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ABSTRACT

Persistent homology captures the topology of a filtration — a one-
parameter family of increasing spaces — in terms of a complete dis-
crete invariant. This invariant is a multiset of intervals that de-
note the lifetimes of the topological entities within the filtration.
In many applications of topology, we need to study a multifiltra-
tion: a family of spaces parameterized along multiple geometric

dimensions. In this paper, we show that no similar complete dis- .

crete invariant exists for multidimensional persistence. Instead, we
propose theank invariant a discrete invariant for the robust es-
timation of Betti numbers in a multifiltration, and prove its com-
pleteness in one dimension.

Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems—€omputations on discrete structures

General Terms: Algorithms, Theory

Keywords: computational topology, multidimensional analysis, per-
sistent homology

1. INTRODUCTION

In this paper, we introduce the theory wiultidimensional persis-
tence the extension of the concept pérsistent homologf7, 17].
Persistence captures the topology dilaation, a one-parameter
increasing family of spaces. Filtrations arise naturally from many
processes, such as multiscale analyses of noisy datasets. Given
filtration, persistent homology provides a small description in terms
of a multiset of intervals we call thiearcode The intervals corre-
spond to the lifetimes of the topological attributes. Since features
have long lives, while noise is short-lived, a quick examination
of the intervals enables a robust estimation of the topology of a
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Figure 1. A bifiltration, parameterized along curvature x and radius
e. We can only apply persistent homology to a filtration, so we must
either fix e or k.

dataset. This is the key reason for the current popularity of persis-
tent homology for solving problems in diverse disciplines, such as
shape description [4], denoising volumetric density data [13], de-
tecting holes in sensor networks [6], and analyzing the structure of
natural images [5].

We often encounter richer structures that are parameterized along
multiple geometric dimensions. These structures may be modeled
By multifiltrations, as the bifiltration shown in Figure 1. In pre-
vious work, we provided the theoretical foundations for persistent
homology, obtaining a simple classification over fields in terms of
the barcode [17]. Significantly, we showed that the barcode was
complete capturing all the topological information within a filtra-
tion. In this paper, we show that a similar result is unattainable
for multidimensional persistence: there exists no small complete
description, like the barcode, in higher dimensions. Given this neg-
ative theoretical result, we still desire a discriminating invariant that
enables detection of persistent features in a multifiltration. To this
end, we propose theank invariant In one dimension, this invari-
ant is equivalent to the barcode and consequently complete. Unlike
the barcode, however, the rank invariant extends to higher dimen-
sions, where it still captures persistent features, making it useful for
practical applications.

1.1 Motivation

Filtrations arise naturally whenever we attempt to study the topo-
logical invariants of a space computationally. Often, our knowledge



of a space is limited and imprecise. Consequently, we utilize amul-  Our parameterization will be in the form of invariants. An
tiscale approach to capture the connectivity of the space, giving usvariantis a map that assigns the same object to isomorphic struc-
a filtration. tures. For example, theivial invariant assigns the same object
to all structures and is therefore uselesscdmpleteinvariant, on
Example 1 (radiuse) We often have a finite set of noisy samples the other hand, assigns different objects to structures that are not
from a subspac&X’ C R", such as the point set at the bottom of isomorphic. Complete invariants are the most powerful type of in-
the vertical box in Figure 1. If the sampling is dense enough, we variant and we naturally search for them. If complete invariants
should be able to compute the topological invariantXadiirectly do not exist, we search for incomplete invariants that have enough
from the points [2]. To do so, we approximate the original space discriminating power to be useful.
as a union of balls by placingballs around each point. As we Our goal is to obtain a useful parameterization consisting of a
increasee, we obtain a family of nested spaces or a filtration, as small set of invariants whose description is finite in size. We uti-
shown in the vertical box in Figure 1. lize terminology from algebraic geometry to distinguish between
invariants. We seek invariants that correspond to discrete images

This example states the central idea behind many methods for com-5¢ yqints in algebraic varieties and are not dependent on the under-

puting the topology of a point set, such@sch Rips-Vietorig12], lying field of computation. The former condition enables them to
or witnesg[S] complexes. o o have finite parameterizations. The latter means that our invariant al-
Often, the space under study is filtered to begin with. And the \yays comes from the same set, similar to the Betti numbers, which
filtl’ation Contains important information that we W|Sh to extract. are a|Ways integers regardless of the Coefﬁcient ring_ For brevity’
we call these invariantdiscrete and other invariantsontinuous
Example 2 (densityp) Suppose we have a probability density func- Continuous invariants may be uncountable in size or depend on the
tiond on X C R™. We can defineX, = {z € X | 1/é(x) < p}. underlying field of computation. Naturally, these invariants are not
Clearly, X, C X, for p1 < p2, 50{X,}, is afiltration. We can  yjable from a computational point of view. Therefore, our objective
obtain information aboud from this filtered space. For instance, s a complete discrete invariant for multidimensional persistence.
the number of persistent connected components gives an estimat&ye note that our notation has nothing to do with whether the un-

of the number of the modes &f In higher dimensions, one may  derlying field of computation is continuous, suchfsor discrete,
uncover even more interesting structure, as was demonstrated forsuch ag?, for a primep.

the nine-dimensiona&lumford datasef5].

: 1.3 One-Dimensional Persistence
Example 3 (curvature ) In prior work, we develop a methodol-
ogy for obtaining compact shape descriptors for manifolds by ex- In a previous paper, we follow the algebraic approach above and
amining the topology of derived spaces [1]. Our approach con- obtain a complete discrete invariant for one-dimensional persis-
structs thaangent complexthe closure of the tangent bundle, and tence [17]:
filters it using curvature, as shown in the horizontal box in Figure 1.
We show that the persistence barcodes of the filtered tangent com- 1. Correspondence: We show a correspondence between the

plex are useful shape descriptors. homology of a filtration in any dimension and a gradejd]-
module, whereR][¢] is the ring of polynomials with indeter-
In practice, we often have a finite set of samples from our space, minatet over ring R.

giving us a filtered point set in the last two examples. Given a e ) ) o
point set, we may employ the technique in Example 1 to capture  2- Classification: Over field&, k[t] is a principal ideal do-

topology, constructing a filtration based on increasing the radius main, so a consequence of the standard structure theorem for
e. But when the point set itself is filtered, our solution lies within gradedk[t]-modules gives the full classification:

the persistent homology along other geometric dimensions, such n m

as densityp in Example 2, or curvature in Example 3. We now Pkl © P Tk (),

have multiple dimensions along which our space is filtered, that is, i=1 j=1

we have anultifiltration. Of course, we could apply persistent ho-
mology along any single dimension by fixing the value of the other

parameters, as indicated by the boxes the figure [4]. However, per- 3, Parameterization: The classification givesnusalf-infinite

whereX“ denotes am-shift upward in grading.

sistent homology itself was motivated by our inability to robustly intervals[a®, co) andm finite intervals|v;, v; + n;). The
estimate values for these parameters. To eliminate the need for multiset ofn + m intervals is a complete discrete invariant.
fixing values, we wish to apply persistence along all dimensions We call this multiset th@ersistence barcodd].

at once. Our goal is to be able to identify persistent features by

examining the entire multifiltration. We call this problemultidi- In essence, we are able to complete all our steps for one-dimensional

mensional persistencé/ariants of this problem have appeared in persistence and get everything we could possibly wish for.
other contexts, such as tfiest size homotopy groug0].

1.4 Contributions

1.2 Approach , o : ,
o ) ) In this paper, we show that multidimensional persistence has an es-
To understand the structure of multidimensional persistence, we sentially different character from its one-dimensional version. We

utilize a general algebraic approach consisting of three steps: devote a major portion of this paper to the following theoretical
respondenceclassification andparameterizationin the first step, contributions:

we identify the algebraic structure that corresponds to our space of

interest. In the second step, we obtain a complete classification of e We identify the algebraic structure that corresponds to mul-
the structure, up to isomorphism. In the third step, we parameterize tidimensional persistence to be a finitely-generated multi-
the classification. graded module over the field of multivariate polynomials.



e We establish a full classification of this structure in terms of Let S be a set andr be a group. Araction of G on S is a binary
the set of the orbits of the action of an algebraic group on an operation«: G x S — S such that for the identity elemeate G,
algebraic variety. we haveexs = sforall s € S, and(gi1g2)*s = g1 *(g2*s) for all

s € Sandgi, g2 € G. Given a group action, we defing ~ s, iff
e We reveal that this classification has discrete and continuous there existg € G such thay «s; = s2. Then,~ is an equivalence

portions. The former is canonically parameterizable, but the rejation onS and partitions it. Each cell in the partition is arbit
latter has no precise parameterization. in S under@.

An n-graded ringis a ring R equipped with a decomposition
of Abelian groupsk = @, R,,v € N™ so that multiplication has
the propertyR, - R, C Rut.. The set of polynomialsi,, =
klz1,...,zy] forms thepolynomial ring A,, is graded byA, =
kz',v € N™ and is the prototype forn-graded rings. We may vi-
sualize the 2-graded ring» on the integer gridV?, as shown in
Figure 3(a), where each bullet is a grade that contains an element
from k. Our example polynomiabz;z3 — 723 has non-zero el-
ements in grade§l, 2) and(3,0). An n-graded modulever an
e We prove the rank invariant is equivalent to the persistence 7-graded ringfz is an Abelian group\/ equipped with a decompo-

barcode in one dimension’ making |t Comp|ete for SitiOnM = Dy MU,U S N™ together W|th aR'mOdule structure

one-dimensional persistence, the only type for which it can SO thatRy - My C M.

be complete.

Our results imply that no complete discrete invariant exists for mul-

tidimensional persistence, unlike its one-dimensional counterpart.
Given this negative result, we conclude the paper by describing a
practical invariant:

e We propose a discrete invariant, the rank invariant, that is
computable, compact, and useful for extracting persistence
information from multifiltrations.

3. CORRESPONDENCE

Our work has both theoretical and practical components, the former

being a full understanding of multidimensional persistence, and the In this section, we carry out the first step of the approach enumer-
latter being a practical invariant that is useful for computation. In ated in Section 1.2: identifying the algebraic structure underlying
Section 2, we review concepts from algebra, algebraic topology, our problem. The abstraction for our input is a multifiltered space.

and algebraic geometry, and invent some notation. The next threeA spaceX is multifilteredif we are given a family of subspaces
sections detail the three steps of our approach, respectively. In Sec-{ X, C X},en» with inclusionsX,, C X,, whenever: < w, so

tion 6, we propose our discrete invariant for multidimensional per-
sistence and show its completeness in one dimension.

2. BACKGROUND

Let N be the set of non-negative integers, also called rtht-
ral numbers Intuitively, a multiset is a set within which an ele-
ment may appear multiple times, such s a,b,c}. Formally,
a multisetis a pair(S, 1), whereS is theunderlying set of ele-
mentsandn.: S — N specifies thenultiplicity 1.(s) of each ele-
ments € S. We often characterize a multiset via the set-theoretic
definition of u: {(s,u(s)) | s € S}. For the example, we get
{(a,2),(b,1),(c,1)}. We define(s,i) € (S,u) iff s € S and
1 < i < u(s), thatis,: indexes the multiple copies of

Foru,v € N", we sayu < vif u; < wv;forl <i < n. Let
(S, 1) be any multiset wher& C N™. Then, the relatiorg is a
quasi-partial orderon (S, 11): it is reflexiveandtransitive but not
anti-symmetricsince elements appear with multiplicity.

A monomialin x4, ..., z, is a product of the form

Un,

R L
with v; € N. We denote itt”, wherev = (vi,...,v,) € N™.

A polynomialf in x1,...,x, andcoefficientsn field & is a finite
linear combination of monomialsf = >~ c,z”, with ¢, € k.

We denote the set of all polynomiat$z., ..., z,]. For example,
5r125 — Tz} € k[z1, z2] has two non-zero coefficients;; o) = 5
andc(370) =—T.

An algebraic varietyis the set of common zeros of a collection of
polynomials. One variety we encounter in this paper isGinass-
mannianGryg (V), the set ofk-dimensional subspaces of a vector
spacelV. An algebraic groupis an algebraic variety endowed with
group structure, so that the group operation is a morphism of the
variety. Theautomorphism grou:L (V') of a system of objects’
is the set of invertible linear transformations Bnwhere the group
operation is function composition.

that the diagrams

Xy — Xoy

1)

sz ? Xw

<

~

commute foru < vy, vz
tration in Figure 1.

In practice, our input is often a finite compldx along with a
function F': R" — K that gives a subcompleX, for any value
v € R"™, such as the bifiltered triangle in Figure 2. This input
converts naturally to a multifiltered complex. Since the complex is
finite, there is a finite set afritical coordinates” = {v; € R"};
at which new simplices enter the complex. Projectihgnto each
coordinate axis gives us a finite set of critical valdésin each
dimensiond. We now restrict ourselves to the discrete set of the
Cartesian producf]’,_, Cq of the critical values, parameterizing
the resulting grid usin@N in each dimension. This gives us a mul-

Al
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Figure 2. A bifiltration of a triangle.



tifiltered complex, provided the functiol makes the induced dia-
grams (1) commute.

Given a multifiltered spac&’, the homology of each subspace
X, over a fieldk is a vector space. For instance, the bifiltered
complex in Figure 2 has zeroth homology vector spaces isomorphic
to

Tk [k|k
F Rk [k
k |k |k|Ek

where the dimension of the vector space counts the number of com-

ponents of the complex. We also have inclusion maps relating the
subspaces, inducing maps at the homology level.

Definition 1 (persistence module)A persistence moduld/ is a
family of k-modules {M,}, together with homomorphisms
Puw: My — M, forall u < v such thatp,,, © Yo, = Yu,w
whenevern, < v < w.

The homology of a multifiltration in each dimension is a persis-

4. CLASSIFICATION

We have now identified the algebraic structures that correspond to
our problem: finitely generatedtgraded modules ovet.,,. In this
section, we focus on our second task: finding a complete classifi-
cation for this structure. We begin with a classification of finitely
generated free graded objects. Next, we utilize these free objects
to describe two discrete invariants for the modules. Finally, we ex-
amine the relationship between the two invariants to complete our
classification. Our approach is entirely in the spirit of the represen-
tation theory of finite dimensional algebras [11]. We have chosen
to present a complete argument for clarity and explicitness.

4.1 Free Graded Objects

Intuitively, a free object is a generalization of a vector space: a
number ofgeneratorsarefreeto create an infinite number of unique
elements. Consequently, a free object has a simple structure and
parameterization. In this section, we develop graded versions of
free objects to provide discrete invariants for our input. We begin

tence module. To capture the structure of the maps in a persistence,y endowing a field: with a graded.,-module structure.

module, we define a multigraded module, following our treatment
in the one-dimensional case [17].

Definition 2 (structure) Given a persistence module, we de-
fine ann-graded module oved,, by

a(M) =P M.,

where thek-module structure is the direct sum structure and we
require thate” =" : M,, — M, is ., wheneven < v.

That is, we incorporate the relationships given by the homomor-
phisms into the structure of am-graded module. Our treatment

is consistent with, and an extension of, the one-dimensional case,

where the corresponding structure is a 1-gradedingly-graded
module [17].

Theorem 1 (correspondence)The correspondence defines an

Definition 3 (k) For a fieldk, we definek to be then-gradedA,,-
module with gradingco = k andk, = {0} for v # 0. The A,-
structure is given by setting the action of all the variables identically
to zero.

We show the modulé in Figure 3(b). To construct more compli-
cated modules, we introduce the concept of shifting.

Definition 4 (shift) Given ann-graded objecf/ andv € N, the
shifted objectV/ (v) is defined byM (v),, = M, _, forall u € N".

In other words, the object/ (v) is identical toM, but its direct sum
decomposition is shifted upwards in gradingyWe use shifted
objects to create graded vector spaces.

equivalence of categories between the category of finite persistence

modules overk and the category of finitely generatedgraded
modules over,, = k[z1,...,Tn].

To recap, the homology of a finite multifiltered complex is a finite

persistence module, and the structure of a persistence module is a

finitely generatecdh-graded module.

One may ask, however, about the reverse relationship: Is every

finite persistence module realizable as the homology of a multifil-
tration? More specifically, can we realize every such module as the
homology of a finite multifiltered simplicial complex, since that is
our usual representation of a space in practice? The following the-
orem answers this question in the affirmative.

Theorem 2 (realization) Every finite persistence module may be
realized as the homology, in any dimension greater than zero, of a
finite multifiltered space, or a finite multifiltered simplicial complex.

The proof is constructive and we omit it here.

We end this section with an aside on our choice of input. The
grid-like filtrations we study arise naturally in practice. Neverthe-
less, filtrations arising from other partial orders may also be in-
teresting and produce algebraic invariants. However, this would
take us out of the realm of commutative algebra, perhaps into non-
commutative algebra, and definitely into another paper.

Definition 5 (vector space) Let £ be a multiset of elements from
N™. A finitely generated-gradedk-vector space with basisis a
finite direct sum of shifted copies &f

V)= @ k).

(v,i)€

Note that we enumerate the elements with multiplicity using our
notation for multisets. Figure 3(c) displays a 2-gradeudector
space defined by multis¢t(1,0),1), ((0,1),2),((2,1),1)}. Ina
vector space, a generator’s scope is a single grade. In a free module
we extend its scope via the action of the the variables.

Definition 6 (free module F') Let¢ be a multiset of elements from
N". Thefree n-graded A,,-module with basig is the direct sum
of shifted copies ofd,,:

FO = @ 4.w)

(v,i)€g

= @ k[l‘l,,..

(vii)ee

2] (0)-
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Figure 3. 2-graded objects: (a) Polynomial 5z1x3 — 7z} in the 2-graded ring A2 = k[z1, z2] visualized on N2. (b) Field k£ endowed with graded
module structure (Definition 3). (c) A k-vector space V' with generators at (1,0) and (2, 1), and two generators at (0, 1) (Definition 5). (d) A free

Ag-module F with same type as (b) (Definition 6).

Compare this definition with the previous one. Our construction £(M) is our first discrete invariant fak/. For the zeroth homology
has the usual universal mapping property defining a free module module for our bifiltration in Figure 2, we get:

[16]. Figure 3(d) displays the free module with the same defining
multiset as our example vector space. Each shaded region indicates

the scope of a generator in its corner.

Lemma 1 (type&, isomorphism) Any finitely-generated-graded

§(M) ={((0,0),1),((0,1),1), (1, 1), 1)}.

The invariant (M) has an intuitive meaning in the context of one-
dimensional persistence (see Section 1.3). What we capture with
&(M) corresponds to the left endpoints of barcode intervals. Ap-

k-vector space may be written uniquely, up to isomorphism, with a plying Definition 6, we may construct the free graded module

basis as in Definition 5. Similarly, any freegraded A,,-module

F(&(M)). This module has the same generatordAsbut allows

may be written uniquely, up to isomorphism , with a basis as in them to be free. In one dimension, the construction corresponds to

Definition 6. The basis is thiype (M) of the objectd. Two
objects of the same type are isomorphic.

The lemma gives a full classification, establishihgs a complete

starting half-infinite intervals at the left endpoints, as we have not
located the right endpoints.

The invariant (M) is not complete. The modulB(¢(M)) is a
free approximation of\/: it lacks the set of relations that constrain

discrete invariant, up to isomorphism, for each of the two free struc- 77, 5o, we may begin our classification by computi{g/), and
tures. A free module has a vector space in each grade. We use thghen refine it by studying classification of all modules with a fixed

quasi-partial orderS to formalize this next.

Lemma 2 (grade) F'(£), is ak-vector space with dimension equal
to card{(u,7) € £ | u < v}, wherecard denotes cardinality.

In Figure 3(d), the dimension a¥/, is simply the number of re-
gions that cover grade. For exampledim M1y = 4 as(2,1)
is contained in all four regions. Finally, we extend the notion of an

automorphism to free graded modules by requiring it to respect the

grading.

Lemma3 (GL<) Let u € GL(V(£)) be an automorphism of
V(€). We sayu respects the grading for any (v,:) € &, u(v)
lies in the span of elements’,i’) € £ such that’ < v. We de-
fine GL<(V'(£)) to be the set of all such automorphisms. Then,
GL<(V(£)) is an (algebraic) subgroup a&L(V (£)). Moreover,
the automorphism group @ (¢) is isomorphic taGL< (V' (£)) and
therefore algebraic, so we denote it BYL(F(€)).

4.2 Two Discrete Invariants

In the remainder of this section, we usé to denote our input: a
finitely generatech-gradedA,,-module. We cannot use the invari-
ant¢ directly sinceM is not free in general. But we could look at
free objects related to it. Let, = (x1,...,2,) be then-graded
ideal in A,, that is generated by, ..., z,. Dividing out the ele-
ments inM with coefficients inl,,, we derive a vector space that
containsM'’s generators.

Definition 7 (&¢) The spacd/ (M) = M/I,M =k ® Misa
A’VL
vector space. We defirgg M) = £(V (M)).

value of§(M). For this refinement, we use a canonical isomor-
phismk ®.4, F(E(M)) 2 k®a, M =V (M).

Lemma 4 (p) There exists a surjectiopy: F(E(M)) — M,
unique up to automorphism df(£(M)), such that the induced
homomorphism

@ F(E(M)) =k @ M

k : k
S?w, oM An An

is the canonical isomorphism given above.

The surjection is théree hullof M, dual to the notion oinjective

hull in the literature [8, Page 628]. Its existence is entirely analo-
gous to the existence of the first stage ahaimal free resolution

for local rings [9, Section 1B]. The kernéter ¢, of surjection
M consists precisely of the relations definiifjand is called the
ideal of relations Generally, the kernel is not free, but we may use
our technique from Definition 7 to capture its generators. This con-
struction gives us our second discrete invariant¥fr & (ker ¢ar).
Intuitively, what we capture with¢ (ker ¢as) corresponds to the
right endpoints of barcode intervals in one-dimensional persistence.
We end this section by naming our two discrete invariants.

Definition 8 (€0, £1) We definego (M) = &(M) and& (M) =
&(ker pps) as two discrete invariants for a finitely generated
gradedA,,-moduleM .

For the zeroth homology module for our bifiltration in Figure 2, we
get:

&(M) = &(ker oar) = {((1,2),2), ((2,1),2)}.



4.3 Complete Classification

We now have the locations of the births and deaths of generators
in M inside two multisetgo (M) and&:1 (M), respectively. The
two invariants together are not complete, so we next study the clas-
sification of all modules with fixed values for the invariants. In

one-dimensional persistence, we were able to establish a significantly y (1) € RF (£ (M), £, (M), where forv € & (

result that we can pair births and deaths to get the barcode inter-
vals [17]. To complete the classification for multidimensional per-

Recall the homomorphismpy, : Fy — Fy from the diagram. In
each grade, v, maps vector spadg )., to a vector space within
(Fo)v. Thatis, we get a relation family.

Lemma 6 (n(¢ar)) The homomorphism,, yields a relation fam-
M),
N(Yar)o = Yar (F1)

v

sistence, we need to study the relationship between the free graded

modules associated to our two invariants. For notational sanity, we
define the notation in Figure 4(a). The free graded modHieand

F3 have our two discrete invariants as generators, and the surjec-
tion ¢ is asserted by Lemma 4. Sinééincludes inM, we have

the diagram in Figure 4(b), where we defing; = i o pk, SO the
diagram commutes. Sindex s = ker s by construction, the
sequence at the bottom of the diagrafh, — Fo — M, is exact

The homomorphismpa, : Fi — Fj relates our two free modules.

To understand this map, we begin by modeling any relationship
between any two free graded modules.

Definition 9 (relation family RF, RF) Let F(&) and F'(¢1) be
free graded modules. Aelation family RF (&, &1) is a family
{Ws}vee, of vector spaces such that

1. VU g F(fo)u,
2. dimV, = dim F(&1)w,

3. foru,v € &1,u S v, we haved, (V) C Vi, whereg,, is
multiplication byx*.

The collectionRF (&, &1) consists of all possible relation families

RF(£07 €1)

Note that in this definition, we tredt as a set, disregarding the
multiplicities. Now, automorphismg € GL(F'(&)) induce auto-
morphisms of the exact sequence at the bottom of the diagram in
Figure 4(b) and therefore af/. In particular,;x maps a relation
family into another relation family, giving us the following.

Lemma5 GL(F(&)) is a (left) group action on the collection

iR3:(507 51)

K =kerpum
Fo = F(&(M)) = F(£(M))
Fy = F(&(M)) = F(E(K))

pr: F1 — K

(a) Notation

K

2 Ym

Fo % M
(b) Diagram

Figure 4. Notation and diagram for complete classification.

We may now state a major result of the paper.

Theorem 3 (classification) Let&y, &1 be multisets of elements from
N™ and[M] be the isomorphism class of finitely generategraded
A,-modulesM with & (M) = & and & (M) = &. Then, the
assignmenfM] — n(y) is a bijection from the collection of
isomorphism classes to the set of orbits

RF (&0, 1)/ GL(F (€0))- )

In other words, each modul®&/ is classified, up to isomorphism,
by three invariantséo (M), &1 (M), and the orbity(¢yar) under the
action of the automorphisms of the associated free graded module

F(&)-

5. PARAMETERIZATION

Having established a complete classification of the graded modules,
we now turn our attention to the third step of our approach: param-

eterizing the classification. The two discrete invariants are already
parameterized as multisets. The remaining invariant is the set of
orbits described by Theorem 3. In this section, we examine the

structure of the orbits using concepts in algebraic geometry. The
general picture that emerges is that this portion of the classification
is a continuous invariant. To appreciate its nature, we next detail

an example in two dimensions. We end this section with possible

strategies for coping with the continuous invariant.

5.1 Algebraic Action

We begin by endowing the collection of relation familiRS (£o, £1)
with the structure of an algebraic variety. Note first tRak(&o, £1)
is a subset of the variety

[T Gramre, (FEo)w)

(v,i)€€1

®)

where Gr is the Grassmannian. It is now easy to verify that the
containment conditions that define the collect®& (o, &1) are
algebraic on this variety, giving us the following.

Theorem 4 (algebraic action) RF (&0, &1) is a variety in a natu-
ral way, and the action of the algebraic gro@pL(F(&)) on it is
an algebraic action.

Unfortunately, the set of orbits of the action of an algebraic group
on an algebraic variety is not, in general, an algebraic variety [14].
The number of orbits may be uncountable, giving us a continuous
invariant.



@ . . . . These transformations exist &s l» spank2, being non-zero and
distinct, ands cannot be zero or either axis after the first two trans-
formations. We now have a tuples-axis y-axis diagonal A4),

¢ ® ¢ ¢ ¢ where )\, is I, after the transformations. While there are differ-
ent matrices inGLz (k) that can transform the original tuple to
. . @ o o this tuple, the matrices differ by multiplication by a diagonal ma-

trix, since the only matrices that preserve the axes and the diag-
onal line are diagonal matrices. Consequenily,is determined

szk2 . . *) . uniquely, and we may identify the orbi€s/ GL2 (k) with the lines
e in P! (k) with the axes and the diagonal removed. Each such line
is determined by its slope which cannot ye>o, or 1, according
Figure 5. Visualization of & and &; on N2 for our example, with the to the discussion. Therefor€)/ GL2(k) can be identified with
elements of the latter circled. ]P’l(k) —{0,1,00} =k —{0,1}.
Now, note that this classification is dependent on the field of co-
5.2 The Continuous Invariant efficientsk. If k is uncountable, so is the subspace, and in turn, the

full orbit space. Ifk is a finite field, such a&, for p a prime, we
To further appreciate the complexity of the continuous invariant, we get a finite solution for the subspa@ewe have chosen, but we still
show its structure for a simple two-dimensional example. Suppose have not detailed the full picture for the orbit space. However, we

we have a set of modules for which already see the field-dependence problem: Changing the field not
only changes the classification, but also the target of the classifica-
& ={((0,0),2)}, tion: We not only get different values, we get values from different
& =4((3,0),1),((2,1),1), ((1,2),1), ((0,3), 1)}, sets altogether. This is analogous to getting Betti numbef;in

when computing oveZ., Betti numbers inZs when computing

as visualized oN* in Figure 5. It is easy to build a bifiltered sim-  overZs, and so on. Therefore, we cannot get a discrete invariant
plicial complex whose first homology groups correspond to this for our example.
picture. 2At(0, 0), we have a complex composed of two loops, giv-
ing usk=. In each of the circled coordinates, we choose a sew :
a surface between the two loops such that no two complexes are5'3 Refinement
sewn the same. For example, we could sew a cylindés,a), a We have illustrated that our goal — obtaining a complete discrete
punctured crosscap &2, 1), and so on. Observe that the discrete invariant — is not attainable for multigraded objects. Intuitively,
invariantso, {1 cannot discern the difference between the resulting the continuous invariant captures subtle second-order information
complexes. about the complicated transitions in a multigraded module. This

To obtain the classification, we apply Theorem 3. The genera- information may be worthy of study and we end this section by
tors of F(¢&y) are co-located, so we have the full group of automor- suggesting possible avenues of attack.

phisms Our two discrete invariants may be viewed as the first two in a
_ 2\ _ family of discrete invariants. We may develop standard homolog-
GL(F (&) = GL(K") = GLa(k), ical algebra in the category of graded modules oveneagraded
whereGL2 (k) is the group of invertibl@ x 2 matrices with ele- k-algebraA,,, with the resulting derived functor® andHom 4,

ments fromk. We use Equation (3) to endoRF (&0, &1) with a
variety structure. For eactv,i) € &1, F(§o)v is isomorphic to
k? anddim F(ﬁl)u =1, soGrgim F(&1)w (F(&))U) = GI‘1(I€2) =
P! (k), whereP! (k) denotesprojective ling the set of lines irk?

An
now being equipped with the structure of an-graded
A,-module [16]. In particular, the functdFor:*" (M, k) makes
sense and we now define a familyrofliscrete invariants by

going through the origin. Then, the variety is s,imﬁﬂ’§7(lc)4 as & =¢ (Torf‘” (M, k)) .
there are no containment conditions. The classification is given by
the orbit space The first two invariants in the family match our two discrete in-
L variants in Definition 8. It may be interesting to study the rest
P (k) / GL2(k), (4) of this family as each invariant will make our classification finer.

However, the existence of the continuous invariant indicates that
no matter how many of these invariants we include, there will still
be a residual continuous component in the classification.

While the set of orbits is not a variety, we conjecture that addi-

where elementg € GL2(k) act in the evident way on the four
lines, transforming each line to another.

We claim that no discrete invariant is possible for this bifiltration.

Consider the subspade of the orbit space containing pairwise- | L :
distinct lines. That is, we have four tuple of lin€k, I, I3, Ls) tional structure exists in the following form. L&t = GL(F'(&))

wherel; # 1, for i # j. The subspace is clearly invariant and suppose there is a family of closed subvarieties
under theGL2 (k) action and hence the orbit spa@¢ GL2 (k) is RFn € RF (€0, &1) such that

a subspace of our orbit space in Equation (4). Using matrices from

GLa(k), we transform the lines so that L RFn € Ry foralln,

) 2. RF, is closed under the action 6f,
1. I; becomes the-axis,

3. RF,, eventually becomes equal &5F (o, &1),
2. l2 becomes thg-axis,

4. the set of orbits of thé&-action onRF,, — RF,_1 is an
3. andls becomes thdiagonalline spanned by1, 1). algebraic variety in a natural way.



This kind of structure is called amquivariant stratificatiorof the
variety in question, with the differenc®%,, — RF,,_: being astra-

tum The orbit varieties are calleghoduli spaceén classification
problems for which the invariant lies in a given stratum. The result
is known to hold in some special cases by the work of Cohen and
Orlik [3] and Terao [15].

6. THE RANK INVARIANT

Our study of multigraded objects shows that no complete discrete
invariant exists for multidimensional persistence. We still desire

a discriminating invariant that captures persistent information, that
is, homology classes with large persistence. This information is rigyre 6. The intervals of a barcode ¢ are drawn below the t-axis.

not contained in our two discrete invarian{s,and¢1, as they cap-  Each interval (to, t1) defines a triangle as shown. The rank function
ture birth and death coordinates of the generators in the complexes.¥(¢)(t, s) is the number of triangles that contain (¢, s).

What we need lies within the relationship between the two invari-
ants or in the maps between the complexes. In this section, we pro-

pose and advocate a small and computable invariant that identifiesProof: To prove completeness, we show equivalence via a bijec-
persistent features in a multifiltration. Our invariant is equivalent to tion ¥ between the set of barcodes and the set of rank invariants.

persistence barcodes, and therefore complete, for one-dimehsionaAccording to the classification theorem for a graded modulee-

filtrations.

The persistent information is contained in the relating homomor-
phismse,,., in Definition 1. Recall that we incorporated these
maps into a multigraded module through the action of the variables,
requiring thate”~": M,, — M, to bey,, . in Definition 2. To an-
alyze this family of maps, we begin by defining their domains.

Definition 10 (D™) LetN = N U {oo} with u < oo for all u €
N. LetD"” C N" x N" be the subset above the diagorial, =
{(w,v) | w € N*,v € N*,u < v}. For (u,v), (u',v") € D", we
define(u,v) < (v, ") if u < ' andv’ <.

It is easy to check thak is a quasi-partial order oB™. With this
notation, our parameterization of singly-graded modules in Sec-
tion 1.3 is a multiset frond', and= indicates the first pair contains
the second, when the pairs are viewed as intervals.

Definition 11 (rank invariant pas) Let M be afinitely generated
n-gradedA,,-module. We defin@ys : D™ — Nto bepy(u,v) =
rank(z”"": M, — M,).

The functionp, is clearly a discrete invariant fav/.

Lemma 7 (order-preserving) If (u,v) =< («/,2), then
o (u,v) < par(u',v"), thatis,pas is anorder preservingunction
from (D", <) to (N, <).

Proof: Immediate using the fact that given any compogiteg of
linear transformations, we have
rank(f o g) < rank f,rankg.
|
We now state the rank invariant's completeness in one dimension

through its equivalence to barcodes. We note that the following
theorem is the converse of thetriangle Lemmd7, 17].

Theorem 5 (completeness)The rank invarianp,, is complete for
singly-graded modules/.

called in Section 1.3, the intervals in its barcadeapture the life-
times of the generators df/. Therefore, the corresponding rank
function is¥(€)(t, s) = card{((t',s'),i) € £ | (t,s) C (t',s")}.
Figure 6 illustrates this correspondence. The barcode intervals are
drawn below the axis and the rank function’s domaiB);', exists
above the diagonal in th@, s)-plane. Each intervdko,¢1) has a
triangular region defined by inequalities> to, s < t1, ands > ¢,
with corner vertex(to, ¢1) and verticegto, to) and(¢1, ¢t1) on the
diagonal. Half-infinite intervals correspond to degenerate triangles,
but they are handled easily, so we do not discuss them here. The
rank functiomd(§)(t, s) is simply the number of triangles that con-
tain (¢, s). As an aside, we note that the m@ps) — (¢,s — t)
gives the index-persistence figures in the previous papers [7, 17].
Clearly, we can construct each triangle from its corner by pro-
jecting the corner vertically and horizontally onto the diagonal.
Moreover, there is a trivial bijection between the corftgt ¢1) and
the intervalto, t1). Given a barcodég, we know how to build the
rank functiond(¢) by the equation above. Given a rank function
p, we need to identify the corner points to build the corresponding
barcode. We begin by first walking along the diagonal until the rank
function is nonzero afy = argmin, p(¢,t) # 0. By Lemma 7, the
functions — p(to, s) is @ non-increasing function, so we walk ver-
tically up until¢; wherep(to,t1) < p(to,to). The point(to,t1) is
a corner, so we subtract its triangle frgm The proof follows by
induction. O

When the module is the persistence module associated titthe
homology of a multifiltration, we can define the rank invariant di-
rectly in terms of the input.

Definition 12 (px,;) Let X = {X, }ven» be a multifiltration. We
definepx,;: D™ — N over fieldk to

px,i(u,v) = rank(H;(Xu, k) — Hi(Xv, k)).

The functionpx ; is @ homeomorphism invariant of the muiltifil-
tered space, deriving its invariance from the invariancexef Intu-
itively, Theorem 5 means that the rank invariant for one-dimensional
filtrations may be separated into a set of overlapping triangles whose
thickness at any point is the rank. These triangles, in turn, carry the
same information as a set of intervals or the barcode. Our classi-
fication theorem, on the other hand, implies that a similar result



is not possible for higher dimensions. As our example in Sec- [10] FROSINI, P.,AND MULAZZANI, M. Size homotopy groups

tion 5.2illustrates, the picture is much more complicated: It is not for computation of natural size distancéull. Belg. Math.
possible to separate the rank invariant into overlapping “regions” to Soc. Simon Stevin 8 (1999), 455-464.
extend the barcode. However, the rank invariant does extend as ar{11] GABRIEL, P.,AND ROITER, A. V. Representations of Finite-
incomplete invariant and we may utilize it to identify persistent fea- Dimensional AlgebrasSpringer-Verlag, Berlin, 1997.
tures by the following procedure. Given a rank invariant, we look [12] GRoMov, M. Hyperbolic groups. IiEssays in Group Theory
for points (u,v) € D" that are far from the diagonal and have a S. Gersten, Ed. Springer Verlag, New York, NY, 1987, pp. 75—
neighborhood of constant value. The first condition corresponds to 263.
the persistence of the features. The second condition indicates thg13] GYULASSY, A., NATARAJAN, V., Pascucc, V., BREMER,
stability of our choice(u, v). With this procedure, the rank invari- P. T.,AND HAMANN, B. Topology-based simplification for
ant emerges as a practical tool for reliable estimation of the Betti feature extraction from 3D scalar fields. Rroceedings of
numbers of multifiltered spaces. IEEE Visualization2005), pp. 275-280.

[14] MUMFORD, D., FOGARTY, J.,AND KIRWAN, F. Geometric
7. CONCLUSION Invariant Theory third ed., vol. 34 ofErgebnisse der Math-

ematik und ihrer Grenzgebiete (23pringer-Verlag, Berlin,

We believe the primary contribution of this paper is the full theoret- 1994.
ical understanding of the structure of multidimensional persistence: [15] TErao, H. Moduli space of combinatorially equivalent ar-
We identify the corresponding algebraic structure, classify it, and rangements of hyperplanes and logarithmic Gauss-Manin

undertake its parameterization. Our theory reveals that a complete connectionsTopology Appl. 1181-2 (2002), 255-274.
discrete invariant does not exist for multidimensional persistence, [16] WEIBEL, C. A. An Introduction to Homological Algebra

unlike its one-dimensional counterpart. A second practical contri- vol. 38 of Cambridge Studies in Advanced Mathematics
bution of our paper is the rank invariant, a tool for robust estimation Cambridge University Press, Cambridge, 1994.

of the Betti numbers. We prove that the rank invariant is equivalent [17] ZomORODIAN, A., AND CARLSSON, G. Computing persis-
to the persistent barcode in one dimension, so it is complete when tent homologyDiscrete and Computational Geometry, 33

it can be. Unlike the barcode, the rank invariant extends to higher (2005), 249-274.
dimensions as an incomplete but useful invariant.
We have developed an algorithm for computing the rank invari-
ant. For bifiltrations, the rank invariant is already four-dimensional,
SO0 we are examining possible interfaces for visualizing and explor-
ing the rank invariant. We plan to apply our work toward automatic
identification of features in multifiltrations, such as the filtered tan-
gent complex [4].
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