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Abstract
We propose Compressed Counting (CC) for approximating
the αth frequency moments (0 < α ≤ 2) of data streams
under a relaxed strict-Turnstile model, using maximally-
skewed stable random projections. Estimators based on the
geometric mean and the harmonic mean are developed.

When α = 1, a simple counter suffices for counting
the first moment (i.e., sum). The geometric mean estimator
of CC has asymptotic variance ∝ ∆ = |α − 1|, capturing
the intuition that the complexity should decrease as ∆ =

|α−1| → 0. However, the previous classical algorithms based
on symmetric stable random projections[12, 15] required
O

(
1/ε2

)
space, in order to approximate the αth moments

within a 1 + ε factor, for any 0 < α ≤ 2 including α = 1.
We show that using the geometric mean estimator, CC

requires O
(

1
log(1+ε)

+ 2
√

∆

log3/2(1+ε)
+ o

(√
∆

))
space, as ∆ →

0. Therefore, in the neighborhood of α = 1, the complexity
of CC is essentially O (1/ε) instead of O

(
1/ε2

)
.

CC may be useful for estimating Shannon entropy,
which can be approximated by certain functions of the αth
moments with α → 1. [10, 9] suggested using α = 1 + ∆

with (e.g.,) ∆ < 0.0001 and ε < 10−7, to rigorously ensure
reasonable approximations. Thus, unfortunately, CC is
“theoretically impractical” for estimating Shannon entropy,
despite its empirical success reported in [16].

1 Introduction
Counting is a fundamental operation. Counting the sum∑D

i=1 At[i] is the simplest task (where t denotes time).
Counting the αth moment

∑D
i=1 At[i]

α is more general.
Here, At is a time-varying data stream[11, 12, 3, 18, 1].

1.1 The Relaxed Strict-Turnstile Model
This study considers a relaxed strict-Turnstile model. The

input stream at = (it, It), it ∈ [1, D] arriving sequentially
describes the underlying signal A, meaning

At[it] = At−1[it] + It,

where It can be positive (insertion) or negative (deletion).
Restricting At[i] ≥ 0 results in the strict-Turnstile model,
which suffices for describing most natural phenomena.
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For example, At−1[i] may record the number of items
that user i has ordered up to time t − 1 and It denotes the
additional orders (It > 0) or cancels (It < 0) at t. It is
reasonable to assume that it is not possible to cancel orders
that do not exist. In general, in a database[18], a record can
only be deleted if it was previously inserted.

We consider the relaxed strict-Turnstile model, which
constrains At[i] ≥ 0 only at the t we care about. At s 6= t,
we allow As[i] to be arbitrary. Under this model, the αth
frequency moment of a data stream At is defined as

F(α) =

D∑
i=1

At[i]
α.

When α = 1, it is obvious that one can compute F(1) =∑D
i=1 At[i] =

∑t
s=1 Is trivially, using a simple counter.

Counting F(α) for massive data streams is practically
important and challenging. Because the elements, At[i], are
dynamic, a naı́ve counting mechanism requires D counters
to compute F(α) exactly. This is not always realistic when D
is large (e.g., D = 264) or when we need to compute F(α) in
real-time, e.g., in network measurement/monitoring[23].

Compressed Counting (CC) is the first proposal of
using (maximally) skewed stable random projections for
computing F(α) with 0 < α ≤ 2. The improvement of CC
over previous studies is most significant when α ≈ 1.

1.2 Previous Work
Pioneered by[2], the task of approximating F(α) has been

heavily studied. [2] considered α = 0, 2, and α > 2.
[6] provided an algorithm for α = 1 and [12] proposed
symmetric stable random projections for 0 < α ≤ 2. [15]
proposed various estimators and tail bounds (with constants
explicitly given) for symmetric stable random projections,
whose required space is O

(
1/ε2

)
in order to approximate

the αth moments within a 1 ± ε factor, for any 0 < α ≤ 2.
[7] proposed a different algorithm using space O

(
1/ε2+α

)
to trade for some speedup in the processing time.

[20, 4] proved the space lower bounds for α > 2 and
[13] provided algorithms for α > 2 to achieve the lower
bounds. [22] proved the lower bounds for all frequency
moments, that any one-pass algorithm for approximating
F(α) required space Ω

(
1/ε2

)
, except for α = 1.

1.3 CC Breaks the O
(
1/ε2

)
Barrier

Compressed Counting (CC) captures the intuition that,
when α = 1, a simple counter suffices for computing F(1),



and when α = 1 ± ∆ with small ∆, the complexity should
be low and vary continuously as a function of ∆. None of
the previous studies, however, captured this intuition.

Roughly speaking, for a fixed (small) ε, as ∆ = |α−1| →
0, the complexity of CC is O (1/ε), instead of O

(
1/ε2

)
. This

result will be stated precisely in Theorem 4.1.

The basic tool for CC is skewed stable distributions.
1.4 Skewed Stable Distributions

A random variable Z follows a β-skewed α-stable distribu-
tion if the Fourier transform of its density is[24]

FZ(θ) = E exp
(√−1Zθ

)

= exp

(
−F |θ|α

(
1−√−1βsign(θ) tan

(
πα

2

)))
, α 6= 1

where 0 < α ≤ 2, −1 ≤ β ≤ 1 and F > 0 is the scale
parameter. We denote Z ∼ S(α, β, F ).

Consider two independent variables, Z1, Z2 ∼
S(α, β, 1). For any non-negative constants C1 and C2, the
“α-stability” follows from properties of Fourier transforms:

Z = C1Z1 + C2Z2 ∼ S
(
α, β, C

α
1 + C

α
2

)
.

However, if C1 and C2 do not have the same signs, the above
“stability” does not hold (unless β = 0 or α = 2, 0+). To
see this, we consider Z = C1Z1 − C2Z2, with C1 ≥ 0 and
C2 ≥ 0. Then, because F−Z2(θ) = FZ2(−θ),

FZ = exp

(
−|C1θ|α

(
1−√−1βsign(θ) tan

(
πα

2

)))
×

exp

(
−|C2θ|α

(
1 +

√−1βsign(θ) tan

(
πα

2

)))
,

which does not represent a stable law, unless β = 0 or
α = 2, 0+. This is the fundamental reason why Compressed
Counting needs the restriction that at the time t of the
evaluation, stream elements should have the same signs.

1.5 Skewed Stable Random Projections
First, generate a vector R ∈ RD, whose entries are i.i.d.

samples of a stable distribution: ri ∼ S(α, β, 1). Then

R
T
At =

D∑

i=1

riAt[i] ∼ S

(
α, β, F(α) =

D∑

i=1

At[i]
α

)
,

meaning RTAt represents one sample of the stable distribu-
tion whose scale parameter F(α) is what we are after.

If we generate a matrix R ∈ RD×k with each entry
rij ∼ S(α, β, 1) i.i.d., the resultant vector X = RTAt ∈ Rk

contains k i.i.d. samples: xj ∼ S
(
α, β, F(α)

)
, j = 1 to k. We

will explain why we recommend β = 1 (maximally-skewed).
Since it is a linear projection, this method is naturally

applicable to data streams under the Turnstile model (which
is also linear), by conducting the matrix-vector multiplica-
tion incrementally[12]. That is, for every incoming at =
(it, It), we update xj ← xj + ritjIt for j = 1 to k, where
random numbers ritj’s are generated on-demand.

1.6 Statistical Estimators for Compressed Counting
Compressed Counting (CC) boils down to a statistical

estimation problem. This study provides estimators based
on the geometric mean and the harmonic mean.

In terms of the asymptotic variances, Figure 1 compares
our two proposed estimators for CC with the geometric mean
estimator for symmetric stable distributions[15], demon-
strating a huge improvement, especially around α = 1.
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Figure 1: Let F̂(α) be an estimator of F(α) with asymptotic

variance Var
(
F̂(α)

)
= V

F2
(α)
k

+O
(

1
k2

)
. We plot the V values

for the proposed geometric mean and the harmonic mean
estimators, along with the V values for the geometric mean
estimator in [15] (symmetric GM).

1.7 Paper Organization
Section 2 describes applications of Compressed Counting.

Section 3 derives the basic moment formulas for general
skewed stable distributions, needed for designing and ana-
lyzing the geometric mean estimator and the harmonic mean
estimator. Section 4 focuses on the geometric mean estima-
tors. In particular, we show that the complexity bound is
essentially O (1/ε) in the neighborhood of α = 1. Section 5
analyzes the harmonic mean estimator. Section 6 describes
the procedure of sampling from skewed stable distributions.

2 Three Types of Applications of Compressed Counting
2.1 Computing Basic Summary Statistics

The frequency moment F(α) is a very basic summary statis-
tic of the signal At. In certain applications, the parameter
α = 1 ± ∆ may bear a physical meaning. For example, the
finance department may need to predict future earnings and
hence it is useful not only to count the current sum F(1) =∑D

i=1 At but also the future sum F(α) =
∑D

i=1 At[i]
1±∆,

where ∆ may be interpreted as the growth (or interest) rate.
Some useful summary statistics are functions of

F(α). For example, Rényi entropy[19], Rα, and Tsallis
entropy[21], Tα, are defined as, respectively

Rα =
1

1− α
log

F(α)

F α
(1)

, Tα =
1

α− 1

(
1− F(α)

F α
(1)

)
,(2.1)

which generalize and approach (as α → 1) Shannon entropy

H = −
D∑

i=1

At[i]

F(1)
log

At[i]

F(1)
.(2.2)

2.2 Statistical Modeling and Inference
A basic task is to model the distribution of At. For



example, a three-parameter generalized gamma distribution
GG(θ1, θ2, θ3) is flexible for modeling positive data[17]. If
At[i] ∼ GG(θ1, θ2, θ3), then E(At[i]) = θ1θ2, Var(At[i]) =

θ1θ
2
2 , E (At[i]− E(At[i]))

3 = (θ3 + 1)θ1θ
3
2. Thus, one can

estimate θ1, θ2 and θ3 by counting the first three moments
(
∑

i=1 At[i]
α, α = 1, 2, 3) and solving equations. However,

since some moments may be (much) easier to compute than
others, it may be reasonable to estimate the parameters using
three fractional moments (e.g., α = 1.0, and close to 1.0).

2.3 Basic Building Element for Other Algorithms
One example[23, 10, 9] is to estimate Shannon entropy

using Rényi entropy or Tsallis entropy. [10, 9] suggested
using α = 1 + ∆ with (e.g.,) ∆ < 0.0001 and (e.g.,)
ε < 10−7 for reasonable approximations of Shannon entropy.
(Those numbers can be verified in [10, 9]). Thus, CC is
“theoretically impractical” for this task:
• CC using the geometric mean estimator has complexity

O (1/ε) around α = 1, which, when ε < 10−7, may
correspond to > 107 samples, too large to be practical.

• When estimating Shannon entropy using Rényi or Tsal-
lis entropy, the estimation variance blows up like

1
(α−1)2

Var
(
F̂(α)

)
for an estimator F̂(α). As we will

show, the geometric mean estimator has variance ∝
|α− 1|, which clearly does not decrease fast enough.

However, it is evident that CC is “practically practical” for
estimating Shannon entropy. A recent work[16] adopted
“bias-variance trade-off” by using α not too close to 1, to
dramatically reduce the required number of samples (espe-
cially for symmetric stable random projections). It is, how-
ever, merely a statistical trick, not a rigorous theoretical re-
sult as [10, 9]. There is opportunity to improve CC, in order
to estimate Shannon entropy using the criteria in [10, 9].

3 Moments of Skewed Stable Distributions
Recall, Compressed Counting (CC) boils down to estimating
the scale parameter F(α), from k i.i.d. samples of a β-skewed
α-stable random variable, xj ∼ S

(
α, β, F(α)

)
, j = 1 to k.

Recall β = 0 corresponds to symmetric stable distributions.
There is a closed-form moment formula for E

(|xj |λ
)
.

The proposed geometric mean estimator and harmonic mean
estimator are based on positive moments (λ > 0) and
negative moments (λ < 0), respectively.

Lemma 3.1 shows that in the strip −1 < λ < α, the λth
moment of |Z| is bounded. The restriction λ < α is due to
the heavy-tailed nature of Z ∼ S

(
α, β, F(α)

)
. The restriction

λ > −1 is needed for Fubini’s Theorem.

LEMMA 3.1. If Z ∼ S(α, β, F(α)), then for any −1 < λ < α,

E
(
|Z|λ

)
= F

λ/α

(α) cos

(
λ

α
tan

−1
(

β tan

(
απ

2

)))

×
(

1 + β
2
tan

2
(

απ

2

)) λ
2α

(
2

π
sin

(
π

2
λ

)
Γ

(
1− λ

α

)
Γ (λ)

)
,

which can be simplified when β = 1, to be

E
(
|Z|λ

)
= F

λ/α

(α)

cos
(

κ(α)
α

λπ
2

)

cosλ/α
(

κ(α)π
2

)
(

2

π
sin

(
π

2
λ

)
Γ

(
1− λ

α

)
Γ (λ)

)
,

κ(α) = α if α < 1, and κ(α) = 2− α if α > 1.

Proof: See Appendix A. Here Γ(.) is the gamma function. ¤

Lemma 3.2 presents a (seemingly) surprising result that
when β = 1 and α < 1, all negative moments are bounded,
i.e., estimators based on negative moments (when β = 1 and
α < 1) will have bounded moment generating functions.

LEMMA 3.2. For α < 1, β = 1, and −∞ < λ < α,

E
(
|Z|λ

)
= F

λ/α

(α)

Γ
(
1− λ

α

)

cosλ/α
(

απ
2

)
Γ (1− λ)

.

Proof: See Appendix B. ¤

4 The Geometric Mean Estimator
Although we recommend β = 1 (maximally-skewed), we
start with the geometric mean estimator for general β and
show that β = 1 achieves the smallest variance. Due to the
symmetry, we only have to consider β ∈ [0, 1].

4.1 The Geometric Mean Estimator for General β
Setting λ = α

k in Lemma 3.1 yields an unbiased estimator:

F̂(α),gm,β =

∏k
j=1 |xj |α/k

Dgm,β

(k ≥ 2)

Dgm,β = cos
k

(
1

k
tan

−1
(

β tan

(
απ

2

)))
×

(
1 + β

2
tan

2
(

απ

2

)) 1
2

[
2

π
sin

(
πα

2k

)
Γ

(
1− 1

k

)
Γ

(
α

k

)]k

.

Lemma 4.1 illustrates that the variance of F̂(α),gm,β

decreases with increasing β ∈ [0, 1].

LEMMA 4.1. The variance of F̂(α),gm,β is a decreasing
function of β ∈ [0, 1], where

Var
(

F̂(α),gm,β

)
= F

2
(α)×

(
cosk

( 2
k tan−1 (

β tan
(

απ
2

)))

cos2k
( 1

k tan−1
(
β tan

(
απ
2

)))
[ 2

π sin
(

πα
k

)
Γ

(
1− 2

k

)
Γ

( 2α
k

)]k

[ 2
π sin

(
πα
2k

)
Γ

(
1− 1

k

)
Γ

(
α
k

)]2k
− 1

)

Proof: The result follows from the fact that
cos

( 2
k tan−1 (

β tan
(

απ
2

)))

cos2
( 1

k tan−1
(
β tan

(
απ
2

))) = 2− sec
2

(
1

k
tan

−1
(

β tan

(
απ

2

)))
,

is a decreasing function of β ∈ [0, 1]. ¤
Thus, the recommended geometric mean estimator is

obtained by taking β = 1:

F̂(α),gm =
cos

(
κ(α)π

2

) ∏k
j=1 |xj |α/k

cosk
(

κ(α)π
2k

) [ 2
π sin

(
πα
2k

)
Γ

(
1− 1

k

)
Γ

(
α
k

)]k
,(4.3)

κ(α) = α, if α < 1, κ(α) = 2− α if α > 1.

For brevity, we simply use F̂(α),gm instead of F̂(α),gm,1. In
fact, the rest of the paper will always consider β = 1 only.



4.2 Moments of the Geometric Mean Estimator F̂(α),gm

LEMMA 4.2. As k →∞
[
cos

(
κ(α)π

2k

)
2

π
Γ

(
α

k

)
Γ

(
1− 1

k

)
sin

(
π

2

α

k

)]k

(4.4)

→ exp (−γe (α− 1)) ,

decreasing monotonically with increasing k, where γe =
0.57724... is Euler’s constant. More precisely,

[
cos

(
κ(α)π

2k

)
2

π
Γ

( α

k

)
Γ

(
1 −

1

k

)
sin

( π

2

α

k

)]k

= exp (−γe(α − 1))

× exp


 1

k

(
2 + α

2 − 3κ
2(α)

) π2

24
+

1

k2

1 − α3

3
ζ3 + ...




where ζ3 = 1.2020569... is Apery’s constant.
Proof: See Appendix C. ¤

LEMMA 4.3. As k →∞, for any fixed t ≥ 1,

E

((
F̂(α),gm

)t
)

= F
t
(α)

cosk
(

κ(α)π
2k

t

) [
2
π

sin
(

πα
2k

t
)
Γ

(
1 − t

k

)
Γ

(
α
k

t
)]k

coskt
(

κ(α)π
2k

) [
2
π

sin
(

πα
2k

)
Γ

(
1 − 1

k

)
Γ

(
α
k

)]kt

=F
t
(α) exp


 1

k

π2(t2 − t)

24

(
2 + α

2 − 3κ
2(α)

)
+

1

k2

t3 − t

3
(1 − α

3)ζ3 + O

( 1

k3

)


Proof: See Appendix D. ¤

LEMMA 4.4. As k →∞,

Var
(

F̂(α),gm

)
=

F 2
(α)

k

π2

6

(
1− α

2
)

(if α < 1)

+
F 2

(α)

k2

(
π4

72
(1− α

2
)
2

+ 2(1− α
3
)ζ3

)
+ O

(
1

k3

)
(4.5)

Var
(

F̂(α),gm

)
=

F 2
(α)

k

π2

6
(α− 1)(5− α) (if α > 1)

+
F 2

(α)

k2

(
π4

72
(α− 1)

2
(5− α)

2
+ 2(1− α

3
)ζ3

)
+ O

(
1

k3

)
(4.6)

Proof: A direct consequence of Lemma 4.3. ¤

4.3 Tail Bounds
Tail bounds are crucial for providing a rigorous criterion on

choosing k. We will derive tail bounds with all “constants”
specified. In fact, as α → 1, those “constants” are so small
that they should not be treated as constants any more.

The estimator F̂(α),gm is unbiased, which is nice; but
there is a small price to pay. In (4.3), the denominator de-
pends on k for small k, which complicates the analysis of tail
bounds (especially the left tail bound). For convenience, we
instead consider an asymptotically (as k → ∞) equivalent
(but slightly biased at small k) geometric mean estimator:

F̂(α),gm,b = exp (γe(α− 1)) cos

(
κ(α)π

2

) k∏

j=1

|xj |α/k
.(4.7)

LEMMA 4.5. As k →∞, when α < 1,

E
(

F̂(α),gm,b

)
− F(α) = F(α)

1

k

(
1− α

2
) π2

12

+ F(α)
1

k2

1− α3

3
ζ3 +

F(α)

k2

(
1− α

2
)2 π4

288
+ O

(
1

k3

)

Var
(

F̂(α),gm,b

)
=

F 2
(α)

k

π2

6

(
1− α

2
)

+
F 2

(α)

k2

(
π4

24
(1− α

2
)
2

+ 2(1− α
3
)ζ3

)
+ O

(
1

k3

)

And when α > 1,

E
(

F̂(α),gm,b

)
− F(α) = F(α)

1

k
(5− α) (α− 1)

π2

12

+ F(α)
1

k2

1− α3

3
ζ3 +

F(α)

k2
(α− 1)

2
(5− α)

2 π4

288
+ O

(
1

k3

)

Var
(

F̂(α),gm,b

)
=

F 2
(α)

k

π2

6
(α− 1) (5− α)

+
F 2

(α)

k2

(
π4

24
(α− 1)

2
(5− α)

2
+ 2(1− α

3
)ζ3

)
+ O

(
1

k3

)

Proof: The proof follows from Lemmas 4.2 and 4.4. ¤

We have carefully analyzed the moments of F̂(α),gm

and F̂(α),gm,b, to illustrate that two estimators are essentially
no different, in case some readers have concerns about it.

LEMMA 4.6. The right tail bound: for ε > 0,

Pr
(

F̂(α),gm,b − F(α) ≥ εF(α)

)
≤ exp

(
−k

ε2

GR,gm

)
,

and left tail bound: for 0 < ε < 1,

Pr
(

F̂(α),gm,b − F(α) ≤ −εF(α)

)
≤ exp

(
−k

ε2

GL,gm

)
,

where
ε2

GR,gm

= CR log(1 + ε)− CRγe(α− 1)

− log

(
cos

(
κ(α)πCR

2

)
2

π
Γ (αCR) Γ (1− CR) sin

(
παCR

2

))
,

ε2

GL,gm

= −CL log(1− ε) + CLγe(α− 1) + log α

− log

(
cos

(
κ(α)π

2
CL

)
Γ (CL)

)
+ log

(
Γ (αCL) cos

(
παCL

2

))
.

CR and CL are solutions to

− γe(α− 1) + log(1 + ε) +
κ(α)π

2
tan

(
κ(α)π

2
CR

)

− απ/2

tan
(

απ
2 CR

) − ψ (αCR) α + ψ (1− CR) = 0,

log(1− ε)− γe(α− 1)− κ(α)π

2
tan

(
κ(α)π

2
CL

)

+
απ

2
tan

(
απ

2
CL

)
− ψ (αCL) α + ψ (CL) = 0.

Here ψ(z) = Γ′(z)
Γ(z) is the Psi function (digamma function).

Proof: The proof is omitted. ¤.

One can infer the right tail bound of F̂(α),gm from the
right tail bound of F̂(α),gm,b, because

Pr
(

F̂(α),gm − F(α) ≥ εF(α)

)
≤ Pr

(
F̂(α),gm,b − F(α) ≥ εF(α)

)

holds due to the monotonicity result (4.4) in Lemma 4.3.
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Figure 2: The tail bound constants GR,gm and GL,gm of the
geometric mean estimator F̂(α),gm,b in Lemma 4.6.

4.4 Behavior of Tail Bounds as α → 1
Lemma 4.7 describes the precise rates of convergence, as

α = 1±∆ → 1, of the constants derived in Lemma 4.6.
LEMMA 4.7. For fixed ε, as α = 1±∆ → 1 (i.e., ∆ → 0),

GR,gm =
ε2

log(1 + ε)− 2
√

∆ log (1 + ε) + o
(√

∆
) ,

=
ε2

log(1 + ε)
+

2ε2

log3/2(1 + ε)

√
∆ + o

(√
∆

)
.

GL,gm =





ε2

− log(1−ε)−2
√
−2∆ log(1−ε)+o(

√
∆)

, α > 1

ε2

∆
(
exp

(− log(1−ε)
∆ −1−γe

))
+o

(
∆ exp

(
1
∆

)) , α < 1

Proof: See Appendix E. See Figure 3 for verification. ¤
We usually consider small ε. Thus, roughly speaking, as

α → 1, GR,gm = O (ε) and GL,gm = O (ε).

4.5 Sample Complexity Bound
The sample complexity bound follows by letting

Pr
(

F̂(α),gm,b − F(α) ≥ εF(α)

)
≤ exp

(
−k

ε2

GR,gm

)
≤ δ.

THEOREM 4.1. Using the geometric mean estimator
F̂(α),gm,b, as ∆ = |α− 1| → 0, it suffices to let

k =

(
1

log(1 + ε)
+

2
√

∆

log3/2(1 + ε)
+ o

(√
∆

))
log

1

δ
,(4.8)

so that the estimate will be within a 1 + ε factor of the truth
with probability 1− δ.

One can similarly write down the sample complexity
bound for achieving an accuracy within a 1− ε factor.

Using standard arguments, the space complexity in
terms of the number of bits can be obtained by multiplying
the above sample complexity bound with log M , where M is
the size of the “universe,” or in this context M =

∑t
s=1 |Is|.
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Figure 3: The tail bound constants proved in Lemma 4.6,
together with their approximations in Lemma 4.7, for small
∆ = |α− 1|.

5 The Harmonic Mean Estimator
For α < 1, the harmonic mean estimator can considerably
improve F̂(α),gm. This estimator takes advantage of the fact
in Lemma 3.2 that if Z ∼ S(α < 1, β = 1, F(α)), then
E

(|Z|λ)
= E

(
Zλ

)
exists for −∞ < λ < α.

LEMMA 5.1. Assume k i.i.d. samples xj ∼ S(α < 1, β =
1, F(α)), define the harmonic mean estimator F̂(α),hm, and
the bias-corrected harmonic mean estimator F̂(α),hm,c:

F̂(α),hm =
k

cos
(

απ
2

)

Γ(1+α)∑k
j=1 |xj |−α

,

F̂(α),hm,c =
k

cos
(

απ
2

)

Γ(1+α)∑k
j=1 |xj |−α

(
1− 1

k

(
2Γ2(1 + α)

Γ(1 + 2α)
− 1

))
.

The bias and variance of F̂(α),hm,c are

E
(

F̂(α),hm,c

)
= F(α) + O

(
1

k2

)
,

Var
(

F̂(α),hm,c

)
=

F 2
(α)

k

(
2Γ2(1 + α)

Γ(1 + 2α)
− 1

)
+ O

(
1

k2

)
.

The right tail bound of F̂(α),hm is, for ε > 0,

Pr
(

F̂(α),hm − F(α) ≥ εF(α)

)
≤ exp

(
−k

(
ε2

GR,hm

))
,

ε2

GR,hm

= − log

( ∞∑

m=0

Γm(1 + α)

Γ(1 + mα)
(−t

∗
1)

m

)
− t∗1

1 + ε
,

where t∗1 is the solution to
∑∞

m=1(−1)mm(t∗1)m−1 Γm(1+α)
Γ(1+mα)∑∞

m=0(−1)m(t∗1)m Γm(1+α)
Γ(1+mα)

+
1

1 + ε
= 0.



The left tail bound of F̂(α),hm is, for 0 < ε < 1,

Pr
(

F̂(α),hm − F(α) ≤ −εF(α)

)
≤ exp

(
−k

(
ε2

GL,hm

))
,

ε2

GL,hm

= − log

( ∞∑

m=0

Γm(1 + α)

Γ(1 + mα)
(t
∗
2)

m

)
+

t∗2
1− ε

where t∗2 is the solution to

−
∑∞

m=1 m(t∗2)m−1 Γm(1+α)
Γ(1+mα)∑∞

m=0(t
∗
2)m Γm(1+α)

Γ(1+mα)

+
1

1− ε
= 0

Proof: The proof is omitted. ¤.

The harmonic mean estimator has smaller variance than
the geometric mean estimator (see Figure 1) and smaller
tail bound constants (see Figure 4). However, we have not
characterized the behavior of its tail bounds around α = 1.
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Figure 4: The tail bound constants of F̂(α),hm in Lemma 5.1,
which are considerably smaller compared to Figure 2(a)(c).

6 Sampling From Skewed Stable Distributions
Sampling from skewed stable distributions is based on the
Chambers-Mallows-Stuck method[5]. (Note that [5] adopted
a different parameterization.) One first generates an expo-
nential random variable with mean 1, W ∼ exp(1), and
a uniform random variable U ∼ uniform

(−π
2
, π

2

)
. Let

ρ = tan−1
(
β tan

(
πα
2

))
/α. Then,

Z =
sin (α(U + ρ))

[cos U cos (ρα)]
1
α

[
cos (U − α(U + ρ))

W

] 1−α
α ∼ S(α, β, 1)(6.9)

Note that when β = 1 and α → 1, ρ → π
2

, i.e.,
cos (ρα) → 0. One might worry about the numerical
instability in computing (6.9), or equivalently, the potential
problem of using large storage space in order to maintain the
desired accuracy. This issue can be completely avoided.

When computing (6.9), we can ignore cos1/α (ρα).
This is equivalent to sampling Z′ = Z cos1/α (ρα) ∼
S (α, β, cos (ρα)) instead of Z = S (α, β, 1). We can con-
duct projections as usual as long as we divide the estimates
by cos (ρα). Note that the cos (ρα) term already exists in
the two estimators we have studied. This is nice because we
avoid the numerical issue by doing less work.

7 Conclusion
Compressed Counting (CC) is the first proposal of using
skewed stable random projections for estimating the αth

frequency moment F(α) =
∑D

i=1 At[i]
α of a streaming signal

At, where 0 < α ≤ 2. CC takes advantage of the fact that
most data streams encountered in practice are non-negative,
although they are subject to deletion and insertion. CC
captures the intuition that, when α = 1, a simple counter
suffices, and when α = 1 ± ∆ with small ∆, an intelligent
counting system should require low space.

Two estimators based on the geometric mean and the
harmonic mean are provided in this study. We show that,
as ∆ = |α − 1| → 0, the complexity of CC (using the
geometric mean estimator) is essentially O (1/ε), instead of
the previously believed O

(
1/ε2

)
bound.

At least three lines of research will benefit from CC. (1):
F(α) itself is a useful summary statistic and some important
summary statistics (such as Rényi entropy and Tsallis en-
tropy) are functions of F(α). (2): CC will be useful for statis-
tical modeling and parameter inference of data streams using
the method of moments. (3): CC can be a basic building ele-
ment for designing other algorithms, for example, estimating
Shannon entropy of data streams using Rényi or Tsallis en-
tropy with α → 1. Unfortunately, following the rigorous
criteria in[10, 9], CC is still “theoretically impractical” for
approximating Shannon entropy, despite its empirical suc-
cess reported in [16].
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A Proof of Lemma 3.1
Assume Z ∼ S(α, β, F(α)). The goal is to compute E

(|Z|λ)
,

−1 < λ < α. [24, Theorem 2.6.3] provided a partial answer:
∫ ∞
0

z
λ

fZ (z; α, βB, F(α))dz = F
λ/α
(α)

sin(πρλ)

sin(πλ)

Γ
(
1 − λ

α

)

Γ (1 − λ)
cos−λ/α (

πβBκ(α)/2
)

where κ(α) = α if α < 1, and κ(α) = 2 − α if α > 1,
and according to the parametrization in [24, I.19, I.28]:

βB =
2

πκ(α)
tan−1

(
β tan

( πα

2

))
, ρ =

1 − βBκ(a)/α

2
.

Note that
cos−λ/α (

πβBκ(α)/2
)

=
(
1 + tan2 (

πβBκ(α)/2
)) λ

2α

=
(
1 + tan2

(
tan−1

(
β tan

( πα

2

)))) λ
2α =

(
1 + β

2 tan2
( πα

2

)) λ
2α .

Therefore, for −1 < λ < α,
∫ ∞
0

z
λ

fZ (z; α, βB, F(α))dz = F
λ/α
(α)

sin(πρλ)

sin(πλ)

Γ
(
1 − λ

α

)

Γ (1 − λ)

(
1 + β

2 tan2
( πα

2

)) λ
2α



To compute E
(|Z|λ)

, we use the property[24, page 65]:
fZ(−z; α, βB , F(α)) = fZ(z; α,−βB , F(α)) to obtain:

E
(
|Z|λ

)
=

∫ 0

−∞
(−z)λ

fZ (z; α, βB, F(α))dz +
∫ ∞
0

z
λ

fZ (z; α, βB, F(α))dz

=
∫ ∞
0

z
λ

fZ (z; α,−βB, F(α))dz +
∫ ∞
0

z
λ

fZ (z; α, βB, F(α))dz

=
F

λ/α
(α)

sin(πλ)

Γ
(
1 − λ

α

)

Γ (1 − λ)

(
1 + β

2 tan2
( πα

2

)) λ
2α

×
(
sin

(
πλ

1 − βBκ(α)/α

2

)
+ sin

(
πλ

1 + βBκ(α)/α

2

))

=
F

λ/α
(α)

sin(πλ)

Γ
(
1 − λ

α

)

Γ (1 − λ)

(
1 + β

2 tan2
( πα

2

)) λ
2α

(
2 sin

(
πλ

2

)
cos

(
πλ

2
βBκ(α)/α

))

=
F

λ/α
(α)

cos(πλ/2)

Γ
(
1 − λ

α

)

Γ (1 − λ)

(
1 + β

2 tan2
( πα

2

)) λ
2α cos

(
λ

α
tan−1

(
β tan

( πα

2

)))

=F
λ/α
(α)

(
1 + β

2 tan2
( πα

2

)) λ
2α cos

(
λ

α
tan−1

(
β tan

( πα

2

)))

×
(

2

π
sin

( π

2
λ

)
Γ

(
1 −

λ

α

)
Γ (λ)

)
,

which can be simplified when β = 1, to be

E
(
|Z|λ

)
= F

λ/α
(α)

cos
(

κ(α)
α

λπ
2

)

cosλ/α
(

κ(α)π
2

)
(

2

π
sin

( π

2
λ

)
Γ

(
1 −

λ

α

)
Γ (λ)

)
.

For 0 < λ < α, in an unpublished work[14], a partial result
for E

(|Z|λ)
was proved in an integral form, using a different

method (via local properties of characteristic functions).

B Proof of Lemma 3.2
Note that when α < 1 and β = 1, Z is always non-negative.
As shown in the proof of [24, Theorem 2.6.3],

E
(
|Z|λ

)
= F

λ/α
(α) cos−λ/α

( πα

2

) 1

π
Im

∫ ∞
0

z
λ

∫ ∞
0

exp

(
−zu exp(

√
−1π/2) − u

α exp(−
√
−1πα/2) +

√−1π

2

)
dudz

=F
λ/α
(α) cos−λ/α

( πα

2

) 1

π
Im

∫ ∞
0

∫ ∞
0

z
λ exp

(
−zu

√
−1 − u

α exp(−
√
−1πα/2)

) √
−1dudz.

We can show, in the proof of [24, Theorem 2.6.3], Fubini’s
condition still holds when α < 1, β = 1, and λ < −1:

∫ ∞
0

∫ ∞
0

∣∣∣zλ exp
(
−zu

√
−1 − u

α exp(−
√
−1πα/2)

) √
−1

∣∣∣ dudz

=
∫ ∞
0

∫ ∞
0

z
λ

∣∣∣exp
(
−u

α cos(πα/2) +
√
−1u

α sin(πα/2)
)∣∣∣ dudz

=
∫ ∞
0

∫ ∞
0

z
λ exp

(
−u

α cos(πα/2)
)

dudz < ∞,

provided λ 6= −1,−2, .... (which do not affect the results due
to continuity) and cos(πα/2) > 0, i.e., α < 1. Once Fubini’s
condition has been shown to hold, we can exchange the order
of integration and the rest follows from [24, Theorem 2.6.3].

C Proof of Lemma 4.2
This section concerns the convergence and monotonicity of

[
cos

(
κ(α)π

2k

)
2

π
Γ

( α

k

)
Γ

(
1 −

1

k

)
sin

( π

2

α

k

)]k

.(3.10)

First, we can show

cosk
(

κ(α)π

2k

)
= exp

(
k log cos

(
κ(α)π

2k

))

= exp

(
k

(
−

1

2

(
κ(α)π

2k

)2
−

1

12

(
κ(α)π

2k

)4
+ ...

))
= exp


−

κ2π2

8k
−

κ4π4

192k3
+ ...


 .

Next, by Euler’s reflection formula, Γ (1 − z) Γ(z) = π
sin(πz) ,

[ 2

π
Γ

( α

k

)
Γ

(
1 −

1

k

)
sin

( π

2

α

k

)]k
=




2Γ
(

α
k

)
sin

(
πα
2k

)

Γ
(

1
k

)
sin

(
π
k

)



k

We take advantage of the infinite-product representations of
the Gamma and sin functions[8, 8.322,1.431.1]:

Γ(z) =
exp (−γez)

z

∞∏

s=1

(
1 +

z

s

)−1
exp

( z

s

)
, sin(z) = z

∞∏

s=1


1 −

z2

s2π2


 ,

where γe = 0.577215665..., is Euler’s constant, to obtain



2Γ
(

α
k

)
sin

(
πα
2k

)

Γ
(

1
k

)
sin

(
π
k

)



k

= exp (−γe(α − 1)) ×


∞∏

s=1
Ws




k

,

Ws = exp

(
α − 1

sk

) (
1 +

α

ks

)−1 (
1 +

1

ks

) 
1 −

α2

4k2s2




(
1 −

1

s2k2

)−1

=


1 +

α − 1

sk
+

(α − 1)2

2s2k2
+

(α − 1)3

6s3k3
+ ...





1 −

α

sk
+

α2

s2k2
−

α3

s3k3
+ ...





1 +

1

ks
−

α2

4k2s2
−

α2

4k3s3




(
1 +

1

s2k2
−

1

s4k4
+ ...

)

=1 +
1

s2k2


 1

2
+

α2

4


 +

1

s3k3
(1 − α)


α +

(1 − α)2

3


 + ...



∞∏

s=1
Ws




k

= exp


k

∞∑

s=1
log Ws




= exp


k

∞∑

s=1
log


1 +

1

s2k2


 1

2
+

α2

4


 +

1 − α

s3k3


α +

(1 − α)2

3


 + ...







= exp


 1

k


 1

2
+

α2

4



∞∑

i=1

1

s2
+

1 − α

k2


α +

(1 − α)2

3



∞∑

i=1

1

s3
+ ...




= exp


 1

k


 1

2
+

α2

4


 π2

6
+

1 − α

k2


α +

(1 − α)2

3


 ζ3 + ...




= exp


 1

k

(
2 + α

2) π2

24
+

1

k2

1 − α3

3
ζ3 + ...




where ∑∞
s=1

1
s2

= π2
6 and ζ3 =

∑∞
s=1

1
s3

= 1.2020569... Thus,
[
cos

(
κ(α)π

2k

)
2

π
Γ

( α

k

)
Γ

(
1 −

1

k

)
sin

( π

2

α

k

)]k

= exp (−γe(α − 1))

× exp


 1

k

(
2 + α

2 − 3κ
2(α)

) π2

24
+

1

k2

1 − α3

3
ζ3 + ...


 → exp (−γe (α − 1))

It remains to show (3.10) is monotonically decreasing.
Suppose α > 1, i.e., κ(α) = 2 − α < 1. For simplicity,

we take the logarithm of (3.10) and replace 1/k by t, where
0 ≤ t ≤ 1/2 (recall k ≥ 2). It suffices to show that
g(t) = 1

t
W (t) increases with increasing t ∈ [0, 1/2], where

W (t) = log

(
cos

(
κ(α)π

2
t

))
+ log (Γ (αt)) + log

(
sin

( πα

2
t

))

− log (Γ (t)) − log (sin (πt)) + log(2).

Because g′(t) = 1
t
W ′(t) − 1

t2
W (t), to show g′(t) ≥ 0 in

t ∈ [0, 1/2], it suffices to show tW ′(t)−W (t) ≥ 0.

One can check tW ′(t) → 0 and W (t) → 0, as t → 0+.
W
′(t) = − tan

(
κ(α)π

2
t

)
κπ

2
+ ψ (αt) α +

1

tan
(

πα
2 t

)
( απ

2

)
− ψ(t) −

π

tan(πt)
.

Here ψ(x) = ∂ log(Γ(x))
∂x

is the “Psi” function. Therefore, to
show tW ′(t) − W (t) ≥ 0, it suffices to show that tW ′(t) −
W (t) is an increasing function of t ∈ [0, 1/2], i.e.,

(
tW

′(t) −W (t)
)′

= W
′′(t) ≥ 0, i.e.,

W
′′(t) = − sec2

(
κ(α)π

2
t

) (
κ(α)π

2

)2
+ ψ

′(αt)α
2

− csc2
( πα

2
t

) ( πα

2

)2
− ψ

′(t) + csc2(πt)π
2 ≥ 0.



Using series representation of ψ(x) [8, 8.363.8] yields

ψ
′ (αt) α

2 − ψ
′(t) =

∞∑

s=0

α2

(αt + s)2
−
∞∑

s=0

1

(t + s)2
≥ 0,

because we consider α > 1. Thus, it suffices to show that

Q(t; α) = − sec2
( κπ

2
t

) ( κπ

2

)2
− csc2

( πα

2
t

) ( πα

2

)2
+ csc2(πt)π

2 ≥ 0.

To show Q(t; α) ≥ 0,we notice both 1
sin(x)

and 1
cos(x)

are
convex functions of x ∈ [0, π/2], and hence Q(t; α) is a
concave function of α (for fixed t). Because lim

α→1+
Q(t; α) = 0

and lim
α→2−

Q(t; α) = 0, and Q(t;α) is concave in α ∈ [1, 2],

we must have Q(t; α) ≥ 0; and consequently, W ′′(t) ≥ 0 and
g′(t) ≥ 0. Therefore, we have proved that (3.10) decreases
monotonically with increasing k, when 1 < α ≤ 2.

To prove the monotonicity for α < 1, we re-write (3.10):



Γ
(

α
k

)
sin

(
πα
k

)

Γ
(

1
k

)
sin

(
π
k

)



k

= exp (−γe(α − 1)) ×


∞∏

s=1
Ds




k

Ds = exp

(
α − 1

sk

) (
1 +

α

ks

)−1 (
1 +

1

ks

) 
1 −

α2

k2s2




(
1 −

1

s2k2

)−1
.

It suffices to show for any s ≥ 1



(
1 +

α

ks

)−1 (
1 +

1

ks

) 
1 −

α2

k2s2




(
1 −

1

s2k2

)−1



k

decreases monotonically, which is equivalent to show the
monotonicity of g(t) with increasing t, for t ≥ 2, where

g(t) =t log




(
1 +

α

t

)−1 (
1 +

1

t

) 
1 −

α2

t2




(
1 −

1

t2

)−1

 = t log

(
t − α

t − 1

)
,

which is monotonically decreasing with increasing t (t ≥ 2).

D Proof of Lemma 4.3
Applying the moment formula in Lemma 3.1 yields

E
((

F̂(α),gm

)t
)

=F
t
(α)

cosk
(

κ(α)π
2k

t

) [
2
π

sin
(

πα
2k

t
)
Γ

(
1 − t

k

)
Γ

(
α
k

t
)]k

coskt
(

κ(α)π
2k

) [
2
π

sin
(

πα
2k

)
Γ

(
1 − 1

k

)
Γ

(
α
k

)]kt

In [15], it was proved that, as k →∞,
[
2
π

sin
(

πα
2k

t
)
Γ

(
1 − t

k

)
Γ

(
α
k

t
)]k

[
2
π

sin
(

πα
2k

)
Γ

(
1 − 1

k

)
Γ

(
α
k

)]kt

= exp


 1

k

π2(t2 − t)

24

(
α
2 + 2

)
+

1

k2

t3 − t

3
(1 − α

3)ζ3 + O

( 1

k3

)
 .

Using the infinite product representation of cosine[8, 1.43.3]
cos(z) =

∏∞
s=0

(
1 − 4z2

(2s+1)2π2

)
, we can re-write

cosk
(

κ(α)π
2k

t

)

coskt
(

κ(α)π
2k

) =



∞∏

s=0


1 −

κ2(α)t2

(2s + 1)2k2





1 −

κ2(α)

(2s + 1)2k2



−t


k

=



∞∏

s=0


1 −

κ2(α)t2

(2s + 1)2k2





1 +

tκ2(α)

(2s + 1)2k2
+

t(t − 1)κ4(α)

2(2s + 1)4k4
+ O

( 1

k5

)





k

=



∞∏

s=0
1 −

κ2(α)(t2 − t)

(2s + 1)2k2
+ O

( 1

k4

)


k

= exp


k

∞∑

s=0
log


1 −

κ2(α)(t2 − t)

(2s + 1)2k2
+ O

( 1

k4

)





= exp



∞∑

s=0
−

κ2(α)(t2 − t)

(2s + 1)2k
+ O

( 1

k3

)




∞∑

s=0

1

2s + 1
=

π2

8




= exp


−

κ2(α)

k
(t

2 − t)
π2

8
+ O

( 1

k3

)
 ,

Therefore,

cosk
(

κ(α)π
2k

t

) [
2
π

sin
(

πα
2k

t
)
Γ

(
1 − t

k

)
Γ

(
α
k

t
)]k

coskt
(

κ(α)π
2k

) [
2
π

sin
(

πα
2k

)
Γ

(
1 − 1

k

)
Γ

(
α
k

)]kt

= exp


 1

k

π2(t2 − t)

24

(
α
2 + 2 − 3κ

2(α)
)

+
1

k2

t3 − t

3
(1 − α

3)ζ3 + O

( 1

k3

)


=1 +
1

k

π2(t2 − t)

24

(
α
2 + 2 − 3κ

2(α)
)

+
1

k2

t3 − t

3
(1 − α

3)ζ3

+
1

k2

π4(t2 − t)2

1152

(
α
2 + 2 − 3κ

2(α)
)2

+ O

( 1

k3

)

E Proof of Lemma 4.7
First, we consider the right bound. From Lemma 4.6,

ε2

GR,gm

= CR log(1 + ε) − CRγe(α − 1)

− log

(
cos

(
κ(α)πCR

2

)
2

π
Γ

(
αCR

)
Γ

(
1 − CR

)
sin

(
παCR

2

))
,

and CR is the solution to g1(CR, α, ε) = 0,

g1(CR, α, ε) = −γe(α − 1) + log(1 + ε) +
κ(α)π

2
tan

(
κ(α)π

2
CR

)

−
απ/2

tan
(

απ
2 CR

) − ψ
(
αCR

)
α + ψ

(
1 − CR

)
= 0.

Using series representations in [8, 1.421.1,1.421.3,8.362.1]

tan
( πx

2

)
=

4x

π

∞∑

j=1

1

(2j − 1)2 − x2
,

1

tan (πx)
=

1

πx
+

2x

π

∞∑

j=1

1

x2 − j2
,

ψ(x) = −γe −
∞∑

j=0

(
1

x + j
−

1

j + 1

)
= −γe −

1

x
+ x

∞∑

j=1

1

j(x + j)
,

we re-write g1 as

g1 = − γe(α − 1) + log(1 + ε) +
κπ

2

4κCR

π

∞∑

j=1

1

(2j − 1)2 − (κCR)2

−
απ

2


 2

παCR

+
αCR

π

∞∑

j=1

1

(αCR/2)2 − j2




− α


−γe −

1

αCR

+ αCR

∞∑

j=1

1

j(αCR + j)




+


−γe −

1

1 − CR

+ (1 − CR)
∞∑

j=1

1

j(1 − CR + j)




= log(1 + ε) + κ

∞∑

j=1

(
1

2j + 1 − κCR

−
1

2j − 1 + κCR

)

+ α
∞∑

j=1

(
1

2j − αCR

−
1

2j + αCR

)
− α

∞∑

j=1

(
1

j
−

1

αCR + j

)

+
∞∑

j=1

(
1

j
−

1

1 − CR + j

)
+

κ

1 − κCR

−
1

1 − CR

We show that, as α → 1, i.e., κ → 1, the term

lim
α→1

κ
∞∑

j=1

(
1

2j + 1 − κCR

−
1

2j − 1 + κCR

)
− α

∞∑

j=1

(
1

j
−

1

αCR + j

)

+ α

∞∑

j=1

(
1

2j − αCR

−
1

2j + αCR

)
+
∞∑

j=1

(
1

j
−

1

1 − CR + j

)

= lim
α→1

∞∑

j=1

(
κ

2j + 1 − κCR

+
α

2j − αCR

)
− α

∞∑

j=1

(
1

j
−

1

αCR + j

)

−
∞∑

j=1

(
κ

2j − 1 + κCR

+
α

2j + αCR

)
+
∞∑

j=1

(
1

j
−

1

1 − CR + j

)

= lim
α→1

∞∑

j=1

κ

1 + j − κCR

−
∞∑

j=1

κ

j + κCR

− α
∞∑

j=1

(
1

j
−

1

αCR + j

)

+
∞∑

j=1

(
1

j
−

1

1 − CR + j

)
= 0.



Lemma 4.6 has shown g1 = 0 has a unique well-defined
solution for CR ∈ (0, 1). We need to analyze this term

κ

1 − κCR

−
1

1 − CR

=
κ − 1

(1 − κCR)(1 − CR)
=

−∆

(1 − κCR)(1 − CR)
,

which, as α → 1 (i.e., κ → 1), must approach a finite limit.
In other words, CR → 1, at the rate O

(√
∆

)
, i.e.,

CR = 1 −
√√√√ ∆

log(1 + ε)
+ o

(√
∆

)
.

By Euler’s reflection formula and series representations,

ε2

GR,gm

=CR log(1 + ε) − CRγe(α − 1) + log




cos
(

απCR
2

)
Γ(1 − αCR)

cos
(

κπCR
2

)
Γ(1 − CR)


 ,

cos
(

απCR
2

)
Γ(1 − αCR)

cos
(

κπCR
2

)
Γ(1 − CR)

= exp(γe(α − 1)CR)
1 − CR

1 − αCR

∞∏

j=0


1 −

α2C2
R

(2j + 1)2





1 −

κ2C2
R

(2j + 1)2



−1

×
∞∏

j=1
exp

(
(1 − α)CR

j

) (
1 +

1 − CR

j

) (
1 +

1 − αCR

j

)−1

= exp(γe(α − 1)CR)
(1 + αCR)(1 − CR)

1 − κ2C2
R

∞∏

j=1


1 −

α2C2
R

(2j + 1)2




×

1 −

κ2C2
R

(2j + 1)2



−1

exp

(
(1 − α)CR

j

) (
1 +

1 − CR

j

) (
1 +

1 − αCR

j

)−1
,

taking its logarithm yields

log
cos

(
απCR

2

)
Γ(1 − αCR)

cos
(

κπCR
2

)
Γ(1 − CR)

= γe(α − 1)CR + log
(1 + αCR)(1 − CR)

1 − κ2C2
R

+
∞∑

j=1
log

(
1 − α2C2

R
(2j+1)2

)

(
1 −

κ2C2
R

(2j+1)2

) +

(
(1 − α)CR

j

)
+ log

(
1 +

1−CR
j

)

(
1 +

1−αCR
j

) .

If α < 1, i.e., κ = α = 1−∆, then

log
cos

(
απCR

2

)
Γ(1 − αCR)

cos
(

κπCR
2

)
Γ(1 − CR)

= − γe∆CR + log
1 − CR

1 − αCR

+
∞∑

j=1

(
(1 − α)CR

j

)
+ log

(
1 +

1−CR
j

)

(
1 +

1−αCR
j

)

= − γe∆CR − log

(
1 +

∆CR

1 − CR

)
+
∞∑

j=1

1

2

(
1 − αCR

j

)2
−

1

2

(
1 − CR

j

)2
...

= − γe∆CR − log

(
1 +

∆CR

1 − CR

)
+

π2

12
CR∆(2 − αCR − CR) + ...

Thus, for α < 1, as CR = 1 −
√

∆
log(1+ε) + o

(√
∆

), we obtain

ε2

GR,gm

=CR log(1 + ε) −
∆CR

1 − CR

+
π2

12
CR∆(2 − αCR − CR) + ...

= log(1 + ε) − 2
√

∆ log (1 + ε) + o
(√

∆
)

If α > 1, i.e., α = 1 + ∆ and κ = 1−∆, then

log
cos

(
απCR

2

)
Γ(1 − αCR)

cos
(

κπCR
2

)
Γ(1 − CR)

=γe∆CR + log
(1 + αCR)(1 − CR)

1 − κ2C2
R

+
∞∑

j=1
log

(
1 − α2C2

R
(2j+1)2

)

(
1 −

κ2C2
R

(2j+1)2

) + ...

log
(1 + αCR)(1 − CR)

1 − κ2C2
R

= log
1 + αCR

1 + κCR

− log
1 − κCR

1 − CR

= log

(
1 +

2∆CR

1 + κCR

)
− log

(
1 +

∆CR

1 − CR

)
= −

√
∆ log(1 + ε) + o

(√
∆

)
,

∞∑

j=1
log

(
1 − α2C2

R
(2j+1)2

)

(
1 −

κ2C2
R

(2j+1)2

) =
∞∑

j=1
log

1 +
αCR
2j+1

1 +
κCR
2j+1

+ log
1 − αCR

2j+1

1 − κCR
2j+1

=
∞∑

j=1
log


1 +

2∆CR
2j+1

1 +
κCR
2j+1


 + log


1 −

2∆CR
2j+1

1 − κCR
2j+1


 = O (∆) .

Therefore, for α > 1, we also have

ε2

GR,gm

= log(1 + ε) − 2
√

∆ log (1 + ε) + o
(√

∆
)

.

Next, we consider the left bound. From Lemma 4.6,

Pr
(

F̂(α),gm,b − F(α) ≤ −εF(α)
)
≤ exp


−k

ε2

GL,gm


 ,

ε2

GL,gm

= −CL log(1 − ε) + CLγe(α − 1) + log α

− log

(
cos

(
κ(α)π

2
CL

)
Γ

(
CL

)
)

+ log

(
Γ

(
αCL

)
cos

(
παCL

2

))
.

and CL is the solution to g2(CL, α, ε) = 0,

g2(CL, α, ε) = log(1 − ε) − γe(α − 1) −
κ(α)π

2
tan

(
κ(α)π

2
CL

)

+
απ

2
tan

( απ

2
CL

)
− ψ

(
αCL

)
α + ψ

(
CL

)
= 0.

Using series representations, we re-write g2 as

g2 = − γe(α − 1) + log(1 − ε) −
κπ

2

4κCL

π

∞∑

j=1

1

(2j − 1)2 − (κCL)2

+
απ

2

4αCL

π

∞∑

j=1

1

(2j − 1)2 − (αCL)2

− α


−γe −

1

αCL

+ (αCL)
∞∑

j=1

1

j(αCL + j)




+


−γe −

1

CL

+ CL

∞∑

j=1

1

j(CL + j)




= log(1 − ε) − κ
∞∑

j=1

(
1

2j − 1 − κCL

−
1

2j − 1 + κCL

)

+ α

∞∑

j=1

1

2j − 1 − αCL

−
1

2j − 1 + αCL

+ (1 − α)CL

∞∑

j=1

αCL + j(1 + α)

j(αCL + j)(CL + j)
.

We first consider α = 1 + ∆ > 1. In order for g2 = 0 to
have a meaningful solution, we must make sure that

−κ

1 − κCL

+
α

1 − αCL

=
2∆

(1 − κCL)(1 − αCL)
=

2∆

1 − 2CL + C2
L
−∆2C2

L

converges to a finite value as α → 1, i.e., CL → 1 also. This
provides an approximation for CL when α > 1:

CL = 1 −
√√√√ 2∆

− log(1 − ε)
+ o

(√
∆

)
.



Using series representations, we obtain

CLγe(α − 1) + log α + log
Γ

(
αCL

)
cos

(
παCL

2

)

cos
(

κ(α)π
2 CL

)
Γ

(
CL

)

= log




∞∏

s=1

1 +
CL

s

1 +
αCL

s

exp

(
∆CL

s

) ∞∏

s=0

1 − α2C2
L

(2s+1)2

1 −
κ2C2

L
(2s+1)2




=
∞∑

s=1

(
−

∆CL

s + CL

+
∆CL

s
+ o (∆)

)
+ log


 1 − α2C2

L

1 − κ2C2
L




+
∞∑

s=1
log

1 − α2C2
L

(2s+1)2

1 −
κ2C2

L
(2s+1)2

= −
√
−2∆ log(1 − ε) + O (∆) .

Therefore, for α > 1

GL,gm =
ε2

− log(1 − ε) − 2
√
−2∆ log(1 − ε) + o

(√
∆

) .

Finally, we need to consider α < 1. In this case,
g2 = log(1 − ε) + ∆CL

∞∑

j=1

αCL + j(1 + α)

j(αCL + j)(CL + j)

= log(1 − ε) + ∆CL



∞∑

j=1

1

j(j + CL)
+
∞∑

j=1

1

(1 + CL)2


 + o (∆) .

Using properties of Riemann’s Zeta function and Bernoulli
numbers[8, 9.511,9.521.1,9.61]

∞∑

j=1

1

(j + CL)2
= −

1

C2
L

+
∫ ∞
0

t exp(−CLt)

1 − exp(−t)
dt

= −
1

C2
L

+
∫ ∞
0


1 +

t

2
+

t2

12
+ ...


 exp(−CLt)dt =

1

CL

+ O


 1

C2
L


 .

Using the integral relation[8, 0.244.1] and treating CL as a
positive integer (which does not affect the asymptotics)

∞∑

j=1

1

j(j + CL)
=

1

CL

∫ 1

0

1 − tCL

1 − t
dt

=
1

CL

∫ 1

0
t
CL−1 + t

CL−2 + ... + 1dt =
1

CL

CL∑

j=1

1

j

=
1

CL

(
γe + log CL + O

(
C
−1
L

))
.

Thus, the solution to g2 = 0 can be approximated by

log(1 − ε) + ∆
(
1 + γe + log CL

)
+ o(∆) = 0.

Again, using series representations, we obtain

CLγe(α − 1) + log α + log
Γ

(
αCL

)

Γ
(
CL

)

= log



∞∏

j=1

1 +
CL

j

1 +
αCL

j

exp

(
−

∆CL

j

)


=
∞∑

j=1

(
∆CL

j + CL

−
∆CL

j
+ ...

)
= −∆CL

(
γe + log CL

)
+ ...

Combining the results, we obtain, when α < 1 and ∆ → 0,

GL,gm =
ε2

∆
(
exp

(− log(1−ε)
∆ − 1 − γe

))
+ o

(
∆ exp

(
1
∆

)) .
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