.

Because sin(x) ≤ x for x ≥ 0, it is easy to see that
π

sin(πq)
− 1

q
≥ 0, and π

sin(πq)
− 1

1−q
= π

sin(π(1−q))
− 1

1−q
≥ 0.

Thus, L′′ ≥ 0, i.e., L(q) is convex and so is g(q; 1) = eL(q).
Since L′(1/2) = 0, we know q∗(1) = 0.5.

Next we consider α = 0+, using the fact [21] that as
α → 0+, |S(α, 1)|α converges to 1/E1, where E1 stands
for an exponential distribution with mean 1.

Denote h = d(0+) and zj ∼ h/E1. The sample quantile
estimator becomes

d̂(0+),q =
q-Quantile{|zj |, j = 1, 2, ..., k}

q-Quantile{1/E1} .

In this case,

fZ(z; h) = e−h/z h

z2
, F−1

Z (q; h) = − h

log q
,

Var
(
d̂(0+),q

)
=

1

k

1 − q

q log2 q
h2 + O

(
1

k2

)
.

It is straightforward to show that 1−q
q log2 q

is a convex func-
tion of q and the minimum is attained by solving − log q∗ +
2q∗ − 2 = 0, i.e., q∗ = 0.203.

C Proof of Lemma 3

Given k i.i.d. samples, xj ∼ S(α, d(α)), j = 1 to k. Let
zj = |xj |, j = 1 to k. Denote by FZ(t; α, d(α)) the cumu-
lative density of zj , and by FZ,k(t; α, d(α)) the empirical
cumulative density of zj , j = 1 to k.

The basic result of order statistics says
kFZ,k(t; α, d(α)) follows a binomial distribution[10], i.e.,

kFZ,k(t; α, d(α)) ∼ Bin(k, FZ(t; α, d(α))). For simplicity,
we replace FZ(t; α, d(α)) by F (t, d), FZ,k(t; α, d(α)) by
Fk(t, d), and d(α) by d, only in this proof.

Using the original binomial Chernoff bounds [8], we ob-
tain, for ε′ > 0,

Pr
(
kFk(t; d) ≥ (1 + ε

′
)kF (t; d)

) ≤(
k − kF (t; d)

k − (1 + ε′)kF (t; d)

)k−k(1+ε′)F (t;d) ( kF (t; d)

(1 + ε′)kF (t; d)

) (1+ε′)kF (t;d)

=

[(
1 − F (t; d)

1 − (1 + ε′)F (t; d)

)1−(1+ε′)F (t;d) ( 1

1 + ε′

)(1+ε′)F (t;d)
]k

,

and for 0 < ε′ < 1,

Pr
(
kFk(t; d) ≤ (1 − ε′)kF (t; d)

)
≤
[(

1 − F (t; d)

1 − (1 − ε′)F (t; d)

)1−(1−ε′)F (t;d) ( 1

1 − ε′

)(1−ε′)F (t;d)
]k

.

Consider the general quantile estimator d̂(α),q defined in
(6). For ε > 0, (again, denote W = q-quantile{|S(α, 1)|}),

Pr
(

d̂(α),q ≥ (1 + ε)d
)

= Pr (q-quantile{|xj|}) ≥ ((1 + ε)d)1/αW )

=Pr
(

kFk

(
(1 + ε)1/α W ; 1

)
≤ qk

)
= Pr

(
kFk(t; 1) ≤ (1 − ε′)kF (t; 1)

)
,

where t = (1 + ε)1/α
W and q = (1 − ε′)F (t; 1). Thus

Pr
(

d̂(α),q ≥ (1 + ε)d
)

≤

⎡
⎢⎣
⎛
⎝ 1 − F

(
((1 + ε))1/α W ; 1

)
1 − q

⎞
⎠

1−q ⎛
⎝ F

(
((1 + ε))1/α W ; 1

)
q

⎞
⎠

q
⎤
⎥⎦

k

=exp

(
−k

ε2

GR,q

)
,

where
ε2

GR,q
= −(1 − q) log

(
1 − F

(
(1 + ε)1/α W ; 1

))
− q log

(
F
(
(1 + ε)1/α W ; 1

))
+ (1 − q) log(1 − q) + q log(q).

For 0 < ε < 1,

Pr
(
d̂(α),q ≤ (1 − ε)d

)
= Pr

(
kFk

(
(1 − ε)1/α W ; 1

)
≥ qk

)
= Pr

(
kFk(t; 1) ≥ (1 + ε′)kF (t; 1)

)
,

where t = (1 − ε)1/α
W and q = (1 + ε′)F (t; 1). Thus,

Pr
(

d̂(α),q ≤ (1 − ε)d
)

≤

⎡
⎢⎣
⎛
⎝ 1 − F

(
(1 − ε)1/α W ; 1

)
1 − q

⎞
⎠

1−q ⎛
⎝ F

(
(1 − ε)1/α W ; 1

)
q

⎞
⎠

q
⎤
⎥⎦

k

=exp

(
−k

ε2

GL,q

)
,

where
ε2

GL,q
= −(1 − q) log

(
1 − F

(
(1 − ε)1/α W ; 1

))
− q log

(
F
(
(1 − ε)1/α W ; 1

))
+ (1 − q) log(1 − q) + q log(q).
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Denote f(t; d) = F ′(t; d). Using L’Hospital’s rule

lim
ε→0+

1

GR,q

= lim
ε→0+

−(1 − q) log
(
1 − F

(
(1 + ε)1/α W ; 1

))
ε2

+
−q log

(
F
(
(1 + ε)1/α W ; 1

))
+ (1 − q) log(1 − q) + q log(q)

ε2

= lim
ε→0+

f
(
(1 + ε)1/α W ; 1

)
W
α (1 + ε)1/α−1

F
(
(1 + ε)1/α W ; 1

) (
1 − F

(
(1 + ε)1/α W ; 1

)) ×

F
(
(1 + ε)1/α W ; 1

)
− q

2ε

= lim
ε→0+

(
f
(
(1 + ε)1/α W ; 1

)
W
α (1 + ε)1/α−1

)2

2F
(
(1 + ε)1/α W ; 1

) (
1 − F

(
(1 + ε)1/α W ; 1

))

=
f2 (W ; 1) W 2

2q(1 − q)α2
, (q = F (W, 1)).

Similarly
lim

ε→0+
GL,q =

2q(1 − q)α2

f2 (W ; 1) W 2
.

To complete the proof, apply the relations about Z = |X|.
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