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ABSTRACT
Persistent homology captures the topology of a filtration – a one-
parameter family of increasing spaces – in terms of a complete dis-
crete invariant. This invariant is a multiset of intervals that de-
note the lifetimes of the topological entities within the filtration.
In many applications of topology, we need to study a multifiltra-
tion: a family of spaces parameterized along multiple geometric
dimensions. In this paper, we show that no similar complete dis-
crete invariant exists for multidimensional persistence. Instead, we
propose therank invariant, a discrete invariant for the robust es-
timation of Betti numbers in a multifiltration, and prove its com-
pleteness in one dimension.

Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems—Computations on discrete structures

General Terms:Algorithms, Theory

Keywords: computational topology, multidimensional analysis, per-
sistent homology

1. INTRODUCTION
In this paper, we introduce the theory ofmultidimensional persis-
tence, the extension of the concept ofpersistent homology[7, 17].
Persistence captures the topology of afiltration, a one-parameter
increasing family of spaces. Filtrations arise naturally from many
processes, such as multiscale analyses of noisy datasets. Given a
filtration, persistent homology provides a small description in terms
of a multiset of intervals we call thebarcode. The intervals corre-
spond to the lifetimes of the topological attributes. Since features
have long lives, while noise is short-lived, a quick examination
of the intervals enables a robust estimation of the topology of a
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Figure 1. A bifiltration, parameterized along curvature κ and radius
ǫ. We can only apply persistent homology to a filtration, so we must
either fix ǫ or κ.

dataset. This is the key reason for the current popularity of persis-
tent homology for solving problems in diverse disciplines, such as
shape description [4], denoising volumetric density data [13], de-
tecting holes in sensor networks [6], and analyzing the structure of
natural images [5].

We often encounter richer structures that are parameterized along
multiple geometric dimensions. These structures may be modeled
by multifiltrations, as the bifiltration shown in Figure 1. In pre-
vious work, we provided the theoretical foundations for persistent
homology, obtaining a simple classification over fields in terms of
the barcode [17]. Significantly, we showed that the barcode was
complete, capturing all the topological information within a filtra-
tion. In this paper, we show that a similar result is unattainable
for multidimensional persistence: there exists no small complete
description, like the barcode, in higher dimensions. Given this neg-
ative theoretical result, we still desire a discriminating invariant that
enables detection of persistent features in a multifiltration. To this
end, we propose therank invariant. In one dimension, this invari-
ant is equivalent to the barcode and consequently complete. Unlike
the barcode, however, the rank invariant extends to higher dimen-
sions, where it still captures persistent features, making it useful for
practical applications.

1.1 Motivation
Filtrations arise naturally whenever we attempt to study the topo-
logical invariants of a space computationally. Often, our knowledge



of a space is limited and imprecise. Consequently, we utilize a mul-
tiscale approach to capture the connectivity of the space, giving us
a filtration.

Example 1 (radiusǫ) We often have a finite set of noisy samples
from a subspaceX ⊂ R

n, such as the point set at the bottom of
the vertical box in Figure 1. If the sampling is dense enough, we
should be able to compute the topological invariants ofX directly
from the points [2]. To do so, we approximate the original space
as a union of balls by placingǫ-balls around each point. As we
increaseǫ, we obtain a family of nested spaces or a filtration, as
shown in the vertical box in Figure 1.

This example states the central idea behind many methods for com-
puting the topology of a point set, such asČech, Rips-Vietoris[12],
or witness[5] complexes.

Often, the space under study is filtered to begin with. And the
filtration contains important information that we wish to extract.

Example 2 (densityρ) Suppose we have a probability density func-
tion δ onX ⊂ R

n. We can defineXρ = {x ∈ X | 1/δ(x) ≤ ρ}.
Clearly,Xρ1 ⊆ Xρ2 for ρ1 ≤ ρ2, so{Xρ}ρ is a filtration. We can
obtain information aboutδ from this filtered space. For instance,
the number of persistent connected components gives an estimate
of the number of the modes ofδ. In higher dimensions, one may
uncover even more interesting structure, as was demonstrated for
the nine-dimensionalMumford dataset[5].

Example 3 (curvatureκ) In prior work, we develop a methodol-
ogy for obtaining compact shape descriptors for manifolds by ex-
amining the topology of derived spaces [1]. Our approach con-
structs thetangent complex, the closure of the tangent bundle, and
filters it using curvature, as shown in the horizontal box in Figure 1.
We show that the persistence barcodes of the filtered tangent com-
plex are useful shape descriptors.

In practice, we often have a finite set of samples from our space,
giving us a filtered point set in the last two examples. Given a
point set, we may employ the technique in Example 1 to capture
topology, constructing a filtration based on increasing the radius
ǫ. But when the point set itself is filtered, our solution lies within
the persistent homology along other geometric dimensions, such
as densityρ in Example 2, or curvatureκ in Example 3. We now
have multiple dimensions along which our space is filtered, that is,
we have amultifiltration. Of course, we could apply persistent ho-
mology along any single dimension by fixing the value of the other
parameters, as indicated by the boxes the figure [4]. However, per-
sistent homology itself was motivated by our inability to robustly
estimate values for these parameters. To eliminate the need for
fixing values, we wish to apply persistence along all dimensions
at once. Our goal is to be able to identify persistent features by
examining the entire multifiltration. We call this problemmultidi-
mensional persistence. Variants of this problem have appeared in
other contexts, such as thefirst size homotopy groups[10].

1.2 Approach
To understand the structure of multidimensional persistence, we
utilize a general algebraic approach consisting of three steps:cor-
respondence, classification, andparameterization. In the first step,
we identify the algebraic structure that corresponds to our space of
interest. In the second step, we obtain a complete classification of
the structure, up to isomorphism. In the third step, we parameterize
the classification.

Our parameterization will be in the form of invariants. Anin-
variant is a map that assigns the same object to isomorphic struc-
tures. For example, thetrivial invariant assigns the same object
to all structures and is therefore useless. Acompleteinvariant, on
the other hand, assigns different objects to structures that are not
isomorphic. Complete invariants are the most powerful type of in-
variant and we naturally search for them. If complete invariants
do not exist, we search for incomplete invariants that have enough
discriminating power to be useful.

Our goal is to obtain a useful parameterization consisting of a
small set of invariants whose description is finite in size. We uti-
lize terminology from algebraic geometry to distinguish between
invariants. We seek invariants that correspond to discrete images
of points in algebraic varieties and are not dependent on the under-
lying field of computation. The former condition enables them to
have finite parameterizations. The latter means that our invariant al-
ways comes from the same set, similar to the Betti numbers, which
are always integers regardless of the coefficient ring. For brevity,
we call these invariantsdiscrete, and other invariantscontinuous.
Continuous invariants may be uncountable in size or depend on the
underlying field of computation. Naturally, these invariants are not
viable from a computational point of view. Therefore, our objective
is a complete discrete invariant for multidimensional persistence.
We note that our notation has nothing to do with whether the un-
derlying field of computation is continuous, such asR, or discrete,
such asFp for a primep.

1.3 One-Dimensional Persistence
In a previous paper, we follow the algebraic approach above and
obtain a complete discrete invariant for one-dimensional persis-
tence [17]:

1. Correspondence: We show a correspondence between the
homology of a filtration in any dimension and a gradedR[t]-
module, whereR[t] is the ring of polynomials with indeter-
minatet over ringR.

2. Classification: Over fieldsk, k[t] is a principal ideal do-
main, so a consequence of the standard structure theorem for
gradedk[t]-modules gives the full classification:

n
M

i=1

Σαik[t] ⊕

m
M

j=1

Σγjk[t]/(tnj ),

whereΣα denotes anα-shift upward in grading.

3. Parameterization: The classification gives usn half-infinite
intervals[αi,∞) andm finite intervals[γj , γj + nj). The
multiset ofn +m intervals is a complete discrete invariant.
We call this multiset thepersistence barcode[1].

In essence, we are able to complete all our steps for one-dimensional
persistence and get everything we could possibly wish for.

1.4 Contributions
In this paper, we show that multidimensional persistence has an es-
sentially different character from its one-dimensional version. We
devote a major portion of this paper to the following theoretical
contributions:

• We identify the algebraic structure that corresponds to mul-
tidimensional persistence to be a finitely-generated multi-
graded module over the field of multivariate polynomials.



• We establish a full classification of this structure in terms of
the set of the orbits of the action of an algebraic group on an
algebraic variety.

• We reveal that this classification has discrete and continuous
portions. The former is canonically parameterizable, but the
latter has no precise parameterization.

Our results imply that no complete discrete invariant exists for mul-
tidimensional persistence, unlike its one-dimensional counterpart.
Given this negative result, we conclude the paper by describing a
practical invariant:

• We propose a discrete invariant, the rank invariant, that is
computable, compact, and useful for extracting persistence
information from multifiltrations.

• We prove the rank invariant is equivalent to the persistence
barcode in one dimension, making it complete for
one-dimensional persistence, the only type for which it can
be complete.

Our work has both theoretical and practical components, the former
being a full understanding of multidimensional persistence, and the
latter being a practical invariant that is useful for computation. In
Section 2, we review concepts from algebra, algebraic topology,
and algebraic geometry, and invent some notation. The next three
sections detail the three steps of our approach, respectively. In Sec-
tion 6, we propose our discrete invariant for multidimensional per-
sistence and show its completeness in one dimension.

2. BACKGROUND
Let N be the set of non-negative integers, also called thenatu-
ral numbers. Intuitively, a multiset is a set within which an ele-
ment may appear multiple times, such as{a, a, b, c}. Formally,
a multiset is a pair(S, µ), whereS is the underlying set of ele-
mentsandµ : S → N specifies themultiplicity µ(s) of each ele-
ments ∈ S. We often characterize a multiset via the set-theoretic
definition of µ: {(s, µ(s)) | s ∈ S}. For the example, we get
{(a, 2), (b, 1), (c, 1)}. We define(s, i) ∈ (S, µ) iff s ∈ S and
1 ≤ i ≤ µ(s), that is,i indexes the multiple copies ofs.

For u, v ∈ N
n, we sayu . v if ui ≤ vi for 1 ≤ i ≤ n. Let

(S, µ) be any multiset whereS ⊆ N
n. Then, the relation. is a

quasi-partial orderon (S, µ): it is reflexiveandtransitive, but not
anti-symmetric, since elements appear with multiplicity.

A monomialin x1, . . . , xn is a product of the form

xv11 · xv22 · · ·xvn
n

with vi ∈ N. We denote itxv, wherev = (v1, . . . , vn) ∈ N
n.

A polynomialf in x1, . . . , xn andcoefficientsin field k is a finite
linear combination of monomials,f =

P

v cvx
v, with cv ∈ k.

We denote the set of all polynomialsk[x1, . . . , xn]. For example,
5x1x

2
2−7x3

1 ∈ k[x1, x2] has two non-zero coefficients:c(1,2) = 5
andc(3,0) = −7.

An algebraic varietyis the set of common zeros of a collection of
polynomials. One variety we encounter in this paper is theGrass-
mannianGrk(V ), the set ofk-dimensional subspaces of a vector
spaceV . An algebraic groupis an algebraic variety endowed with
group structure, so that the group operation is a morphism of the
variety. Theautomorphism groupGL(V ) of a system of objectsV
is the set of invertible linear transformations onV , where the group
operation is function composition.

LetS be a set andG be a group. Anaction ofG onS is a binary
operation∗ : G× S → S such that for the identity elemente ∈ G,
we havee∗s = s for all s ∈ S, and(g1g2)∗s = g1∗(g2∗s) for all
s ∈ S andg1, g2 ∈ G. Given a group action, we defines1 ∼ s2 iff
there existsg ∈ G such thatg∗s1 = s2. Then,∼ is an equivalence
relation onS and partitions it. Each cell in the partition is anorbit
in S underG.

An n-graded ring is a ringR equipped with a decomposition
of Abelian groupsR ∼= ⊕vRv, v ∈ N

n so that multiplication has
the propertyRu · Rv ⊆ Ru+v. The set of polynomialsAn =
k[x1, . . . , xn] forms thepolynomial ring. An is graded byAv =
kxv, v ∈ N

n and is the prototype forn-graded rings. We may vi-
sualize the 2-graded ringA2 on the integer gridN2, as shown in
Figure 3(a), where each bullet is a grade that contains an element
from k. Our example polynomial5x1x

2
2 − 7x3

1 has non-zero el-
ements in grades(1, 2) and(3, 0). An n-graded moduleover an
n-graded ringR is an Abelian groupM equipped with a decompo-
sitionM ∼= ⊕v Mv, v ∈ N

n together with aR-module structure
so thatRu ·Mv ⊆Mu+v.

3. CORRESPONDENCE
In this section, we carry out the first step of the approach enumer-
ated in Section 1.2: identifying the algebraic structure underlying
our problem. The abstraction for our input is a multifiltered space.
A spaceX is multifiltered if we are given a family of subspaces
{Xv ⊆ X}v∈Nn with inclusionsXu ⊆ Xw wheneveru . w, so
that the diagrams

Xu Xv1

Xv2 Xw

��

//

��

//

(1)

commute foru . v1, v2 . w. We showed an example of a bifil-
tration in Figure 1.

In practice, our input is often a finite complexK along with a
functionF : R

n → K that gives a subcomplexKv for any value
v ∈ R

n, such as the bifiltered triangle in Figure 2. This input
converts naturally to a multifiltered complex. Since the complex is
finite, there is a finite set ofcritical coordinatesC = {vi ∈ R

n}i
at which new simplices enter the complex. ProjectingC onto each
coordinate axis gives us a finite set of critical valuesCd in each
dimensiond. We now restrict ourselves to the discrete set of the
Cartesian product

Qn

d=1 Cd of the critical values, parameterizing
the resulting grid usingN in each dimension. This gives us a mul-

(0,2)

(0,1)

(0,0)

(1,2)

(1,1)

(1,0)

(3,2)

(3,1)

(3,0)

(2,2)

(2,1)

(2,0)

Figure 2. A bifiltration of a triangle.



tifiltered complex, provided the functionF makes the induced dia-
grams (1) commute.

Given a multifiltered spaceX, the homology of each subspace
Xv over a fieldk is a vector space. For instance, the bifiltered
complex in Figure 2 has zeroth homology vector spaces isomorphic
to

k2 k k k
k2 k3 k k
k k k k

where the dimension of the vector space counts the number of com-
ponents of the complex. We also have inclusion maps relating the
subspaces, inducing maps at the homology level.

Definition 1 (persistence module)A persistence moduleM is a
family of k-modules {Mv}v together with homomorphisms
ϕu,v : Mu → Mv for all u . v such thatϕu,v ◦ ϕv,w = ϕu,w
wheneveru . v . w.

The homology of a multifiltration in each dimension is a persis-
tence module. To capture the structure of the maps in a persistence
module, we define a multigraded module, following our treatment
in the one-dimensional case [17].

Definition 2 (structure) Given a persistence moduleM , we de-
fine ann-graded module overAn by

α(M) =
M

v

Mv,

where thek-module structure is the direct sum structure and we
require thatxv−u : Mu →Mv isϕu,v wheneveru . v.

That is, we incorporate the relationships given by the homomor-
phisms into the structure of ann-graded module. Our treatment
is consistent with, and an extension of, the one-dimensional case,
where the corresponding structure is a 1-graded orsingly-graded
module [17].

Theorem 1 (correspondence)The correspondenceα defines an
equivalence of categories between the category of finite persistence
modules overk and the category of finitely generatedn-graded
modules overAn = k[x1, . . . , xn].

To recap, the homology of a finite multifiltered complex is a finite
persistence module, and the structure of a persistence module is a
finitely generatedn-graded module.

One may ask, however, about the reverse relationship: Is every
finite persistence module realizable as the homology of a multifil-
tration? More specifically, can we realize every such module as the
homology of a finite multifiltered simplicial complex, since that is
our usual representation of a space in practice? The following the-
orem answers this question in the affirmative.

Theorem 2 (realization) Every finite persistence module may be
realized as the homology, in any dimension greater than zero, of a
finite multifiltered space, or a finite multifiltered simplicial complex.

The proof is constructive and we omit it here.
We end this section with an aside on our choice of input. The

grid-like filtrations we study arise naturally in practice. Neverthe-
less, filtrations arising from other partial orders may also be in-
teresting and produce algebraic invariants. However, this would
take us out of the realm of commutative algebra, perhaps into non-
commutative algebra, and definitely into another paper.

4. CLASSIFICATION
We have now identified the algebraic structures that correspond to
our problem: finitely generatedn-graded modules overAn. In this
section, we focus on our second task: finding a complete classifi-
cation for this structure. We begin with a classification of finitely
generated free graded objects. Next, we utilize these free objects
to describe two discrete invariants for the modules. Finally, we ex-
amine the relationship between the two invariants to complete our
classification. Our approach is entirely in the spirit of the represen-
tation theory of finite dimensional algebras [11]. We have chosen
to present a complete argument for clarity and explicitness.

4.1 Free Graded Objects
Intuitively, a free object is a generalization of a vector space: a
number ofgeneratorsarefreeto create an infinite number of unique
elements. Consequently, a free object has a simple structure and
parameterization. In this section, we develop graded versions of
free objects to provide discrete invariants for our input. We begin
by endowing a fieldk with a gradedAn-module structure.

Definition 3 (k) For a fieldk, we definek to be then-gradedAn-
module with gradingk0 = k andkv = {0} for v 6= 0. TheAn-
structure is given by setting the action of all the variables identically
to zero.

We show the modulek in Figure 3(b). To construct more compli-
cated modules, we introduce the concept of shifting.

Definition 4 (shift) Given ann-graded objectM andv ∈ N
n, the

shifted objectM(v) is defined byM(v)u = Mu−v for all u ∈ N
n.

In other words, the objectM(v) is identical toM , but its direct sum
decomposition is shifted upwards in grading byv. We use shifted
objects to create graded vector spaces.

Definition 5 (vector space)Let ξ be a multiset of elements from
N
n. A finitely generatedn-gradedk-vector space with basisξ is a

finite direct sum of shifted copies ofk:

V (ξ) =
M

(v,i)∈ξ

k(v).

Note that we enumerate the elements with multiplicity using our
notation for multisets. Figure 3(c) displays a 2-gradedk-vector
space defined by multiset{((1, 0), 1), ((0, 1), 2), ((2, 1), 1)}. In a
vector space, a generator’s scope is a single grade. In a free module,
we extend its scope via the action of the the variables.

Definition 6 (free moduleF ) Letξ be a multiset of elements from
N
n. The freen-gradedAn-module with basisξ is the direct sum

of shifted copies ofAn:

F (ξ) =
M

(v,i)∈ξ

An(v)

=
M

(v,i)∈ξ

k[x1, . . . , xn](v).
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Figure 3. 2-graded objects: (a) Polynomial 5x1x2
2 − 7x3

1 in the 2-graded ring A2 = k[x1, x2] visualized on N
2. (b) Field k endowed with graded

module structure (Definition 3). (c) A k-vector space V with generators at (1, 0) and (2, 1), and two generators at (0, 1) (Definition 5). (d) A free
A2-module F with same type as (b) (Definition 6).

Compare this definition with the previous one. Our construction
has the usual universal mapping property defining a free module
[16]. Figure 3(d) displays the free module with the same defining
multiset as our example vector space. Each shaded region indicates
the scope of a generator in its corner.

Lemma 1 (typeξ, isomorphism) Any finitely-generatedn-graded
k-vector space may be written uniquely, up to isomorphism, with a
basis as in Definition 5. Similarly, any freen-gradedAn-module
may be written uniquely, up to isomorphism , with a basis as in
Definition 6. The basis is thetype ξ(M) of the objectM . Two
objects of the same type are isomorphic.

The lemma gives a full classification, establishingξ as a complete
discrete invariant, up to isomorphism, for each of the two free struc-
tures. A free module has a vector space in each grade. We use the
quasi-partial order. to formalize this next.

Lemma 2 (grade) F (ξ)v is ak-vector space with dimension equal
to card{(u, i) ∈ ξ | u . v}, wherecard denotes cardinality.

In Figure 3(d), the dimension ofMv is simply the number of re-
gions that cover gradev. For example,dimM(2,1) = 4 as(2, 1)
is contained in all four regions. Finally, we extend the notion of an
automorphism to free graded modules by requiring it to respect the
grading.

Lemma 3 (GL. ) Let µ ∈ GL(V (ξ)) be an automorphism of
V (ξ). We sayµ respects the gradingif for any (v, i) ∈ ξ, µ(v)
lies in the span of elements(v′, i′) ∈ ξ such thatv′ . v. We de-
fine GL.(V (ξ)) to be the set of all such automorphisms. Then,
GL.(V (ξ)) is an (algebraic) subgroup ofGL(V (ξ)). Moreover,
the automorphism group ofF (ξ) is isomorphic toGL.(V (ξ)) and
therefore algebraic, so we denote it byGL(F (ξ)).

4.2 Two Discrete Invariants
In the remainder of this section, we useM to denote our input: a
finitely generatedn-gradedAn-module. We cannot use the invari-
antξ directly sinceM is not free in general. But we could look at
free objects related to it. LetIn = (x1, . . . , xn) be then-graded
ideal inAn that is generated byx1, . . . , xn. Dividing out the ele-
ments inM with coefficients inIn, we derive a vector space that
containsM ’s generators.

Definition 7 (ξ) The spaceV (M) = M/InM = k ⊗
An

M is a

vector space. We defineξ(M) = ξ(V (M)).

ξ(M) is our first discrete invariant forM . For the zeroth homology
module for our bifiltration in Figure 2, we get:

ξ(M) = {((0, 0), 1), ((0, 1), 1), ((1, 1), 1)}.

The invariantξ(M) has an intuitive meaning in the context of one-
dimensional persistence (see Section 1.3). What we capture with
ξ(M) corresponds to the left endpoints of barcode intervals. Ap-
plying Definition 6, we may construct the free graded module
F (ξ(M)). This module has the same generators asM , but allows
them to be free. In one dimension, the construction corresponds to
starting half-infinite intervals at the left endpoints, as we have not
located the right endpoints.

The invariantξ(M) is not complete. The moduleF (ξ(M)) is a
free approximation ofM : it lacks the set of relations that constrain
M . So, we may begin our classification by computingξ(M), and
then refine it by studying classification of all modules with a fixed
value ofξ(M). For this refinement, we use a canonical isomor-
phismk ⊗An F (ξ(M)) ∼= k ⊗An M = V (M).

Lemma 4 (ϕ) There exists a surjectionϕM : F (ξ(M)) → M ,
unique up to automorphism ofF (ξ(M)), such that the induced
homomorphism

k ⊗
An

ϕM : k ⊗
An

F (ξ(M)) → k ⊗
An

M

is the canonical isomorphism given above.

The surjection is thefree hullof M , dual to the notion ofinjective
hull in the literature [8, Page 628]. Its existence is entirely analo-
gous to the existence of the first stage of aminimal free resolution
for local rings [9, Section 1B]. The kernelkerϕM of surjection
ϕM consists precisely of the relations definingM and is called the
ideal of relations. Generally, the kernel is not free, but we may use
our technique from Definition 7 to capture its generators. This con-
struction gives us our second discrete invariant forM : ξ(kerϕM ).
Intuitively, what we capture withξ(kerϕM ) corresponds to the
right endpoints of barcode intervals in one-dimensional persistence.
We end this section by naming our two discrete invariants.

Definition 8 (ξ0, ξ1) We defineξ0(M) = ξ(M) andξ1(M) =
ξ(kerϕM ) as two discrete invariants for a finitely generatedn-
gradedAn-moduleM .

For the zeroth homology module for our bifiltration in Figure 2, we
get:

ξ1(M) = ξ(kerϕM ) = {((1, 2), 2), ((2, 1), 2)}.



4.3 Complete Classification
We now have the locations of the births and deaths of generators
in M inside two multisetsξ0(M) andξ1(M), respectively. The
two invariants together are not complete, so we next study the clas-
sification of all modules with fixed values for the invariants. In
one-dimensional persistence, we were able to establish a significant
result that we can pair births and deaths to get the barcode inter-
vals [17]. To complete the classification for multidimensional per-
sistence, we need to study the relationship between the free graded
modules associated to our two invariants. For notational sanity, we
define the notation in Figure 4(a). The free graded modulesF0 and
F1 have our two discrete invariants as generators, and the surjec-
tionϕK is asserted by Lemma 4. SinceK includes inM , we have
the diagram in Figure 4(b), where we defineψM = i ◦ ϕK , so the
diagram commutes. SinceimψM = kerϕM by construction, the
sequence at the bottom of the diagram,F1 → F0 → M , is exact.
The homomorphismψM : F1 → F0 relates our two free modules.
To understand this map, we begin by modeling any relationship
between any two free graded modules.

Definition 9 (relation family RF, RF) Let F (ξ0) andF (ξ1) be
free graded modules. Arelation family RF(ξ0, ξ1) is a family
{Vv}v∈ξ1 of vector spaces such that

1. Vv ⊆ F (ξ0)v,

2. dimVv = dimF (ξ1)v,

3. for u, v ∈ ξ1, u . v, we haveθv−u(Vu) ⊆ Vv, whereθw is
multiplication byxw.

The collectionRF(ξ0, ξ1) consists of all possible relation families
RF(ξ0, ξ1).

Note that in this definition, we treatξ1 as a set, disregarding the
multiplicities. Now, automorphismsµ ∈ GL(F (ξ0)) induce auto-
morphisms of the exact sequence at the bottom of the diagram in
Figure 4(b) and therefore ofM . In particular,µ maps a relation
family into another relation family, giving us the following.

Lemma 5 GL(F (ξ0)) is a (left) group action on the collection
RF(ξ0, ξ1).

K = kerϕM

F0 = F (ξ0(M)) = F (ξ(M))

F1 = F (ξ1(M)) = F (ξ(K))

ϕK : F1 → K

(a) Notation

K

F1 F0 M
��

i

?? ??
�

�
�

�
�
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ϕK

//
ψM

// //
ϕM

(b) Diagram

Figure 4. Notation and diagram for complete classification.

Recall the homomorphismψM : F1 → F0 from the diagram. In
each gradev,ψM maps vector space(F1)v to a vector space within
(F0)v. That is, we get a relation family.

Lemma 6 (η(ψM )) The homomorphismψM yields a relation fam-
ily η(ψM ) ∈ RF(ξ0(M), ξ1(M)), where forv ∈ ξ1(M),
η(ψM )v = ψM (F1)v.

We may now state a major result of the paper.

Theorem 3 (classification)Letξ0, ξ1 be multisets of elements from
N
n and[M ] be the isomorphism class of finitely generatedn-graded

An-modulesM with ξ0(M) = ξ0 and ξ1(M) = ξ1. Then, the
assignment[M ] 7→ η(ψM ) is a bijection from the collection of
isomorphism classes to the set of orbits

RF(ξ0, ξ1)/GL(F (ξ0)). (2)

In other words, each moduleM is classified, up to isomorphism,
by three invariants:ξ0(M), ξ1(M), and the orbitη(ψM ) under the
action of the automorphisms of the associated free graded module
F (ξ0).

5. PARAMETERIZATION

Having established a complete classification of the graded modules,
we now turn our attention to the third step of our approach: param-
eterizing the classification. The two discrete invariants are already
parameterized as multisets. The remaining invariant is the set of
orbits described by Theorem 3. In this section, we examine the
structure of the orbits using concepts in algebraic geometry. The
general picture that emerges is that this portion of the classification
is a continuous invariant. To appreciate its nature, we next detail
an example in two dimensions. We end this section with possible
strategies for coping with the continuous invariant.

5.1 Algebraic Action

We begin by endowing the collection of relation familiesRF(ξ0, ξ1)
with the structure of an algebraic variety. Note first thatRF(ξ0, ξ1)
is a subset of the variety

Y

(v,i)∈ξ1

GrdimF (ξ1)v
(F (ξ0)v) (3)

whereGr is the Grassmannian. It is now easy to verify that the
containment conditions that define the collectionRF(ξ0, ξ1) are
algebraic on this variety, giving us the following.

Theorem 4 (algebraic action) RF(ξ0, ξ1) is a variety in a natu-
ral way, and the action of the algebraic groupGL(F (ξ0)) on it is
an algebraic action.

Unfortunately, the set of orbits of the action of an algebraic group
on an algebraic variety is not, in general, an algebraic variety [14].
The number of orbits may be uncountable, giving us a continuous
invariant.
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Figure 5. Visualization of ξ0 and ξ1 on N
2 for our example, with the

elements of the latter circled.

5.2 The Continuous Invariant

To further appreciate the complexity of the continuous invariant, we
show its structure for a simple two-dimensional example. Suppose
we have a set of modules for which

ξ0 = {((0, 0), 2)},

ξ1 = {((3, 0), 1), ((2, 1), 1), ((1, 2), 1), ((0, 3), 1)},

as visualized onN2 in Figure 5. It is easy to build a bifiltered sim-
plicial complex whose first homology groups correspond to this
picture. At(0, 0), we have a complex composed of two loops, giv-
ing us k2. In each of the circled coordinates, we choose a sew
a surface between the two loops such that no two complexes are
sewn the same. For example, we could sew a cylinder at(3, 0), a
punctured crosscap at(2, 1), and so on. Observe that the discrete
invariantsξ0, ξ1 cannot discern the difference between the resulting
complexes.

To obtain the classification, we apply Theorem 3. The genera-
tors ofF (ξ0) are co-located, so we have the full group of automor-
phisms

GL(F (ξ0)) = GL(k2) = GL2(k),

whereGL2(k) is the group of invertible2 × 2 matrices with ele-
ments fromk. We use Equation (3) to endowRF(ξ0, ξ1) with a
variety structure. For each(v, i) ∈ ξ1, F (ξ0)v is isomorphic to
k2 anddimF (ξ1)v = 1, soGrdimF (ξ1)v

(F (ξ0)v) = Gr1(k
2) =

P
1(k), whereP

1(k) denotesprojective line, the set of lines ink2

going through the origin. Then, the variety is simplyP
1(k)

4
as

there are no containment conditions. The classification is given by
the orbit space

P
1(k)

4
/GL2(k), (4)

where elementsg ∈ GL2(k) act in the evident way on the four
lines, transforming each line to another.

We claim that no discrete invariant is possible for this bifiltration.
Consider the subspaceΩ of the orbit space containing pairwise-
distinct lines. That is, we have four tuple of lines(l1, l2, l3, l4)
where li 6= lj for i 6= j. The subspaceΩ is clearly invariant
under theGL2(k) action and hence the orbit spaceΩ/GL2(k) is
a subspace of our orbit space in Equation (4). Using matrices from
GL2(k), we transform the lines so that

1. l1 becomes thex-axis,

2. l2 becomes they-axis,

3. andl3 becomes thediagonalline spanned by(1, 1).

These transformations exist asl1, l2 spank2, being non-zero and
distinct, andl3 cannot be zero or either axis after the first two trans-
formations. We now have a tuple(x-axis, y-axis, diagonal, λ4),
whereλ4 is l4 after the transformations. While there are differ-
ent matrices inGL2(k) that can transform the original tuple to
this tuple, the matrices differ by multiplication by a diagonal ma-
trix, since the only matrices that preserve the axes and the diag-
onal line are diagonal matrices. Consequently,λ4 is determined
uniquely, and we may identify the orbitsΩ/GL2(k) with the lines
in P

1(k) with the axes and the diagonal removed. Each such line
is determined by its slope which cannot be0, ∞, or 1, according
to the discussion. Therefore,Ω/GL2(k) can be identified with
P

1(k) − {0, 1,∞} = k − {0, 1}.

Now, note that this classification is dependent on the field of co-
efficientsk. If k is uncountable, so is the subspace, and in turn, the
full orbit space. Ifk is a finite field, such asFp for p a prime, we
get a finite solution for the subspaceΩ we have chosen, but we still
have not detailed the full picture for the orbit space. However, we
already see the field-dependence problem: Changing the field not
only changes the classification, but also the target of the classifica-
tion: We not only get different values, we get values from different
sets altogether. This is analogous to getting Betti numbers inZ2

when computing overZ2, Betti numbers inZ3 when computing
over Z3, and so on. Therefore, we cannot get a discrete invariant
for our example.

5.3 Refinement
We have illustrated that our goal – obtaining a complete discrete
invariant – is not attainable for multigraded objects. Intuitively,
the continuous invariant captures subtle second-order information
about the complicated transitions in a multigraded module. This
information may be worthy of study and we end this section by
suggesting possible avenues of attack.

Our two discrete invariants may be viewed as the first two in a
family of discrete invariants. We may develop standard homolog-
ical algebra in the category of graded modules over ann-graded
k-algebraAn, with the resulting derived functors⊗

An

andHomAn

now being equipped with the structure of ann-graded
An-module [16]. In particular, the functorTorAn

i (M,k) makes
sense and we now define a family ofn discrete invariants by

ξi = ξ
“

TorAn
i (M,k)

”

.

The first two invariants in the family match our two discrete in-
variants in Definition 8. It may be interesting to study the rest
of this family as each invariant will make our classification finer.
However, the existence of the continuous invariant indicates that
no matter how many of these invariants we include, there will still
be a residual continuous component in the classification.

While the set of orbits is not a variety, we conjecture that addi-
tional structure exists in the following form. LetG = GL(F (ξ0))
and suppose there is a family of closed subvarieties
RFn ⊆ RF(ξ0, ξ1) such that

1. RFn ⊆ RFn+1 for all n,

2. RFn is closed under the action ofG,

3. RFn eventually becomes equal toRF(ξ0, ξ1),

4. the set of orbits of theG-action onRFn − RFn−1 is an
algebraic variety in a natural way.



This kind of structure is called anequivariant stratificationof the
variety in question, with the differenceRFn−RFn−1 being astra-
tum. The orbit varieties are calledmoduli spacesin classification
problems for which the invariant lies in a given stratum. The result
is known to hold in some special cases by the work of Cohen and
Orlik [3] and Terao [15].

6. THE RANK INVARIANT
Our study of multigraded objects shows that no complete discrete
invariant exists for multidimensional persistence. We still desire
a discriminating invariant that captures persistent information, that
is, homology classes with large persistence. This information is
not contained in our two discrete invariants,ξ0 andξ1, as they cap-
ture birth and death coordinates of the generators in the complexes.
What we need lies within the relationship between the two invari-
ants or in the maps between the complexes. In this section, we pro-
pose and advocate a small and computable invariant that identifies
persistent features in a multifiltration. Our invariant is equivalent to
persistence barcodes, and therefore complete, for one-dimensional
filtrations.

The persistent information is contained in the relating homomor-
phismsϕu,v in Definition 1. Recall that we incorporated these
maps into a multigraded module through the action of the variables,
requiring thatxv−u : Mu →Mv to beϕu,v in Definition 2. To an-
alyze this family of maps, we begin by defining their domains.

Definition 10 (Dn ) Let Ṅ = N ∪ {∞} with u ≤ ∞ for all u ∈

Ṅ. Let D
n ⊂ N

n × Ṅ
n be the subset above the diagonal,D

n =
{(u, v) | u ∈ N

n, v ∈ Ṅ
n, u . v}. For (u, v), (u′, v′) ∈ D

n, we
define(u, v) � (u′, v′) if u . u′ andv′ . v.

It is easy to check that� is a quasi-partial order onDn. With this
notation, our parameterization of singly-graded modules in Sec-
tion 1.3 is a multiset fromD1, and� indicates the first pair contains
the second, when the pairs are viewed as intervals.

Definition 11 (rank invariant ρM ) LetM be a finitely generated
n-gradedAn-module. We defineρM : D

n → N to beρM (u, v) =
rank(xv−u : Mu →Mv).

The functionρM is clearly a discrete invariant forM .

Lemma 7 (order-preserving) If (u, v) � (u′, v′), then
ρM (u, v) ≤ ρM (u′, v′), that is,ρM is anorder preservingfunction
from (Dn,�) to (N,≤).

Proof: Immediate using the fact that given any compositef ◦ g of
linear transformations, we have

rank(f ◦ g) ≤ rank f, rank g.

We now state the rank invariant’s completeness in one dimension
through its equivalence to barcodes. We note that the following
theorem is the converse of thek-triangle Lemma[7, 17].

Theorem 5 (completeness)The rank invariantρM is complete for
singly-graded modulesM .

O

t0

t0

t1

t1

s

t

Figure 6. The intervals of a barcode ξ are drawn below the t-axis.
Each interval (t0, t1) defines a triangle as shown. The rank function
ϑ(ξ)(t, s) is the number of triangles that contain (t, s).

Proof: To prove completeness, we show equivalence via a bijec-
tion ϑ between the set of barcodes and the set of rank invariants.
According to the classification theorem for a graded moduleM re-
called in Section 1.3, the intervals in its barcodeξ capture the life-
times of the generators ofM . Therefore, the corresponding rank
function isϑ(ξ)(t, s) = card{((t′, s′), i) ∈ ξ | (t, s) ⊆ (t′, s′)}.
Figure 6 illustrates this correspondence. The barcode intervals are
drawn below thet axis and the rank function’s domain,D

1, exists
above the diagonal in the(t, s)-plane. Each interval[t0, t1) has a
triangular region defined by inequalitiest ≥ t0, s < t1, ands ≥ t,
with corner vertex(t0, t1) and vertices(t0, t0) and(t1, t1) on the
diagonal. Half-infinite intervals correspond to degenerate triangles,
but they are handled easily, so we do not discuss them here. The
rank functionϑ(ξ)(t, s) is simply the number of triangles that con-
tain (t, s). As an aside, we note that the map(t, s) 7→ (t, s − t)
gives the index-persistence figures in the previous papers [7, 17].

Clearly, we can construct each triangle from its corner by pro-
jecting the corner vertically and horizontally onto the diagonal.
Moreover, there is a trivial bijection between the corner(t0, t1) and
the interval[t0, t1). Given a barcodeξ, we know how to build the
rank functionϑ(ξ) by the equation above. Given a rank function
ρ, we need to identify the corner points to build the corresponding
barcode. We begin by first walking along the diagonal until the rank
function is nonzero att0 = argmint ρ(t, t) 6= 0. By Lemma 7, the
functions 7→ ρ(t0, s) is a non-increasing function, so we walk ver-
tically up until t1 whereρ(t0, t1) < ρ(t0, t0). The point(t0, t1) is
a corner, so we subtract its triangle fromρ. The proof follows by
induction.

When the module is the persistence module associated to theith
homology of a multifiltration, we can define the rank invariant di-
rectly in terms of the input.

Definition 12 (ρX,i) LetX = {Xv}v∈Nn be a multifiltration. We
defineρX,i : D

n → N over fieldk to

ρX,i(u, v) = rank(Hi(Xu, k) → Hi(Xv, k)).

The functionρX,i is a homeomorphism invariant of the multifil-
tered space, deriving its invariance from the invariance ofρM . Intu-
itively, Theorem 5 means that the rank invariant for one-dimensional
filtrations may be separated into a set of overlapping triangles whose
thickness at any point is the rank. These triangles, in turn, carry the
same information as a set of intervals or the barcode. Our classi-
fication theorem, on the other hand, implies that a similar result



is not possible for higher dimensions. As our example in Sec-
tion 5.2illustrates, the picture is much more complicated: It is not
possible to separate the rank invariant into overlapping “regions” to
extend the barcode. However, the rank invariant does extend as an
incomplete invariant and we may utilize it to identify persistent fea-
tures by the following procedure. Given a rank invariant, we look
for points(u, v) ∈ D

n that are far from the diagonal and have a
neighborhood of constant value. The first condition corresponds to
the persistence of the features. The second condition indicates the
stability of our choice(u, v). With this procedure, the rank invari-
ant emerges as a practical tool for reliable estimation of the Betti
numbers of multifiltered spaces.

7. CONCLUSION
We believe the primary contribution of this paper is the full theoret-
ical understanding of the structure of multidimensional persistence:
We identify the corresponding algebraic structure, classify it, and
undertake its parameterization. Our theory reveals that a complete
discrete invariant does not exist for multidimensional persistence,
unlike its one-dimensional counterpart. A second practical contri-
bution of our paper is the rank invariant, a tool for robust estimation
of the Betti numbers. We prove that the rank invariant is equivalent
to the persistent barcode in one dimension, so it is complete when
it can be. Unlike the barcode, the rank invariant extends to higher
dimensions as an incomplete but useful invariant.

We have developed an algorithm for computing the rank invari-
ant. For bifiltrations, the rank invariant is already four-dimensional,
so we are examining possible interfaces for visualizing and explor-
ing the rank invariant. We plan to apply our work toward automatic
identification of features in multifiltrations, such as the filtered tan-
gent complex [4].
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