Latest News and Events

The SAMSI-FODAVA Workshop on Interactive Visualization and Analysis of Massive Data will be held on December 10-12, 2012.
Posted: October 02, 2012
The FODAVA Annual Meeting will immediately follow (Dec 12-13) the SAMSI/FODAVA joint workshop at the same location.
Posted: September 05, 2012
Many of the modern data sets such as text and image data can be represented in high-dimensional vector spaces and have benefited from computational methods that utilize advanced techniques from num
Posted: June 30, 2012

Efficient Data Reduction and Summarization

Speaker: 
Ping Li
Abstract: 

The ubiquitous phenomenon of massive data (including data streams) imposes considerable challenges in data visualization and exploratory data analysis. About 15 years ago, terabyte datasets were still considered `ridiculous.' However, modern datasets managed by Stanford Linear Acceleration Center (SLAC), NASA, NSA, etc. have reached the perabyte scale or larger. Corporations such as Amazon, Wal-Mart, Ebay, and search engine firms are also major generators and users of massive data. The general theme of data reduction and summarization has become an active and highly inter-disciplinary area of research. This project proposes to develop various approximation techniques, which generate a "fingerprint" or "sketch" of the massive data by transforming the original data. These `sketches' are reasonably small (hence easy to store) and can provide approximate answers which are usually good enough for practical purposes. This proposal concerns the fundamental problems of processing/transforming massive (possibly dynamic) data. In particular, it focuses on (A) developing systematic fundamental tools for effective data reduction and efficient data summarization; (B) applying these tools to improve numerical analysis, visualization, and exploratory data analysis. Two lines of theoretically sound techniques for data reduction and summarization will be developed and further improved: (1) the method of stable random projections (SRP), effective in heavy-tailed data; (2) the method of Conditional Random Sampling (CRS), mainly for sparse data. Concrete applications of SRP and CRS will be investigated. Widely-used basic numerical algorithms can be rewritten by taking advantage of SRP or CRS. Popular methods/tools for exploratory data analysis will also benefit considerably from the development of data reduction techniques.